
 
 
 Copyright ©2006-2011EPCglobal® 1 of 71       

 1 
GS1 EPCglobal Tag Data Translation (TDT) 1.6 2 
Ratified Standard 3 
 October 12, 2011 4 
 5 

Latest version: 1.6 Issue 2 6 
Previous versions: 1.0, 1.4 7 
 8 

Disclaimer 9 
GS1 AISBL (GS1) is providing this document as a free service to interested industries. 10 
This document was developed through a consensus process of interested parties in 11 
developing the Standard.  Although efforts have been made to assure that the document 12 
is correct, reliable, and technically accurate, GS1 makes NO WARRANTY, EXPRESS 13 
OR IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT REQUIRE 14 
MODIFICATION AS EXPERIENCE AND TECHNOLOGY DICTATE, OR WILL BE 15 
SUITABLE FOR ANY PURPOSE OR WORKABLE IN ANY APPLICATION, OR 16 
OTHERWISE.   Use of this document is with the understanding that GS1 DISCLAIMS 17 
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 18 
IMPLIED WARRANTY OF NON-INFRINGEMENT OF PATENTS OR COPYRIGHTS, 19 
MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, THAT THE 20 
INFORMATION IS ERROR FREE, NOR SHALL GS1 BE LIABLE FOR DAMAGES OF 21 
ANY KIND, INCLUDING DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 22 
CONSEQUENTIAL OR EXEMPLARY DAMAGES, ARISING OUT OF USE OR THE 23 
INABILITY TO USE INFORMATION CONTAINED HEREIN OR FROM ERRORS 24 
CONTAINED HEREIN. 25 
 26 

Copyright Notice 27 

© 2011 GS1 AISBL 28 

All rights reserved. Unauthorized reproduction, modification, and/or use of this document are 29 
not permitted. Requests for permission to reproduce and/or use this document should be 30 
addressed to GS1 Global Office, Attention Legal Department, Avenue Louise 326, bte 10, B-31 
1050 Brussels, Belgium. 32 

 33 
 34 

 35 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 2 of 71       

 36 
 37 

 38 
 39 

Copyright Notice 40 

© 2011 GS1 AISBL 41 

All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not 42 
permitted. Requests for permission to reproduce and/or use this document should be 43 
addressed to GSMP@GS1.org 44 

DISCLAIMER: 45 

 GS1 AISBL (GS1) is providing this document as a free service to interested industries. This 46 
document was developed through a consensus process of interested parties in developing the 47 
Standard.  Although efforts have been made to assure that the document is correct, reliable, 48 
and technically accurate, GS1 makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS 49 
DOCUMENT IS CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND 50 
TECHNOLOGY DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN 51 
ANY APPLICATION, OR OTHERWISE.   Use of this document is with the understanding that 52 
GS1 DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 53 
LIMITED TO ANY IMPLIED WARRANTY OF NON-INFRINGEMENT OF PATENTS OR 54 
COPYRIGHTS, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE, 55 
THAT THE INFORMATION IS ERROR FREE, NOR SHALL GS1 BE LIABLE FOR DAMAGES 56 
OF ANY KIND, INCLUDING DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL 57 
OR EXEMPLARY DAMAGES, ARISING OUT OF USE OR THE INABILITY TO USE 58 
INFORMATION CONTAINED HEREIN OR FROM ERRORS CONTAINED HEREIN. 59 

 60 

Table of Contents 61 

Terminology ........................................................................................................ 5 62 
Status of this document ..................................................................................... 5 63 

Changes from previous versions ...................................................................... 5 64 
1 Introduction ................................................................................................... 6 65 

1.1 Overview ................................................................................................... 6 66 
1.2 Tag Data Translation Charter .................................................................... 8 67 

1.3 Tag Data Translation Concept ................................................................... 8 68 
1.4 Role within the EPC Network Architecture .............................................. 10 69 

1.5 Tag Data Translation Process ................................................................. 13 70 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 3 of 71       

1.6 Expressing different representations of EPC ........................................... 16 71 
Patterns (Regular Expressions) .................................................................................... 16 72 
Grammar (Augmented Backus-Naur Form [ABNF])....................................................... 16 73 
Rules for obtaining additional fields ............................................................................... 17 74 

1.7 Translation Process Steps....................................................................... 17 75 
2 Tag Data Standard ....................................................................................... 18 76 

2.1 Overview ................................................................................................. 18 77 

2.2 Many Schemes, Multiple Levels within each scheme and multiple options 78 
within each level .................................................................................... 21 79 

3 TDT Markup and Logical Process .............................................................. 23 80 

3.1 TDT Artifacts ........................................................................................... 23 81 

3.2 TDT Markup ............................................................................................ 24 82 
3.3 Definition of Formats via Regular Expression Patterns and ABNF 83 

Grammar ................................................................................................ 26 84 
3.4 Determination of the inbound representation ........................................... 27 85 

3.5 Specification of the outbound representation .......................................... 27 86 
3.6 Specifying supplied parameter values ..................................................... 28 87 

3.7 Validation of values for fields and fields derived via rules........................ 30 88 
3.8 Restricting and checking decimal ranges for values of fields .................. 30 89 

3.9 Restricting and checking character ranges for values of fields ................ 31 90 
3.10 Padding of fields .................................................................................... 32 91 

Changes since TDT v1.0 .............................................................................................. 32 92 
padChar and padDir ..................................................................................................... 33 93 
bitPadDir and bitLength ................................................................................................ 35 94 
3.10.1 Summary of padding rules .............................................................................. 35 95 

3.11 Compaction and Compression of fields ................................................. 38 96 

3.12 Names of fields used within the TDSv1.6 schemes ............................... 39 97 
3.13 Rules and Derived Fields ....................................................................... 40 98 

3.14 Core Functions ...................................................................................... 41 99 
4 TDT Markup - Elements and Attributes ..................................................... 46 100 

4.1 Root Element ........................................................................................... 46 101 
Attributes ...................................................................................................................... 46 102 
Elements ...................................................................................................................... 46 103 

4.2 Scheme Element ..................................................................................... 46 104 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 4 of 71       

Attributes ...................................................................................................................... 46 105 
Elements ...................................................................................................................... 47 106 

4.3 Level Element .......................................................................................... 48 107 
Attributes ...................................................................................................................... 48 108 
Elements ...................................................................................................................... 49 109 

4.4 Option Element ........................................................................................ 49 110 
Attributes ...................................................................................................................... 49 111 
Elements ...................................................................................................................... 50 112 

4.5 Field Element .......................................................................................... 50 113 

4.6 Attributes ................................................................................................. 50 114 
4.7 Rule Element ........................................................................................... 51 115 

Attributes ...................................................................................................................... 51 116 
5 Translation Process .................................................................................... 53 117 

5.1 Tag Data Translation Software - Reference Implementation ................... 57 118 
6 Application Programming Interface ........................................................... 57 119 

6.1 Client API ................................................................................................ 57 120 

6.2 Maintenance API ..................................................................................... 58 121 
7 TDT Schema and Markup Definition .......................................................... 60 122 

8 Glossary (non-normative) ........................................................................... 61 123 
9 References ................................................................................................... 67 124 

10 Acknowledgement of Contributors and Companies Opted-in during the 125 
Creation of this Standard (Informative) .......................................................... 69 126 

127 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 5 of 71       

Terminology 128 
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, 129 
MAY, NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of 130 
the ISO/IEC Directives, Part 2, 2001, 4th edition [ISODir2].  When used in this way, 131 
these terms will always be shown in ALL CAPS; when these words appear in ordinary 132 
typeface they are intended to have their ordinary English meaning. 133 

The Courier font is used to indicate the names of XML elements and attributes and 134 
names of variable fields within the Tag Data Translation markup.  135 

All sections of this document are normative, except where explicitly noted as non-136 
normative. 137 

Status of this document 138 
This document is a Ratified Standard as of September 9, 2011 and is based on the 139 
previous version which was ratified by the EPCglobal Board of Governors on June 10th, 140 
2009. It now has been updated to reflect the current functionality in TDS v1.6. The 141 
previous version of the TDT was version 1.4. We have jumped to version v1.6 for this 142 
version to imply compatibity with TDS v1.6.  143 
This version of the GS1 EPC Tag Data Translation Standard is the Ratified version of the 144 
standard and has completed all process steps under the new GSMP.  Please note that in 145 
Issue 2 of this document, the “Unratified Standard” watermark has been removed and this 146 
section has been updated. The technical content remains the same as the first issue of 147 
September 9th, 2011. 148 

Comments on this document should be sent to the GSMP@gs1.org . 149 

Changes from previous versions 150 
This version of the specification supports the latest TDS version 1.6. The following 151 
changes are made to this specification: 152 

• Added new TDT definition file for ADI-var scheme to support variable-length 153 
EPC identifier construct for Aerospace & Defence, for the unique identification of 154 
aircraft parts 155 

• Relaxed schema restrictions for the tagLength and optionKey attributes of 156 
the <scheme> element in EpcTagDataTranslation.xsd, in order to accommodate 157 
the variable-length EPC identifiers; tagLength and optionKey are not 158 
required attributes of <scheme> for variable-length EPC schemes such as 159 
ADI-var. 160 

• Provided clarification in flowcharts (Figures 9a, 9b in section 3.10.0) regarding 161 
the padding and stripping of characters or bits when converting between binary 162 
and non-binary levels; the term 'NON-BINARY' is replaced with 'TAG-163 
ENCODING URI' since only the tag-encoding URI representation has a 1-1 164 
correspondence with the binary encoding for each of the structural elements.  165 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 6 of 71       

Note that when encoding from any level other than the BINARY level, it is 166 
necessary to examine the corresponding fields within the TAG-ENCODING URI 167 
and BINARY levels in order to make use of the flowcharts in Figures 9a and 9b.  168 
(The previous version of these flowcharts did not make this sufficiently clear - 169 
and for example, a field such as itemref might be defined within the BINARY and 170 
TAG-ENCODING levels but not defined in the LEGACY level (if it cannot be 171 
unambiguously parsed from the input (an element string or GS1 Application 172 
Identifier notation) without first applying rules as defined in rule elements) 173 

• Errata corrections to TDT definition files defined in TDT 1.4 (typically missing 174 
LEGACY_AI levels in some schemes derived from GS1 identifier keys) 175 

• Updates to Figures 3 through 10 and Table 2 to mention additional levels of 176 
representation introduced in TDT 1.4 and TDT 1.6. 177 

• XML comments used throughout the XSD schema files for TDT to provide 178 
helpful annotation and explanation. 179 

Previous changes introduced with TDT 1.4 relative to TDT 1.0: 180 

• Modified tagLength attribute in schema definition to remove tagLength restriction 181 
(EpcTagDataTranslation.xsd) 182 

• Added three new schema definition to support GSRN-96, GDTI-96 and GDTI-183 
113 184 

• Added example string format for GSRN and GDTI in Table 3 185 

• Added bitPadDir attribute to the schema definition to specify padding direction 186 
for binary output. Added bitPadDir description to section 3.10 (Padding of fields) 187 
and replace existing table in this section with flow chart to provide more clarity 188 

• Added support for additional functions to the schema definition to support 189 
arithimetic and added these functions to section 3.14 (Core Function) 190 

• Added table entry for bitPadDir to section 4.6 (Attributes) 191 

• Added GSRN and GDTI to section 9 (Glossary) 192 

• Added GSRN and GDTI to the section 10 (References) 193 
 194 
 195 

1 Introduction 196 

1.1 Overview 197 
The Electronic Product Code (EPC) is a globally unique identifier that is designed to 198 
allow the automatic identification of objects anywhere. 199 
The EPC Tag Data Standard (TDS) indicates how existing coding systems such as the 200 
GS1 (formerly EAN.UCC) family of codes (GTIN, GLN, SSCC, GRAI, GIAI, GSRN, 201 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 7 of 71       

GDTI) and a small number of other identifier constructs should be embedded within the 202 
Electronic Product Code (EPC). 203 

By providing a machine-readable framework for validation and translation of EPC 204 
identifiers, Tag Data Translation is designed to help to future-proof the EPC Network and 205 
in particular to reduce the pain / disruption in supporting additional EPC identifier 206 
schemes that may be introduced in the future, as the EPC Network is adopted by 207 
additional industry sectors and new applications. The EPC Tag Data Standard (TDS) also 208 
describes in terms of human-readable encoding and decoding rules for each coding 209 
scheme, how to translate between three representations of the electronic product code 210 
(EPC), namely the binary format and two formats of uniform resource identifiers (URI), 211 
one for tag-encoding and another for pure identity.   212 
The canonical representation of an EPC is the pure-identity URI representation, which is 213 
intended for communicating and storing EPCs in information systems, databases and 214 
applications, in order to insulate them from knowledge about the physical nature of the 215 
tag, so that although 64 bit tags may differ from 96 bit tags in the choice of literal binary 216 
header values and the number of bits allocated to each element or field within the EPC, 217 
the pure-identity URI format does not require the information systems to know about 218 
these details; the pure-identity URI can be just a pure identifier.   219 

The binary format is used to store the EPC identifier in the EPC/UII memory of the RFID 220 
tag. The binary format consists of a header (which indicates the coding scheme and 221 
version - usually the first 8 bits, although a 2-bit header was defined for SGTIN-64), a 222 
fast filter value (which can be used for distinguishing between different packaging 223 
levels), as well as fields indicating the company responsible for the object, the object 224 
class and a unique serial number.   225 

The tag-encoding URI provides a 1-1 mapping with the binary number recorded in the 226 
physical tag and as such indicates the bit-length of the tag (for fixed-length EPCs) and 227 
usually also includes an additional field (usually 3 bits) which is reserved for fast 228 
filtering purposes, e.g. to distinguish between various packaging levels for trade items.  229 
The tag-encoding URI is therefore intended for low-level applications which need to 230 
write EPCs to tags or physically sort items based on packaging level. 231 

The pure-identity URI format isolates the application software from details of the bit-232 
length of the tags or any fast filtering values, so that tags of different bit-lengths which 233 
code for the same unique object will result in an identical pure-identity URI, even though 234 
their tag-encoding URIs and binary representations may differ. This means that when a 235 
manufacturer switches from using 64-bit tags to 96-bit tags or longer for tagging a 236 
particular product, the pure-identity URI representation of the EPC will appear the same 237 
(except for different serial numbers for different instances of the product).   238 
Section E.3 of Appendix E of Tag Data Standard v1.6 provides examples of the pure-239 
identity URI, tag-encoding URI and binary encoding for all current EPC schemes.  240 
The EPC Tag Data Translation (TDT) standard is concerned with a machine-readable 241 
version of the EPC Tag Data Standard rules for formatting and translation of EPC 242 
identifiers.  The machine-readable version can be readily used for validating EPC formats 243 
as well as translating between the different levels of representation in a consistent way.  244 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 8 of 71       

This standard describes how to interpret the machine-readable version.  It contains details 245 
of the structure and elements of the machine-readable markup files and provides guidance 246 
on how it might be used in automatic translation or validation software, whether 247 
standalone or embedded in other systems. 248 

1.2 Tag Data Translation Charter 249 
The three objectives in the original charter of the Tag Data Translation working group 250 
were: 251 

• To develop the necessary specifications to express the current TDS encoding and 252 
decoding rules in an unambiguous machine-readable format; this will allow any 253 
component in the EPC Network technology stack to automatically translate between 254 
the binary and tag-encoding URI and pure-identity URI formats of the EPC as 255 
appropriate.  The motivation is to allow components flexibility in how they receive or 256 
transmit EPCs, to reduce potential 'impedance mismatches' at interfaces in the EPC 257 
Network technology stack.  Reference implementations of software that demonstrate 258 
these capabilities will also be developed. 259 

• To provide documentation of the TDS encodings in such a way that the current prose 260 
based documentation can be supplemented by the more structured machine-readable 261 
formats. 262 

• To ensure that automated tag data translation processes can continue to function and 263 
also handle additional numbering schemes, which might be embedded within the EPC 264 
in the future.  By aiming for a future-proof mechanism which allows for smooth 265 
upgrading to handle longer tags (e.g. 256 bits) and the incorporation of additional 266 
encoding/decoding rules for other coding systems, we expect to substantially reduce 267 
the marginal cost of redeveloping and upgrading software as the industry domains 268 
covered by the EPC expand in the future.  We envisage that data which specifies the 269 
new rules for additional coding schemes will be readily available for download in 270 
much the same way as current anti-virus software can keep itself up to date by 271 
periodically downloading new definition files from an authoritative source. 272 

 273 

1.3 Tag Data Translation Concept 274 
The Tag Data Translation process translates one representation of EPC into another 275 
representation, within a particular coding scheme.  For example, it could translate from 276 
the binary format for a GTIN on a 96-bit tag to a pure-identity URI representation of the 277 
same identifier, although it could not translate a SSCC into a SGTIN or vice versa.   278 

The Tag Data Translation concept is illustrated in Figure 1. 279 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 9 of 71       

 280 
Figure 1 - Tag Data Translation - Concept 281 

 282 
Tag Data Translation capabilities may be implemented at any level of the EPC Network 283 
stack, from readers, through filtering middleware, as a pre-resolver to the Object Name 284 
Service (ONS), as well as by applications and networked databases complying with the 285 
EPCIS interface. Tag Data Translation converts between different levels of representation 286 
of the EPC and may make use of external tables, such as the GS1 Company Prefix Index 287 
lookup table for 64-bit tags.  It is envisaged that Tag Data Translation software will be 288 
able to keep itself up-to-date by periodically checking for and downloading TDT markup 289 
files, although a continuous network connection should not be required for performing 290 
translations or validations, since the TDT markup files and any auxiliary tables can be 291 
cached between periodic checks; in this way a generic translation mechanism can be 292 
extensible to further coding schemes or variations for longer tag lengths, which may be 293 
introduced in the future. 294 
   295 

Although the TDT markup files are made available in XML format, this does not impose a 296 
requirement for all levels of the EPC Network technology stack to implement XML 297 
parsers.  Indeed, TDT functionality may be included within derived products and services 298 
offered by solution providers and the existence of additional or updated TDT definition 299 
files may be reflected within software/firmware updates released by those providers.  300 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 10 of 71       

Authoritative TDT definition files and schema are made freely available for anyone to 301 
download from the standards section of the GS1 EPCglobal website. For example, the 302 
manufacturer of an RFID reader may regularly check for and obtain the current TDT 303 
markup files, then use data binding software to convert these into hierarchical software 304 
data objects, which could be saved more compactly as serialized objects accessible from 305 
the particular programming language in which their reader software/firmware is written.  306 
The reader manufacturer could make these serialized objects available for download to 307 
owners of their products – or bundle them with firmware updates, thus eliminating the 308 
need for either embedded or real-time parsing of the TDT markup files in their original 309 
XML format at the reader level. 310 

 311 

1.4 Role within the EPC Network Architecture 312 
In the EPC Network Architecture [EPC Network Architecture Framework document] as 313 
depicted in Figure 2 below, the green bars denote interfaces governed by EPCglobal 314 
standards, while the blue boxes denote roles played by hardware and/or software 315 
components of the system. 316 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 11 of 71       

 317 
Figure 2 - EPC Network Architecture diagram 318 

 319 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 12 of 71       

Table 1 describes the key elements of the EPC Network and the potential usages for the 320 
Tag Data Translation process for encoding and decoding Tag Data Standard.  321 

EPC Network 
Standards Description 

TDT 

Role 
Potential TDT             

Usage 

Lower Level Reader 
Protocol (LLRP) 

Defines the control and delivery of 
raw tag reads from Readers to F&C 
Middleware 

Yes 
Conversion upon 

'impedance mismatch' 
of EPC representation 

Application Level 
Events 

(ALE)               
Filtering & Collection 

API for software that filters and 
collects raw tag reads, over time 
intervals delimited by event cycles as 
defined by applications such as the 
EPCIS Capturing Application Yes 

Conversion of other 
EPC representations 
into URI format for 

reports 

Assistance with 
converting declarative 

URI patterns into 
combinations of bit-

mask 

EPCIS Capturing 
Application 

Software that supervises the 
operation of the lower EPC network 
elements and coordinates with 
enterprise level business events 

Yes 

Conversion upon 
'impedance mismatch' 
of EPC representation 

ONS 

ONS is a network service layered 
over the existing Domain Name 
System that is used to lookup 
authoritative pointers to EPCIS-
enabled Repositories and other EPC-
related information services, given an 
EPC Manager Number or full 
Electronic Product Code 

No 

TDT provides an 
output-only format 

which is the hostname 
for DNS type 35 

lookup, in order to 
perform an ONS query 

 

EPCIS Service 
Repository 

Networked database or information 
system providing query/update 
access to EPC-related data 

No 

In underlying 
databases, EPCs might 

be stored in other 
formats (e.g. 
GTIN+serial, 

separately – or 
hexadecimal).  TDT 
can convert these to 

URI formats 

EPCIS Enabled 
Application 

Application software responsible for 
carrying out overall enterprise 
business processes, such as 
warehouse management, shipping 
and receiving 

No 

Conversion upon 
'impedance mismatch' 
of EPC representation 

Trading Partner 
Application 

Trading Partner software that 
performs the role of an EPCIS 
Accessing Application. 

No 
Conversion upon 

'impedance mismatch' 
of EPC representation 

 322 

Table 1 – Potential role for Tag Data Translation throughout the EPC Network 323 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 13 of 71       

 324 
The majority of the EPC Network components require the ability to consistently translate 325 
between binary data on tags and URI formats for information systems.  However, it 326 
should be noted that levels of the stack above the Low Level Reader Protocol interface 327 
should normally be using the URI representation rather than the binary representation. 328 
This also enforces a need for a standard translation mechanism across the entire EPC 329 
network so that the translation process and resulting data is consistent and valid. 330 
 331 

1.5 Tag Data Translation Process 332 
The fundamental concept of Tag Data Translation is to automatically convert one 333 
representation of an EPC (whether binary, tag-encoding URI, pure-identity URI) or a 334 
serialized element string – and convert it into another representation as required. 335 
This is illustrated in Figure 3 336 

 337 

 338 
Figure 3 - Tag Data Translation process with examples of different representations. 339 

 340 
The Tag Data Translation process takes an input value in a particular representation 341 
(binary / tag-encoding URI / pure-identity URI).  We refer to the representation in which 342 
the input value is expressed as the inbound representation.  In the conversion process, the 343 
desired outbound representation is also specified by the client requesting the translation.  344 
The Tag Data Translation process then returns an output value that is the input value after 345 
translation from the inbound representation to the outbound representation. 346 
 347 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 14 of 71       

In practice, some representations contain more information than others.  For example, the 348 
binary and tag-encoding URI representations also contain information about the number 349 
of bits used to store the EPC identifier on a physical RFID tag.  They also contain 350 
information about a fast filter value, which can be used to discriminate between different 351 
packaging levels for trade items.   352 
The serialized element strings contain the essential information (company, [object class, ] 353 
serial number) for an EPC – but often they do not clearly indicate the boundary between 354 
the company identifier and the object class identifier – so additional information needs to 355 
be supplied, such as the length of the company identifier, from which the boundary can 356 
be determined.. 357 

This means that as well as providing an input value and a required outbound 358 
representation, there are cases where additional parameters need to be supplied.  This is 359 
illustrated in Figure 4 360 
 361 

 362 
Figure 4 - Flowchart showing input and output parameters to a Tag Data Translation 363 

process. 364 
 365 

In the context of Tag Data Translation, we refer to encoding as any conversion of the 366 
format in the direction of the binary representation, whereas decoding is any conversion 367 
away from the binary representation.  This is illustrated in Figure 5. 368 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 15 of 71       

 369 
Figure 5 - Encoding and Decoding between different representations of an EPC.  Note 370 

that when encoding, additional parameters need to be supplied. 371 

 372 
In Figure 5 above, there are actually two distinct groups of supplied parameters – those 373 
such as gs1companyprefixlength which are required for parsing the input value 374 
when it is an element string or expressed in GS1 Application Identifier representation – 375 
and others such as filter and tagLength, which are required to format the output 376 
for certain levels of representation, such as binary or tag-encoding URI.  In order to assist 377 
Tag Data Translation software in checking that all the required information has been 378 
supplied to perform a translation, the <level> elements of the Tag Data Translation 379 
markup files may contain the attribute requiredParsingParameters to indicate 380 
which parameters are required for parsing input values from that level and 381 
requiredFormattingParameters  to indicate which parameters are required for 382 
formatting the output at that outbound representation level.  Further details on these 383 
attributes appear in Chapter 4, which describes the TDT markup files.  Note that 384 
tagLength is not a required formatting parameter nor a required parsing parameter for 385 
levels other than binary or tag-encoding URI and this means that there can be situations 386 
where more than one TDT definition file has a pattern matching the input (e.g. if 387 
converting an SGTIN with an all-numeric serial number from pure-identity URI 388 
representation to any level of representation except binary or tag-encoding URI).  In such 389 
situations, it does not matter which of the matching definition files is selected. 390 
A list of GS1 Company Prefixes of EPCglobal subscribers (without attributions) is 391 
available at the website http://www.onsepc.com in either XML or plain text format.  392 
From this list, it is possible to identify a suitable GS1 Company Prefix and therefore to 393 
determine its length in characters. This can then be passed as the value of the parameter 394 

http://www.autoidcenter.org/
http://www.onsepc.com/


 
 
 Copyright ©2006-2011EPCglobal® 16 of 71       

gs1companyprefixlength, which should be supplied when translating from GS1 395 
identifier keys to binary, tag-encoding URI or pure-identity URI representations.  For the 396 
appropriate choice of filter value to use with a particular identifier scheme, please refer  397 
to the filter tables defined in EPCglobal Tag Data Standard.  The tagLength parameter is 398 
used to help an implementation of Tag Data Translation to select the appropriate TDT 399 
definition file among EPC  schemes that correspond to the same identifier but differ in 400 
length,  e.g. to choose between GRAI-64, GRAI-96, GRAI-170 depending on whether   401 
the value of tagLength is set to 64, 96 or 170.  For the value of the tagLength parameter, 402 
please also consider the available size (in bits)  for the EPC identifier memory in the 403 
RFID tag (e.g. 96 bits) - and  whether this is sufficient.  [Non-normative example:  For 404 
example, a GRAI-170 supports alphanumeric serial codes but cannot be encoded   405 
within a 96-bit tag.] 406 
 407 

A desirable feature of a Tag Data Translation process is the ability to automatically detect 408 
both the coding scheme and the inbound representation of the input value.  This is 409 
particularly important when multiple tags are being read – when potentially several 410 
different coding schemes could all be used together and read simultaneously.   411 

For example, a shipment arriving on a pallet may consist of a number of cases tagged 412 
with SGTIN identifiers and a returnable pallet identified by a GRAI identifier but also 413 
carrying an SSCC identifier to identify the shipment as a whole.  If a portal reader at a 414 
dock door simply returns a number of binary EPCs, it is helpful to have translation 415 
software which can automatically detect which binary values correspond to which coding 416 
scheme, rather than requiring that the coding scheme and inbound representation are 417 
specified in addition to the input value. 418 

1.6 Expressing different representations of EPC 419 

Patterns (Regular Expressions) 420 
Given an input value, regular expression patterns may be used to match and extract 421 
groups of characters, digits or bits from the input value, in order that their values may 422 
later be used for constructing the output value in the desired outbound representation, 423 
after suitable manipulation, such as binary – decimal conversion, padding etc.  We refer 424 
to these variable parts as 'fields'.  Examples of fields include the GS1 Company Prefix 425 
(which usually identifies the manufacturer), the Serial Number, Fast Filter value etc. 426 

Grammar (Augmented Backus-Naur Form [ABNF]) 427 
An Augmented Backus-Naur Form (ABNF) grammar may be used to express how the 428 
output is reassembled from a sequence of literal values such as URN prefixes and fixed 429 
binary headers with the variable components, i.e. the values of the various fields.  For the 430 
grammar attributes of the TDT markup files, in accordance with the ABNF grammar 431 
conventions, fixed literal strings SHALL be single-quoted, whereas unquoted strings 432 
SHALL indicate that the value of the field named by the unquoted string SHOULD BE 433 
inserted in place of the unquoted string. 434 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 17 of 71       

Rules for obtaining additional fields 435 
However, not all fields that are required for formatting the output value are obtained 436 
directly from pattern-matching of the inbound representation.  Sometimes additional 437 
fields are required to be known.  For example, when translating a SGTIN-64 from binary 438 
to element strings, it will be possible to extract a GS1 Company Prefix Index, Item 439 
Reference and Serial Number from pattern-matching on the binary input – but the 440 
outbound representation needs other fields such as GS1 Company Prefix, Check Digit, 441 
Indicator Digit, which SHOULD be derived from the fields extracted from the inbound 442 
representation.  For this reason, the TDT markup files also include sequences of rules, 443 
mainly within the element strings and binary levels.  The rules express how such 444 
additional fields may be calculated or obtained via functions operating on fields whose 445 
values are already known.   446 
Furthermore, there are some fields that cannot even be derived from fields whose values 447 
are already known and which SHALL therefore be specified independently as supplied 448 
parameters.  For example, when translating a GTIN value together with a serial number 449 
into the binary representation, it is necessary to specify independently which length of tag 450 
to use (e.g. 64 bit or 96 bit) and also the fast filter value to be used.  Such supplied 451 
parameters would be specified in addition to specifying the input value and the desired 452 
outbound representation.  As illustrated in Figure 5, additional parameters SHOULD be 453 
supplied together with the input value when performing encoding.  For decoding, it is 454 
generally not necessary to supply any additional parameters. 455 
 456 

1.7 Translation Process Steps 457 
There are five fundamental steps to a translation: 458 

1. Use of the prefix matches and regular expression patterns to automatically detect 459 
the inbound representation and coding scheme of the supplied input value 460 

2. Using the regular expression pattern to extract values of fields from the input 461 
value 462 

3. Manipulation, (string manipulation, binary – decimal/alphanumeric conversion, 463 
padding etc.) of values of those fields in order to translate from the inbound 464 
representation to the outbound representation 465 

4. Using the rules to calculate any additional fields required for the output 466 
5. Using the ABNF grammar to format the required fields in the appropriate output 467 

representation 468 
 469 

Note that the prefixMatch attribute in the TDT markup files is provided to allow 470 
optimization of software implementations to perform auto-detection of input 471 
representation more efficiently.  Where multiple option elements are specified within a 472 
particular level element, each will generally have a pattern attribute with a subtly 473 
different regular expression as its value. The prefixMatch attribute of the enclosing 474 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 18 of 71       

level element expresses an initial prefix of these patterns which is common to all of the 475 
nested options.  Optimized software need not test each nested option for a pattern match 476 
if the value of the prefixMatch attribute fails to match at the start of the input value.  477 
Only for those levels where the prefixMatch attribute matches at the start of the string 478 
should the patterns of the nested options be considered for matching. 479 

Note that in the TDT markup files, the prefixMatch attribute SHALL be expressed as 480 
a substring to match at the beginning of the input value.  The prefixMatch attribute 481 
SHOULD NOT be expressed in the TDT markup files as a regular expression value, 482 
since a simple string match should suffice.  Software implementations MAY convert the 483 
prefixMatch attribute string value into a regular expression, if preferred, for example by 484 
prefixing with a leading caret ['^'] symbol (to require a match at the start of the string) 485 
and by escaping certain characters as required, e.g. escaping the dot character as '\.' or 486 
'\\.'. 487 

 488 

2 Tag Data Standard 489 

2.1 Overview 490 
In the EPC Tag Data Standard, the canonical representation of an Electronic Product 491 
Code (EPC) is as a pure-identity URI.  This is to be used when an EPC is communicated 492 
within software applications and information systems, EPCIS and when information 493 
about EPCs is exchanged between organizations, since these systems should not be 494 
concerned with the nature of the physical tag in which the EPC was encoded - or indeed 495 
whether the EPC was encoded within an RFID tag, a barcode or DataMatrix symbol.  496 
When an EPC is encoded within the EPC/UII memory bank of an RFID tag, a binary 497 
encoding is used.  This binary encoding includes additional information such as an 498 
indication of the length of the EPC (for fixed-length EPCs) and a filter value.  A tag-499 
encoding URI format is also defined, which provides a faithful representation of all of the 500 
information contained within the binary encoding of an EPC. We therefore have to 501 
concern ourselves with three representations of the Electronic Product Code, namely 502 
binary encoding, tag-encoding URI and pure-identity URI. 503 

Furthermore, the EPC Tag Data Standard specification (v1.6) describes how a number of 504 
the GS1 (formerly EAN.UCC) coding schemes (GTIN, SSCC, GLN, GRAI, GIAI, 505 
GSRN and GDTI) should be embedded within the EPC for 64-bit, 96-bit and larger tags 506 
for GTIN, GRAI, GIAI and GDTI to support alpha-numeric serial number.  The 507 
Electronic Product Code (EPC) is intended to enable unique identification of any object 508 
anywhere automatically.  Many of the existing GS1 identifier keys (SSCC, GRAI and 509 
GIAI) are already fully serialised.  Others, such as the GTIN represent a product class 510 
rather than an individual fully serialized object.  For use with the EPC, some GS1 511 
identifiers (e.g. GTIN, GLN) may be accompanied with an additional serial number and 512 
referred to as  SGTIN, SGLN. 513 
Although technically the serialised GS1 codes are not themselves a representation of the 514 
EPC, they can be encoded into- and decoded from the three representations of EPC, as 515 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 19 of 71       

described in the EPC Tag Data Standard specification – so for this reason we consider 516 
various representation levels for a EPC Tag Data Translation process as illustrated in 517 
Table 2. 518 

519 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 20 of 71       

 520 

 7 Hostname for DNS type 35 query 
in order to perform an ONS 
lookup 

Output-only format  

 
 
 
 

E 
N 
C 
O 
D 
E 

 

6 Text Element Identifier string 
(where appropriate, e.g. ADI) 

 
 

Constrained by 
specifications 

of existing coding 
schemes 

Does not express tag 
length, filter value 

 
 
 
 
 

D 
E 
C 
O 
D 
E 

5 Application Identifier string or 
bare Element String 

4 Serialised human-readable 
representation 
(SGTIN,SSCC,SGLN,GRAI,GIAI) 

3 Pure-identity URI format of EPC 

2 Tag-encoding URI format of EPC Constrained by number 
of bits available in 

physical tag. 
Expresses tag length, 

filter value 

1 Binary representation of EPC 

Table 2 - Levels of representation involved in the Translation Process 521 
 522 

As Table 2 indicates, the various 'levels' involved in the translation process are not 523 
completely equivalent.  There is a one-to-one mapping between the pair of levels 524 
numbered 1 and 2 (binary and tag-encoding URI) and between the pair of levels 525 
numbered 3 and 4 (pure-identity URI and serialized element string).  The levels 3 and 4 526 
lack the information present in levels 1 and 2 about tag length and fast filtering value.  527 
This is illustrated in more detail in Figure 6 below.  Levels 5 and 6 shown in Table 2 are 528 
simply additional string representations of the main elements contained within the Pure-529 
identity URI representation, to support ease of integration with identifiers encoded within 530 
linear barcodes or 2-dimensional barcodes.  Note that for convenience, TDT 1.6 provides 531 
a further 'level' of representation, corresponding to the hostname for which a DNS Type 532 
35 (NAPTR) query should be performed in order to effect an ONS lookup.  This is not 533 
strictly an equivalent level of representation of EPC, since ONS v1.0 does not currently 534 
provide serial-level pointers for all coding schemes.  It is therefore an output-only format 535 
and not a valid input format for encoding purposes.  For this reason, only an ABNF 536 
grammar is defined for formatting the output in the ONS hostname representation – and 537 
no regular expression is defined for parsing the ONS hostname representation as input.  538 
i.e. in the TDT markup files, the pattern attribute SHALL always be absent from the 539 
level element representing the ONS hostname format.  This SHALL indicate to 540 
translation software that any auto-detection of the inbound representation SHALL NOT 541 
consider the ONS hostname representation as a valid input. 542 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 21 of 71       

 543 
 544 

Figure 6 - Comparison of the data elements present in each level of each scheme.   545 
Note that the level marked as 'Existing Coding' in Figure 6 corresponds to levels 4-6 of 546 

Table 2. 547 

2.2 Many Schemes, Multiple Levels within each scheme and 548 
multiple options within each level 549 

We refer to each EPC coding system (SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN, 550 
GDTI, USDOD, ADI and GID) as a scheme.  The GS1 EPC Tag Data Standard defines 551 
the structure and encoding/decoding rules for each EPC scheme. Note that Tag Data 552 
Translation provides separate definition files for each EPC scheme and for each permitted 553 
length of the binary encoding for fixed-length EPC schemes.  e.g. TDT provides separate 554 
definition files for SGTIN-64, SGTIN-96, SGTIN-198. Within each scheme, there are 555 
various levels of representation (binary, tag-encoding URI, pure-identity URI as well as 556 
string representations and ONS hostname).  557 
Furthermore, the GS1 identifier keys use a GS1 Company Prefix of variable length, 558 
between 6 and 12 decimal digits.  The TDS specification takes two different approaches 559 
to handling this in the 64-bit and 96-bit schemes.  For the 64-bit schemes, an integer-560 
based GS1 Company Prefix Index is encoded into the binary representation, in order to 561 
accommodate a larger range of numbers for the Item Reference and Serial Number 562 
partitions.  The GS1 Company Prefix is obtained from the encoded Company Prefix 563 
Index by lookup in a table and it is always the GS1 Company Prefix that appears in the 564 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 22 of 71       

URI formats.  For the 96-bit schemes, a 3-bit field (the partition value) following the fast 565 
filter value within the binary representation is used to indicate the length of the GS1 566 
Company Prefix, in the range 6-12 digits, denoted by binary partition values 000 – 110.  567 
The bit-length partitions allocated to the GS1Company Prefix and Item Reference fields 568 
varies accordingly as described in the EPC Tag Data Standard.   569 
One option would be to use a separate lookup table for the partition values as described in 570 
the TDS specification.  However, since the correspondence between the partition value 571 
and the length of the GS1 Company Prefix is common to all the GS1 schemes and the 572 
partition table is static in nature, we propose a more pragmatic approach and instead 573 
embed 7 variants ('Options') of the coding structure within each level, with the 574 
appropriate Option being selected either by matching a hard-coded partition value from 575 
the inbound data (where this is supplied in binary representation) – or from the length of 576 
the GS1 Company Prefix (which SHALL be supplied independently if encoding from the 577 
GS1 identifier key).  This approach also allows the TDT markup files to specify the 578 
length and minimum and maximum values for each field, which will often vary, 579 
depending on which Option was selected – i.e. depending on the length of the GS1 580 
Company Prefix used.  581 
In TDT 1.6, different Option elements are also used within the TDT definition file for the 582 
variable-length EPC ADI-var to support the permitted alternative variations within that 583 
EPC regarding how the unique identifier is constructed.  584 

For each option, the representation of the EPC is expressed as both a regular expression 585 
pattern to match the inbound representation against, and as an Augmented Backus-Naur 586 
Form (ABNF) grammar for formatting the outbound representation.   587 
The regular expression patterns and ABNF grammar are therefore subtly different for 588 
each of the options within a particular level – usually in the literal values of the bits for 589 
the partition value and lengths of digits or bits for each of the subsequent partitions 590 
(where delimiters such as a period '.' separate these partitions) – or in the case of the 591 
element strings and binary representation, the way in which groups of digits or bits are 592 
grouped within the regular expression pattern. This approach facilitates the automatic 593 
detection of the boundary between GS1 company prefix and item reference simply by 594 
regular expression pattern matching, although care should be taken to ensure that only 595 
one option has a pattern that matches any valid input for that EPC scheme.  Negative 596 
lookahead constructs within regular expressions can be helpful for ensuring this. 597 
Within each option, the various fields matched using the regular expression are specified, 598 
together with any constraints which may apply to them (e.g. maximum and minimum 599 
values), as well as information about how they should be properly formatted in both 600 
binary and non-binary (i.e. information about the number of characters or bits, when a 601 
certain length is required, as well as information about any padding conventions which 602 
are to be used (e.g. left-pad with '0' to reach the required length of a particular field).  The 603 
concept of multiple options within each level of each scheme is illustrated in Figure 7. 604 

 605 
 606 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 23 of 71       

 607 
Figure 7 - Depiction of multiple options within each level to handle variable-length GS1 608 

Company Prefixes. Note that the level marked as 'Existing Coding' within Figure 7 609 
corresponds to levels 4-6 of Table 2. 610 

3 TDT Markup and Logical Process 611 
The key element of the above architecture is the collection of TDT markup files, which 612 
enables encoding and decoding between various levels of representation for each 613 
particular coding scheme. This generic design requires open and highly flexible 614 
representation of rules for translation software to encode/decode based on the input value. 615 
The TDT markup language is a machine-readable XML format expressing the 616 
encoding/decoding and validation rules for various identifiers / coding schemes defined 617 
in the TDS specification. The TDT markup SHALL be created and maintained by 618 
EPCglobal for all the identities defined by the EPC Tag Data Standard specification.   619 
This chapter provides a descriptive explanation of how to interpret the TDT Markup files 620 
in the context of a Tag Data Translation process.  Chapter 4 provides a formal 621 
explanation of the elements and attributes of the TDT markup files. 622 

3.1 TDT Artifacts 623 
Individual TDT definition files are provided for each coding scheme (i.e. separate files 624 
for SGTIN-64, SGTIN-96, SSCC-64, SSCC-96, GID-96, etc.) and are made freely 625 
available for public download from the EPCglobal web page for the TDT standard  626 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 24 of 71       

[ http://www.gs1.org/gsmp/kc/epcglobal/tdt ].  Also available are the corresponding XSD 627 
schema files. 628 

Version control is achieved within each artifact file via version numbers and timestamps 629 
of updates. 630 

3.2 TDT Markup 631 
The key elements of the TDT markup are defined in the XSD schema files and shown in 632 
Figure 8. 633 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 25 of 71       

 634 
Figure 8 - Tag Data Translation Markup Language schema as a UML class diagram 635 

 636 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 26 of 71       

3.3 Definition of Formats via Regular Expression Patterns and 637 
ABNF Grammar 638 

The TDT specification uses regular expression patterns and Augmented Backus-Naur 639 
Form (ABNF) grammar expressions to express the structure of the EPC in various levels 640 
of representation.   641 
The regular expression patterns are primarily intended to be used to match the input value 642 
and extract values of particular fields via groups of bits, digits and characters which are 643 
indicated within the conventional round bracket parentheses used in regular expressions.   644 

The regular expression patterns provided in the TDT markup files SHALL be written 645 
according to the Perl-Compliant Regular Expressions, with support for zero-length 646 
negative lookahead. 647 
It is not sufficient to use the XSD regexp type as documented at 648 
http://www.w3.org/TR/xmlschema-2/  because it is sometimes useful to be 649 
able to use a negative lookahead '?!' construct within the regular expressions.  The 650 
implementations of regular expressions in Perl, Java, C#, .NET all allow for negative 651 
lookahead.  Note that the TDT definition file for ADI-var makes use of the negative 652 
lookahead construct in the patterns at the BINARY level in order to make the patterns 653 
more restrictive and avoid the situation where a valid binary string might match more 654 
than one option. 655 
The ABNF grammar form allows us to express the outbound string as a concatenation of 656 
fixed literal values and fields whose values are variables determined during the 657 
translation process.  In the ABNF grammar, the fixed literal values are enclosed in single 658 
quotes, while the names of the variable elements are unquoted, indicating that their 659 
values should be substituted for the names at this position in the grammar.  All elements 660 
of the grammar are separated by space characters.  We use the Augmented Backus-Naur 661 
Form (ABNF) for the grammar rather than simple Backus-Naur Form (BNF) in order to 662 
improve readability because the latter requires the use of angle brackets around the names 663 
of variable fields, which would need to be escaped to &lt; and &gt; respectively for 664 
use in an XML document. 665 

The child 'Field' elements within each option allow the constraints and formatting 666 
conventions for each individual field to be specified unambiguously, for the purposes of 667 
error-checking and validation of EPCs.   668 
The use of regular expression patterns, ABNF grammar and separate nested (child) field 669 
elements with attributes for each of the fields allows for the constraints (minimum, 670 
maximum values, character set, required field length etc.) to be specified independently 671 
for each field, providing flexibility in the URI formats, so that for example an 672 
alphanumeric serial number field could co-exist alongside a decimal GS1 Company 673 
Prefix field, as would be required to support the full range of possible GRAI codes for a 674 
future tag with a larger number of bits devoted to the EPC identifier.  675 

 676 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 27 of 71       

3.4 Determination of the inbound representation 677 
A desirable feature of any Tag Data Translation software is the ability to automatically 678 
detect the format of the inbound string received, whether in binary, tag-encoding URI, 679 
pure-identity URI, element strings or GS1 identifier keys expressed using Application 680 
Identifier (AI) representation, together with additional serialization, where required.  681 
Furthermore, the coding scheme should also be detected. The tag-length SHALL either 682 
be determined from the input value (i.e. given a binary string or tag-encoding URI), – or 683 
otherwise, where the input value does not indicate a particular tag-length (e.g. pure-684 
identity URI, element strings or GS1 identifier keys expressed using Application 685 
Identifier (AI) representation, together with additional serialization, where required), the 686 
intended tag-length of the output SHALL be specified additionally via the supplied 687 
parameters when the input value is either a pure-identity URI, an element string or GS1 688 
identifier key expressed using Application Identifier (AI) representation, together with 689 
additional serialization, where required, none of which specify the tag-length themselves.  690 
It is important that this initial matching can be done quickly without having to try 691 
matching against all possible patterns for all possible schemes, tag lengths and lengths of 692 
the GS1 Company Prefix. 693 
For this reason the Tag Data Translation markup files specify a prefix-match for each 694 
level of each scheme, which SHALL match from the beginning of the input value.  If the 695 
prefix-match matches, then the translation software can iterate in further detail through 696 
the full regular expression patterns for each of the options to extract parameter values – 697 
otherwise it should immediately skip to try the next possible prefix-match to test for a 698 
different scheme or different level of representation, without needing to try all the options 699 
nested within each of these, since all of the nested regular expression patterns share the 700 
same prefix-match.   701 

3.5 Specification of the outbound representation 702 
The Tag Data Translation process only permits encoding or decoding between different 703 
representations of the same scheme.  i.e. it is neither possible nor meaningful to translate 704 
a GTIN into an SSCC – but within any given scheme, it is possible to translate between 705 
multiple levels of representation, namely binary, tag-encoding URI, pure-identity URI, 706 
human-readable string and GS1 identifier keys expressed using Application Identifier 707 
(AI) representation, with or without parentheses.  Translation to/from Text Element 708 
Identifier strings is also possible for the Aerospace & Defence Identifier (ADI). 709 

With this constraint, it should be possible for Tag Data Translation software to perform a 710 
conversion so long as the input value and the outbound representation level are specified.   711 
In addition, Tag Data Translation 1.6 provides for each EPC scheme an output format 712 
which is the hostname for which a type 35 ('NAPTR') DNS lookup should be made in 713 
order to effect an ONS query.  Note that this is an output-only representation, as indicated 714 
in Table 2. 715 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 28 of 71       

3.6 Specifying supplied parameter values 716 
Decoding from the binary level through the tag-encoding URI, pure-identity URI and 717 
finally to the element strings or GS1 identifier keys in AI representation only ever 718 
involves a potential loss of information.  With the exception of the lookup table mapping 719 
GS1 Company Prefix Index to GS1 Company Prefix for the 64-bit tags, it is not 720 
necessary to specify supplied parameters when decoding, since the binary and tag-721 
encoding formats already contain more information than is required for the pure-identity 722 
URI, element string or Application Identifier (AI) formats. 723 
Encoding often requires additional information to be supplied independently of the 724 
inbound string.  Examples of additional information include: 725 

• Independent knowledge of the length of the GS1 Company Prefix 726 

• Intended length of the physical tag (64-bit, 96-bit …) to be encoded 727 

• Fast filter values (e.g. to specify the packaging type – item/case/pallet) 728 
 729 

It should be possible to provide these supplied parameters to Tag Data Translation 730 
software.  In all the cases above, this may simply populate an internal key-value lookup 731 
table or associative array with parameter values additional to those that are automatically 732 
extracted from parsing the inbound string using the matching groups of characters within 733 
the appropriate matching regular expression pattern. 734 
 735 

Note that two specific GS1 identifier keys, namely GTIN and GLN are extended with 736 
serial numbers for EPC use.  In this situation, the serial number SHALL NOT be passed 737 
via the supplied parameters.  Instead, the serial number SHALL be passed as part of the 738 
input value.  For the element string representation, this is achieved by appending the 739 
GTIN or GLN with with ';serial=' followed by the serial number or serialized 740 
extension.  For Application Identifier representation, this is achieved through the use of 741 
AI 21 for the Serial Number associated with the GTIN - or AI 254 for the serial extension 742 
field used in conjunction with the GLN for EPC purposes. 743 

In this way, either the GTIN or GLN and the serial number CAN be obtained as the 744 
output value because the same grammar is used for both input and output.  This is 745 
important because the Tag Data Translation Application Programming Interface (API) 746 
defined in Chapter 6 of this document provides no direct access to the private values of 747 
intermediate variables or fields used within the translation process.  Table 3 shows 748 
examples of how the input value should be formatted for serialized identifiers.  Note that 749 
SSCC, GRAI and GIAI, GDTI and GSRN are already intrinsically serialized and should 750 
therefore not be appended with ';serial=…' in the element string representation and in 751 
the Application Identifier representation, the Application Identifiers (21) or (254) should 752 
not be used in conjunction with these GS1 identifier keys. 753 
 754 

Coding Scheme Example format for input GS1 identifier keys, showing element 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 29 of 71       

string or Application Identifier (AI) representation 

SGTIN gtin=00037000302414;serial=10419703 

(01)00037000302414(21)10419703 

SSCC sscc=000370003024147856 
(00)000370003024147856 

SGLN gln=0003700030241;serial=1041970 
(414)0003700030241(254)1041970 

GRAI grai=00037000302414274877906943 
(8003)00037000302414274877906943 

GIAI giai=00370003024149267890123 
(8004)00370003024149267890123 

GSRN gsrn=061414123456789012 
(8018)061414123456789012 

GDTI gdti=0073796100001 
(253)0073796100001 

GID generalmanager=5;objectclass=17;serial=23 
[No corresponding AI representation] 

USDOD cageordodaac=AB123;serial=3789156 
[No corresponding AI representation] 

ADI ADI CAG 359F2/PNO PQ7VZ4/SEQ M37GXB92 
ADI CAG 3Y302/SER JK23M895 
ADI CAG 3Y302/serial=#284957MH 

ADI DAC 4987JK/PNO PQ7VZ4/SEQ M37GXB92 
ADI DAC 294HMX/SER JK23M895 
ADI DAC 4987JK/serial=#284957MH 

[TEI strings prefixed with 'ADI' and space character,  
no corresponding AI representation] 

 755 
Table 3 Example formats for supplying existing identifier formats as the input 756 

value. 757 
 758 

Note: Definition files in TDT 1.6 also allow for an alternative representation for EPC 759 
identifiers based on GS1 keys for which numeric Application Identifiers are defined in the 760 
GS1 General Specifications.  This additional level is denoted in the TDT definition files 761 
as ‘LEGACY_AI’ and accepts/returns EPC identifiers in GS1 Application Identifier (AI) 762 
notation, such as the prefix (8003) before a GRAI, rather than the construct ‘grai=’.  The 763 
human readable representation that was introduced in TDT 1.0 is still denoted 764 
‘LEGACY’ in the TDT definition files and is available for all EPC identifier schemes, 765 
including those which are not based on GS1 keys.  TDT 1.6 also introduces two new 766 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 30 of 71       

representations, 'ELEMENT_STRING' (which is identical to 'LEGACY_AI' except that it 767 
contains no parentheses around Application Identifiers) and 'TEI' for Text Element 768 
Identifier representation of ADI-var. 769 
 770 

Note that in Tag Data Translation implementations, the values extracted from the 771 
inbound EPC representation SHALL always override the values extracted from the 772 
supplied parameters; i.e. the parameter string may specify 'filter=5' – but if the 773 
inbound EPC representation encodes a fast filter value of 3, then the value of 3 shall be 774 
used for the output since the value extracted from the input value overrides any values 775 
supplied via the supplied parameters. 776 
Although many programming languages support the concept of an associative array as a 777 
data type, these are not generally portable across different languages in the way that data 778 
types such as integer and string are.  For this reason, the associative array of key-value 779 
pairs for the supplied parameters SHALL be passed as a string format, using a semicolon 780 
[;] as the delimiter between multiple key=value pairs.  A string in this format can be 781 
readily converted into an associative array in most modern programming languages, 782 
while remaining portable and language-unspecific. 783 

3.7 Validation of values for fields and fields derived via rules 784 
The field element and the rule element contain several attributes for validating and 785 
ensuring that the values for particular fields fall within valid ranges, both in terms of 786 
numeric ranges, as well as lengths of characters, allowed character ranges and the use of 787 
padding characters. 788 
TDT markup files use such an explicit markup of the format and constraints of each field 789 
in order to provide for a great deal of future extensibility, particularly for encoding 790 
alphanumeric characters.   791 

3.8 Restricting and checking decimal ranges for values of fields 792 
In some cases, the numeric range which can be expressed using the specified number of 793 
bits exceeds the maximum decimal value permitted for that identifier in its formal 794 
specification.   795 

For example, the serial number of an SSCC may be up to ten decimal digits – permitting 796 
the decimal numbers 1-9,999,999,999.  This requires 34 bits to encode in binary.  797 
However, 34 bits would allow numbers in the range 0-17,179,869,183, although those 798 
between 10,000,000,000 and 17,179,869,183 are deemed not valid for use as the serial 799 
reference of an SSCC – and should result in an error if an attempt is made to encode these 800 
into an SSCC. 801 

In order to prevent encoding of numbers outside the ranges permitted by the formal 802 
coding specifications, the decimal minimum and decimal maximum limits of each field 803 
are indicated via the field attributes decimalMinimum and decimalMaximum.  804 
Where these attributes are omitted, no numeric (minimum,maximum) limits are specified 805 
and checking of numeric range NEED NOT be performed by TDT implementations.  806 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 31 of 71       

Otherwise, where numeric values are specified, the software should check that the value 807 
of the field lies within the inclusive range, i.e. 808 

decimalMinimum <= field <= decimalMaximum 809 

Values which fall outside of the specified range should throw an exception. 810 

3.9 Restricting and checking character ranges for values of 811 
fields 812 

The characterSet attribute of the field element indicates the allowed range of 813 
characters which may be present in that field.  The range is expressed using the same 814 
square-bracket notation as for character ranges within regular expressions.  The asterisk 815 
symbol following the closing square bracket indicates that 0 or more characters within 816 
this range are required to match the field in its entirety.  Implementations may find it 817 
useful to add a leading caret ('^') and a trailing dollar symbol ('$') to ensure that the 818 
characterSet matches the entire field.  e.g. for [0-7]* in the TDT markup, TDT 819 
implementations may use ^[0-7]*$ as the regular expression pattern. 820 
For example, 821 
[01]* permits only characters '0' and '1' 822 

[0-7]* permits only characters '0' thru '7' inclusive 823 
[0-9]* permits only characters '0' thru '9' inclusive 824 

[0-9 A-Z\-]* permits digits '0' thru '9', the SPACE character (ASCII 32) and upper-case 825 
letters 'A' thru 'Z' inclusive and the hyphen character. 826 

 827 

The characterSet attribute allows checking that all of the characters fall within the 828 
permitted range.  For example, if a user specifies a serial number for GRAI containing 829 
characters that are not wholly numeric, although the character ranges for GRAI-96 and 830 
GRAI-64 only permit wholly numeric serial numbers, i.e. characters in the range [0-9], 831 
this should result in an error.  Note however that an error might not be reported in the 832 
situation where a user attempts to encode an alphanumeric GRAI serial code onto a 96-bit 833 
tag in the case where the serial code supplied fortuitously happens not to contain any 834 
alphabetic characters.   835 

Furthermore, a GRAI can be encoded using two alternative two headers – one for wholly 836 
numeric serial numbers (GRAI-96), the other for alphabetic serial numbers (GRAI-170). 837 
The presence of the compaction attribute SHALL indicate that a particular field is to 838 
be interpreted as the binary encoding of a character string; its absence SHALL indicate 839 
that the field should be interpreted as an integer value or all-numeric integer string, with 840 
leading pad characters if the padChar attribute is also present and the integer has fewer 841 
digits than the length attribute specifies. 842 

Tag Data Translation software SHOULD NOT rely upon particular values of the 843 
characterSet attribute as an alternative to taking notice of the compaction 844 
attribute; certain coding schemes, such as the US DOD's CAGE code omit certain 845 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 32 of 71       

characters, such as the letter 'I' in order to reduce confusion with the digit '1', when the 846 
CAGE code is communicated in human-readable format – in this case, the 847 
characterSet attribute may look like '[0-9A-HJ-NP-Z]*', in which case a naïve 848 
search for 'A-Z' in the characterSet attribute would fail to match, even though the 849 
binary value SHOULD BE converted to a character string because the compaction 850 
attribute was present. 851 

 852 

3.10 Padding of fields 853 

Changes since TDT v1.0 854 
Certain fields within either the binary representation, the URI representations and also the 855 
element string and AI representations require the padding of the value to a particular 856 
number of characters, digits or bits, in order to reach a particular length for that field.   857 

In TDS v1.3, additional EPC identifier schemes were introduced to support GS1 858 
identifiers that have alphanumeric serial codes.  Examples of these include the SGTIN-859 
198, SGLN-195, GRAI-170 and GIAI-202.  In such schemes, TDS specifies that the 860 
alphanumeric serial codes should be encoded using 7 bits per character (7-bit compacted 861 
ASCII).  In some situations, the alphanumeric serial codes are allowed to have variable 862 
length in the GS1 general specifications.  This in turn means that the total number of bits 863 
required to encode the alphanumeric serial field varies, depending on its length.  For the 864 
GRAI-170 and GIAI-202 in particular, TDS requires the result of such 7-bit compaction 865 
of the serial number to be appended to the right with zero bits to reach a specified total 866 
number of bits.  This is in marked contrast with the practice of prepending binary padding 867 
bits to the left for binary-encoded all-numeric serial numbers, such as those in SGTIN-96. 868 
In version 1.4 of TDT, we took the opportunity to make the rules for padding of fields 869 
less ambiguous, both before and after encoding to binary or before and after decoding 870 
from binary.  The attributes padDir, padChar and length continue to have the same 871 
meanings as in TDT v1.0 – but we also explicitly introduced a new bitPadDir 872 
attribute at the binary level to indicate whether padding with bits is required – and if so, 873 
in which direction.  This is necessary because since TDS v1.3, it became necessary to 874 
also allow for padding with bits to the right, in the case of alphanumeric fields.  This was 875 
not anticipated in TDT v1.0.  The bitPadDir attribute is therefore intended to avoid 876 
confusion or overloading of meaning on the role of the padDir and padChar 877 
attributes, which continue to play an important role in the padding or stripping of pad 878 
characters from the corresponding non-binary field. 879 
When encoding to binary from any other level (hereafter referred to as ‘non-binary’), the 880 
field itself may be padded (prior to any conversion to binary) with characters such as ‘0’ 881 
or space if the padChar and padDir attributes are present in the binary level.   882 

An example of where this occurs is the CAGE code field in USDOD-96, where the 5-883 
character CAGE code is prepended with a space character to the left before these six 884 
characters are encoded in binary as 48 bits.  (The reason for this is so that the USDOD-885 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 33 of 71       

96 could also accommodate a 6-character DODAAC code instead of a 5-character 886 
CAGE code). 887 

After converting to binary, some fields need to be padded either to the left or to the right 888 
with leading/trailing zero bits respectively, depending on the value of the new 889 
bitPadDir attribute. 890 

For example, the serial number in SGTIN-96 has bitPadDir=”LEFT” to indicate that 891 
the binary field should be prepended to the left with zero bits when encoding.  In contrast, 892 
the serial code of a GRAI-170 or GIAI-202 has bitPadDir=”RIGHT” to indicate that 893 
the binary field should be appended to the right with zero bits when encoding. 894 
When decoding from the binary level to any other non-binary level, there is sometimes a 895 
need to strip the leading/trailing bits from a particular direction prior to conversion from 896 
binary to integer or character string (depending on the presence/absence and value of the 897 
compaction attribute). 898 
An example of this is the stripping of the trailing zeros from the serial field of a GRAI-899 
170 or GIAI-202 upon decoding from binary, before converting to a character string. 900 
After conversion from binary, the field value may need to be padded with characters such 901 
as ‘0’ if the padChar and padDir attributes are present in the non-binary level. 902 
An example of where this occurs is the GS1 Company Prefix, which may have significant 903 
leading zeros.  For example, the GS1 Company Prefix 0037000 would require this. 904 
Alternatively, the sequence of characters decoded from the binary may contain a pad 905 
character that needs to be stripped in order to produce the corresponding field inn the 906 
non-binary level. 907 
An example of where this occurs is the CAGE code field in USDOD-96, where the 48-bit 908 
binary encoding consists of six characters consisting of the 5-character CAGE code, 909 
prepended with a space character to the left, which should not appear in the URI 910 
representations nor as part of the 5-character CAGE code. (The reason for this is so that 911 
the USDOD-96 could also accommodate a 6-character DODAAC code instead of a 5-912 
character CAGE code within the same field). 913 
Because TDS allows bits to be padded either to the left or to the right, depending on the 914 
field and EPC identifier scheme, TDT allows the attributes bitPadDir and 915 
bitLength to appear within the field or rule elements but only when those field 916 
or rule elements are nested within a level element that has attribute 917 
type=”BINARY”.  918 

padChar and padDir 919 
The padChar attribute SHALL consist of a single character to be used for padding.  920 
Typically this is the '0' digit (ASCII character 48 [30 hex]).  Other coding schemes MAY 921 
specify the space character (ASCII character 32 [20 hex]) or a different character to use.   922 

The padChar attribute indicates the non-binary character to be used for padding. If a 923 
field or rule element contains a padChar attribute, then within the same level, the 924 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 34 of 71       

field SHALL be padded with repetitions of the character indicated by the padChar 925 
attribute, in the direction indicated by padDir attribute so that the padded value of the 926 
field has the length of characters as specified by the length attribute.  This applies at 927 
the validation, parsing, rule execution and formatting stages of the translation process.   928 

 929 

The padDir attribute SHALL take a string value of either 'LEFT' or 'RIGHT', indicating 930 
whether the padding characters should appear to the left or right of the unpadded value.  931 

The attributes length, padDir and padChar MAY appear within any field or 932 
rule element of the TDT markup files.  Within each field element, all three SHALL 933 
either be present together – or all three SHALL be absent together.  Within rule 934 
elements, there is no requirement for the padDir and padChar attributes to be present, 935 
even if the length attribute is specified; functions defined in rules may return a value 936 
which does not require further padding – in this case, the length attribute may be 937 
specified, merely in order to verify that the result is of the correct length of characters. 938 

When padChar, padDir and length appear as attributes within a field or rule 939 
element within the tag-encoding level element, this indicates that the corresponding 940 
field in all non-binary levels may need to be padded with the padding character 941 
padChar within this level of representation. 942 

When padChar and padDir and length appear within a field or rule within the 943 
binary level element, this indicates that the field should be padded with the non-binary 944 
padding character padChar in the direction padDir only immediately prior to 945 
conversion to binary and that when decoding away from the binary level, such non-binary 946 
padding characters should be stripped if the attributes padChar and padDir are absent 947 
from the tag-encoding level. 948 
For example, for a GS1 Company Prefix, all non-binary levels should have 949 
padChar=”0” and padDir=”LEFT” because the leading zeros are significant and 950 
should appear in the URI representations, element strings and AI representation. 951 

In contrast, for the CAGE code in USDOD-96, padChar=” ” and padDir=”LEFT” 952 
and these attributes only appear in the binary level, because any leading space padding 953 
should be stripped before the CAGE code or DODAAC code is inserted in a URI 954 
representation. 955 

For any EPC identifier scheme, the attributes padChar and padDir should not appear 956 
within a field or rule within the binary level if they also appear within the same field or 957 
rule within the non-binary levels.  If padChar and padDir are specified in a field or 958 
rule within the binary level and also in the corresponding field or rule in any non-binary 959 
level, the TDT definition file should be considered invalid.  Note that some fields that 960 
appear within the binary level do not appear in all non-binary levels.  For example, the 961 
filter value never appears in the pure-identity URI level.  For this reason, in section 962 
3.10.1, the flowchart advises checking of the tag-encoding URI representation to see 963 
whether or not padChar and padDir are defined for each field corresponding to the fields 964 
defined within the binary level. 965 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 35 of 71       

 966 

bitPadDir and bitLength 967 
For field or rule elements contained within a level element that has attribute 968 
type=”BINARY”,  the additional attributes bitPadDir and bitLength may also 969 
appear.  The bitPadDir attribute may either be absent or if present, must take a string 970 
value of either ‘LEFT’ or ‘RIGHT’  971 

For the serial number field of SGTIN-96, bitPadDir=’LEFT’, whereas for the serial 972 
code field of GRAI-170, bitPadDir=’RIGHT’ 973 

3.10.1 Summary of padding rules 974 
Figure 9a is a flowchart summary of the rules about whether or not to pad a field (or strip 975 
padding characters) when encoding a non-binary field to binary encoding. 976 

Figure 9b is a flowchart summary of the rules about whether or not to pad a field (or strip 977 
padding characters) when decoding a binary encoding of a field to a non-binary 978 
representation (e.g. to be used in the URI representations, element strings or AI 979 
representation). 980 

 981 
982 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 36 of 71       

 983 

 984 
 985 

Figure 9a – Summary of rules about whether or not to pad or strip a field when encoding 986 
from non-binary representation to binary encoding 987 

 988 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 37 of 71       

 989 
 990 

Figure 9b – Summary of rules about whether or not to pad or strip a field when decoding 991 
from binary encoding to non-binary representation 992 

 993 

 994 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 38 of 71       

For example, for a 96-bit SGTIN, for the field whose name="companyprefix", the 995 
non-binary levels define alength attribute of 7, a padChar of '0' and the padDir  as 996 
'LEFT' for the option where optionKey = 7.  For the corresponding binary level where 997 
optionKey =7, bitLength =24,bitpadChar ='LEFT' and compaction, 998 
padDir and padChar are all absent.  This means that when decoding, a 24-bit binary 999 
value of '000000001001000010001000' read from the tag for the field named 1000 
companyprefix should be stripped off its leading zero bits at the LEFT edge, then 1001 
converted to the integer 37000, then padded to the LEFT with the pad character '0' to 7 1002 
characters, yielding '0037000' as the numeric string value for this field. 1003 
 1004 

For a SGLN where the length of the companyprefix is 12 digits, the location reference is 1005 
a string of zero characters length.  This may result in URIs which look strange because 1006 
there is an empty string between two successive delimiters, e.g. '..' in a URL which looks 1007 
like urn:epc:id:sgln:123456789012..12345 1008 

This is however correct – and it is incorrect to render the zero-length field as '0' between 1009 
the period (.) delimiters because '0' is of length 1 character – not zero characters length 1010 
as required by the length attribute of the appropriate <field> element. 1011 

3.11 Compaction and Compression of fields 1012 
When strings other than purely numeric strings are to be encoded in the binary level of 1013 
representation, the field element contains two additional attributes, compaction and 1014 
compression.  Absence of the compaction attribute SHALL indicate that the 1015 
binary value represents an integer or all-numeric string.  Presence of the compaction 1016 
attribute SHALL indicate that the binary value represents a character string encoded into 1017 
binary using a per-character compaction method for economizing on the number of bits 1018 
required.  Allowed values are '5-bit', '6-bit', '7-bit' and '8-bit', referring to the 1019 
compaction methods described in ISO 15962, in which the most significant 3/2/1/0 bits of 1020 
the 8-bit ASCII byte for each character are truncated.   1021 

Note that a compaction value of '8-bit' SHALL be used to indicate that each 1022 
successive eight bits should be interpreted as an 8-bit ASCII character, even though there 1023 
is effectively no compaction or per-byte truncation involved, unlike the other values of 1024 
the compaction attribute.  The compaction values '16-bit' and '32-bit' are not used 1025 
in the markup files for this version of the TDT specification – but are reserved in the 1026 
TDT XSD schema and SHALL indicate 16-bit and 32-bit UNICODE representation 1027 
where this is required in the future. 1028 

The compression attribute is intended for future use, to indicate a compression 1029 
technique to be applied to the value as a whole, rather than on a per-character basis.  1030 
Permitted values for the compression attribute are not currently defined in this 1031 
version of the Tag Data Translation specification but those values defined in future may 1032 
indicate compression techniques such as zip / gzip compression, Huffman encoding etc. 1033 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 39 of 71       

3.12 Names of fields used within the TDSv1.6 schemes 1034 
The names of fields appearing in the TDT markup files are completely arbitrary but by 1035 
convention SHALL consist of lower case alphanumeric words with no spaces or hyphens.  1036 
There are no reserved words and the use of a name within one coding scheme does not 1037 
imply any correlation with an identically named field within a different coding scheme; 1038 
each coding scheme effectively has its own namespace for field names.  Table 5 lists 1039 
some field names that are used in the EPC schemes defined in EPC Tag Data Standard 1040 
v1.6 1041 
 1042 

filter fast filter value – decimal range 0-7 
serial serial number – decimal or alphanumeric 
gs1companyprefix GS1 company prefix 
gs1companyprefixlength length of a GS1 company prefix as a number 

of characters – decimal integer 

e.g. for gs1company prefix = '0037000' 
 gs1companyprefixlength=7 

tagLength 64/96/256 etc. – number of bits for the EPC 
identifier 

gs1companyprefixindex an integer-based lookup key for accessing the 
real gs1Company Prefix – for use with 64-bit 
tags 

itemref Identifies the Object Type or SKU within a 
particular company for a GTIN 

locationref Identifies the Location within a company for a 
GLN 

assetref A serialised asset reference – for use with the 
GIAI 

serialref A serialised reference – e.g. for use with the 
SSCC 

serviceref Identifies the service relation within a 
particular company for a GSRN 

documenttype Identifies the Document Type within a 
company for a GDTI 

cageordodaac Either a Commercial And Government Entity 
or a Department of Defense Activity Address 
Code (used with DOD-96 scheme) 

cage A Commercial And Government Entity 
(CAGE) code (also including a NATO CAGE 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 40 of 71       

(NCAGE) code) - used within the ADI-var 
scheme) 

dodaac A Department of Defense Activity Address 
Code (used within the ADI-var scheme) 

originalpartnumber The original part number (PNO) for an aircraft 
part (used in ADI-var in the situation where a 
company serializes uniquely only within the 
original part number) 

 1043 

Table 5 – Names of fields used within Tag Data Standard v1.6 1044 

3.13 Rules and Derived Fields 1045 
Certain fields required for formatting the outbound representation are not obtained simply 1046 
from pattern matching of the inbound representation. A sequence of rules allows the 1047 
additional fields to be derived from fields whose values are already known. 1048 
The reason why this is necessary is that there is often some manipulation of the original 1049 
identifier codes required in order to translate them into the pure-identity URI 1050 
representation.  Examples include string manipulation such as the relocation of the initial 1051 
indicator digit or extension digit to the front of the item reference field – or for decoding, 1052 
the re-calculation of the GS1 checksum – and appending this as the last digit of the GS1 1053 
identifier key, where appropriate.  Likewise, replacement of the GS1 Company Prefix 1054 
Index integer by the corresponding GS1 Company Prefix is something that is not readily 1055 
expressed simply via regular expressions.  By working through an example for the GTIN, 1056 
it is clear that although the processing steps are reversible between encoding into the 1057 
pure-identity URI and decoding into the GS1 identifier key, the way in which those steps 1058 
are defined takes on an unsymmetrical appearance in the sequence of rules.  An example 1059 
illustrates this point: 1060 
 1061 

Decoding the GTIN (i.e. translating from pure-identity URI into an 1062 
element string or Application Identifier representation) 1063 
 1064 

• indicatordigit = SUBSTR(itemref,0,1); 1065 

• itemrefremainder = SUBSTR(itemref,1); 1066 

• gtinprefix = 1067 
CONCAT(indicatordigit,companyprefix,itemrefremainder); 1068 

• checkdigit = GS1CHECKSUM(gtinprefix); 1069 

 1070 
The above are all examples of rules to be executed at the 'EXTRACT' stage, i.e. 1071 
immediately after parsing the input value. 1072 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 41 of 71       

 1073 

Encoding the GTIN (i.e. translating from element string or Application 1074 
Identifier representation into pure-identity URI) 1075 
(assumes gs1companyprefixlength is passed as a supplied parameter) 1076 

 1077 

• gtinprefixremainder=SUBSTR(gtin,1,12); 1078 

• indicatordigit=SUBSTR(gtin,0,1); 1079 

• itemrefremainder=SUBSTR(gtinprefixremainder,gs1companypre1080 
fixlength); 1081 

• itemref=CONCAT(indicatordigit,itemrefremainder); 1082 

• gs1companyprefix=SUBSTR(gtinprefixremainder,0,gs1companyp1083 
refixlength); 1084 

 1085 

The above are all examples of rules to be executed at the 'FORMAT' stage, i.e. when  1086 
constructing the output value. 1087 

 1088 
As the above examples show, the definitions of particular fields (e.g. itemrefremainder) 1089 
depends upon whether encoding or decoding is being performed (or equivalently, 1090 
whether the field is required for formatting the output value – or being extracted from the 1091 
input value), since each successive definition depends on prior execution of the 1092 
definitions preceding it, in the correct order, in order that all the required fields are 1093 
available. 1094 

The rules in the example above apply generally, with minor modifications to all of the 1095 
GS1 coding schemes covered in the TDS Specification v1.6.  It is worth noting that each 1096 
of the above rule steps contains only one function or operation per step, which means that 1097 
even a very simple parser can be used, without needing to deal with nesting of functions 1098 
in parentheses.   1099 

3.14 Core Functions 1100 
The core functions which SHALL be supported by Tag Data Translation software in 1101 
order to encode/decode the GS1 coding schemes are described in Table 6. 1102 
SUBSTR (string, offset) the substring starting at <offset>  

(offset=0 is the first character of string) 
SUBSTR (string, offset, 
length) 

the substring starting at <offset> (offset=0 is 
the first character of string)  and of <length> 
characters 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 42 of 71       

CONCAT (string1, string2, 
string3,…) 

concatenation of string parameters 

LENGTH(string) number of characters of a string 
GS1CHECKSUM (string) Computes the GS1 checksum digit given a string 

containing all the preceding digits 
TABLELOOKUP (inval, 
tablename, incol, outcol) 

Performs a lookup in table called tablename.  
Given an input value <inval>, look in table 
<tablename> to find a match in column names 
<incol> and return the corresponding value for 
the same row from output column <outcol>.   

The TABLELOOKUP function only indicates the 
logical lookup – not any bindings. 

The table URL is specified via a separate  
attribute tableURL and bindings to XPath or 
SQL expressions are specified via separate 
attributes tableXPath and tableSQL. 

add(String, int) Converts the String value to integer and adds 
increment to the converted value. Returns result 
as a String value 

multiply(String, int) Converts the String value to integer and 
multiplies the converted String with the integer 
value supplied. Returns the result as a String 
value 

divide(String, int) Converts the String value to integer and divides 
the converted String by the integer value 
supplied.  Returns the result as a String value 

subtract(String,int) Converts the String value to integer and subtracts 
the supplied integer value from the converted 
value. Returns result as a String value 

mod(String, int) Converts the String to integer and returns the 
result of the remainder of the converted String 
after integer division by the integer value 
supplied. i.e. returns (String mod int ) 

 1103 
Table 6 - Basic built-in functions required to support encoding and decoding within the 1104 

GS1 schemes currently covered by the TDS specification 1105 
 1106 

In order to make full use of the Tag Data Translation markup files, implementations of 1107 
translation software should provide equivalent functions in the programming language in 1108 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 43 of 71       

which they are written, either by the use of native functions or custom-built methods, 1109 
functions or subroutines. 1110 

In this version of Tag Data Translation, the requirement that implementations should be 1111 
able to recalculate check digits only applies to the GS1 coding schemes, when output in 1112 
the element string or GS1 Application Identifier representation is required.  Further 1113 
details on calculation of the GS1 checksum can be found at http://www.gs1.org.  1114 
It should be noted that ISO 7064 provides a standard for more general-purpose 1115 
calculation of check digits and that this may be considered in future versions of this 1116 
specification. 1117 

It is important to note that modern programming languages (including Java, C++, C#, 1118 
Visual Basic, Perl, Python) do not all share the same convention in the definitions of their 1119 
native functions, especially for string functions.  In some languages the first character of 1120 
the string has an index 0, whereas in others, the first character has an index 1.  1121 
Furthermore, many of the languages provide a substring function which takes two 1122 
additional parameters as well as the string itself.  Usually, the first of these is the start 1123 
index, indicating the starting position where the substring should be extracted.  However, 1124 
some languages (e.g. Java, Python) define the last parameter as the end index, whereas 1125 
others (C++, VB.Net, Perl) define it as the length of the substring, i.e. number of 1126 
characters to be extracted.  Table 7 indicates a number of language-specific equivalents 1127 
for the three-parameter SUBSTR function in Table 6. 1128 

 1129 

 SUBSTR(string,offset,length) Notes 

C++ 
 

String.substr(offset, length); 
 

 

C# String.Substring(offset, length);  

Perl substr($stringvariable, offset, length);  

Visual 
Basic 

String.Substring(offset,length)  

Java Java.lang.String 

String.substring(beginIndex, endIndex) 

beginIndex = offset 
endIndex = offset+length 

Python String[start:end] start = offset 
end = offset+length 

 1130 
Table 7 – Comparison of how substring functions are defined in a number of modern  1131 

programming languages.  The parameters offset and length are of integer type. 1132 
   1133 

Note that for the case of rules which use the TABLELOOKUP function, additional 1134 
attributes tableURL and tableXPath or tableSQL are provided.  Tables may be 1135 
provided in XML format or as comma-separated values (CSV) or tab-separated values 1136 

http://www.autoidcenter.org/
http://www.gs1.org/


 
 
 Copyright ©2006-2011EPCglobal® 44 of 71       

(TSV), even though any Tag Data Translation software MAY internally store the table 1137 
values in a different format altogether.  For this reason, the binding to the original format 1138 
is handled separately via the tableURL and tableParams and either 1139 
tableXPath or tableSQL attributes, while the TABLELOOKUP function expresses 1140 
the logical lookup, irrespective of the format in which any table is actually supplied. 1141 

 1142 
As an example, consider the GS1 Company Prefix Index lookup tables for use with 64-bit 1143 
tags.  An XML version and a comma-separated values (CSV) version are provided at 1144 
http://www.onsepc.com 1145 

 1146 
For the XML version, 1147 
tableURL="http://www.onsepc.com/ManagerTranslation.xml" and 1148 
tableXPath and tableParams are one of the following pairs: 1149 

 1150 
tableXPath="/GEPC64Table/entry[@index='$1']/@companyPrefix"  1151 
tableParams="companyprefixindex" 1152 

for the case where 1153 
function="TABLELOOKUP(companyprefixindex,'GEPC64Table',comp1154 
anyprefixindex,companyprefix)" 1155 

  OR 1156 
tableXPath="/GEPC64Table/entry[@companyPrefix='$1']/@index" 1157 
tableParams="companyprefix" 1158 

for the case where  1159 
function="TABLELOOKUP(companyprefix,'GEPC64Table',companypr1160 
efix,companyprefixindex)" 1161 

 1162 

The first example pair is used to obtain the value of companyprefix given the value 1163 
of index (e.g. retrieve companyprefix='0037000' given 1164 
companyprefixindex='1'). 1165 

The second example pair is used to obtain the value of companyprefixindex given 1166 
the GS1 company prefix (e.g. retrieve gs1companyprefixindex='1' given 1167 
that gs1companyprefix='0037000'). 1168 

Note that tableParams may be a comma-separated string of either fieldnames (if 1169 
unquoted) or fixed literal values, if wholly numeric or single-quoted strings.  The $1 in 1170 
the tableXPath expressions indicates that the actual value of the field named by the 1171 
first parameter of tableParams string should be substituted into the tableXPath 1172 
expression at this point before passing the XPath expression to an XML DOM parser.   1173 

http://www.autoidcenter.org/
http://www.onsepc.com/


 
 
 Copyright ©2006-2011EPCglobal® 45 of 71       

For example, if the value of companyprefix is '0037000', then for the second example 1174 
pair, the value of '0037000' would be substituted in place of '$1' in tableXPath so that 1175 
it would be the following XPath expression: 1176 

"/GEPC64Table/entry[@companyPrefix='0037000']/@index" 1177 

which is actually passed to the XML DOM parser. 1178 

 1179 

Where more than one parameter is listed in tableParams, $2 indicates where to 1180 
substitute the second parameter, while $3 indicates where to substitute the third 1181 
parameter, and so on. 1182 
 1183 

A table supplied as comma-separated values (CSV) or tab-separated values (TSV), can be 1184 
readily converted to a relational database table with the appropriate column headings. 1185 

For the example of the GS1 Company Prefix Index table for 64-bit tags, the CSV version 1186 
is available from http://www.onsepc.com/ManagerTranslation.csv 1187 

In this case, the attribute  1188 
 1189 
tableURI= "http://www.onsepc.com/ManagerTranslation.csv"  1190 
 1191 
and the attributes tableSQL and tableParams may be one of the following pairs: 1192 

 1193 
tableSQL="SELECT companyPrefix from GEPC64Table WHERE 1194 
index='$1'"  1195 
tableParams="companyprefixindex" 1196 

for the case where 1197 
function="TABLELOOKUP(companyprefixindex,'GEPC64Table',comp1198 
anyprefixindex,companyprefix)" 1199 

  OR 1200 
tableSQL="SELECT index from GEPC64Table WHERE 1201 
companyPrefix='$1'" 1202 
tableParams="companyprefix" 1203 

for the case where 1204 
function="TABLELOOKUP(companyprefix,'GEPC64Table',companypr1205 
efix,companyprefixindex)" 1206 

 1207 

Each of the two example pairs above corresponds to the respective pairs in the previous 1208 
examples for the tableXPath attributes.  Likewise, the notation $1, $2, etc. 1209 
indicates where values of fields named by parameters from the tableParams string 1210 

http://www.autoidcenter.org/
http://www.onsepc.com/ManagerTranslation.csv


 
 
 Copyright ©2006-2011EPCglobal® 46 of 71       

should be substituted into the tableSQL expression before passing to the relational 1211 
database engine for execution. 1212 
 1213 

 1214 
 1215 

4 TDT Markup - Elements and Attributes 1216 

4.1 Root Element 1217 
The epcTagDataTranslation element is the root element of the TDT definition.  1218 

Attributes 1219 
Name Description Example Values 

version TDT Definition version 
number 

1.6 

date Creation Date 2011-01-18T11:33Z 
epcTDSVersion TDS Specification version 1.6 

Elements 1220 
Name Description 

scheme Please see scheme definition below for more details 

4.2 Scheme Element 1221 
For every identifier / coding scheme as defined in the TDS specification, the Scheme 1222 
element provides details of encoding/decoding rules and formats for use by Tag Data 1223 
Translation software.  In this version of the TDT specification, markup files are provided 1224 
for the following identifiers: GDTI-96, GDTI-113, GIAI-64, GIAI-96, GIAI-202, GID-1225 
96, GRAI-64, GRAI-96, GRAI-170, GSRN-96, SGLN-64, SGLN-96, SGLN-195, 1226 
SGTIN-64, SGTIN-96, SGTIN-198, ADI-var, SSCC-64, SSCC-96, USDOD-64, 1227 
USDOD-96. 1228 

Attributes 1229 
Name Description Example Values 

name Name of the coding scheme GDTI-96, GDTI-113, GIAI-
64, GIAI-96, GIAI-202, 
GID-96, GRAI-64, GRAI-
96, GRAI-170, GSRN-96, 
SGLN-64, SGLN-96, 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 47 of 71       

SGLN-195, SGTIN-64, 
SGTIN-96, SGTIN-198, 
ADI-var, SSCC-64, SSCC-
96, USDOD-64, USDOD-
96 

optionKey The name of a variable 
whose value determines 
which one of multiple 
options to select.  Note that 
as of TDT 1.6, 
optionKey is no longer a 
required attribute within the 
<scheme> element, 
although it is still specified 
for fixed-length EPC 
constructs.  Even if the 
optionKey value is not 
specified within the 
<scheme> element, nested 
<option> elements are 
nevertheless numbered with 
an optionKey attribute 
and translation is performed 
between <option> 
elements having the same 
value of optionKey 
attribute present within the 
<option> element. 

companyprefixlength 

tagLength This refers to the length of 
the EPC identifier itself 
(e.g. the bits encoded from 
position 20h in the EPC/UII 
memory bank of a Gen2 
tag).  The tagLength 
attribute shall not be 
specified for a variable-
length EPC identifier, 
although it shall be 
specified for all fixed-
length EPC identifiers.  

64, 96 or larger values. 
(The tagLength attribute 
shall not be specified for a 
variable-length EPC 
identifier) 
 

Elements 1230 
Name Description 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 48 of 71       

level Contains option elements expressing a pattern, grammar 
and encoding/decoding rules for each level of 
representation 

4.3 Level Element 1231 
This element provides a prefix match for each level of representation.  Nested within the 1232 
level element are option elements (which provide the pattern regular expressions 1233 
for parsing the input into fields and ABNF grammar for formatting the output) and 1234 
rule elements used for obtaining additional fields from functional operations on known 1235 
fields. 1236 

Attributes 1237 
Name Description Example Values 

type Indicates level of 
representation 

BINARY 
TAG_ENCODING 
PURE_IDENTITY 
LEGACY 
LEGACY_AI 
ONS_HOSTNAME 

prefixMatch Prefix value required 
for each 
encoding/decoding 
level  

00001010 
uri:epc:tag:sscc-64 

uri:epc:id:sscc 
sscc= 

(00) 
requiredParsingParameters Comma-delimited 

string listing names of 
fields whose values 
SHALL be specified 
in the list of 
suppliedParameters in 
order to parse the 
fields of an input 
value at this level 

gs1companyprefixlength 

requiredFormattingParameters Comma-delimited 
string listing names of 
fields whose values 
SHALL be specified 
in the list of 
suppliedParameters in 
order to format the 
outbound value at this 

filter,tagLength 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 49 of 71       

level 

Elements 1238 
Name Description 

option Contains patterns and grammar  
rule Contains rules required for determining values of 

additional variables required 

 1239 

4.4 Option Element 1240 

Attributes 1241 
Name Description Example Values 

optionKey A fixed value which the 
optionKey attribute of the 
<scheme> element SHALL 
match if this option is to be 
considered, provided that the 
optionKey attribute is 
specified within the <scheme> 
element.  For variable-length 
EPCs, the optionKey 
attribute might not be specified 
within the <scheme> element 
but is still used for ensuring that 
the <option> element for the 
outbound representation is 
appropriate for the <option> 
element for the inbound 
representation.  For all EPCs, 
translation shall always be 
between two <option> 
elements having the same value 
of their optionKey attribute 

Any string value but for GS1 
identifier keys, the values 
'6','7','8','9','10','11','12'. 
In the case of ADI-var, the 
optionKey is used to distinguish 
between six recognized variations in 
the way in which the unique 
identifier may be constructed.  In 
this situation, the optionKey is 
simply a number to represent a 
particular variation but has no 
specific correspondence to a 
particular field. 

pattern A regular expression pattern to 
be used for parsing the input 
string and extracting the values 
for variable fields 

00101111([01]{4})00100000([01]{4
0})([01]{36}) 

grammar An ABNF grammar indicating 
how the output can be 
reassembled from a combination 

'00101111' filter cageordodaac serial 

 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 50 of 71       

of literal values and substituted 
variables (fields) 

N.B.  single quoted string indicate 
fixed literal strings, unquoted strings 
indicate substitution of the 
correspondingly named field values 

Elements 1242 
Name Description 

field Provides information about each of the variables, e.g. 
(min, max) values, allowed character set, length, padding 
etc. 

4.5 Field Element 1243 

4.6 Attributes 1244 
Name Description Example Values 

seq The sequence number for a 
particular sub-pattern 
matched from a regular 
expression – e.g. 1 denotes 
the first sub-pattern 
extracted 

1, 2, 3… 

name The name of the variable 
(or field) – just a reference 
used to ensure that each 
field may be used to 
construct the output format 

filter, 
companyprefix, 
itemref, serial, … 

 

decimalMinimum Decimal minimum value 
allowed for this field 

0 

decimalMaximum Decimal maximum value 
allowed for this field 

9999999 

length Required length of this field 
in string characters.   

7 

bitLength Required length of this field 
in bits.  Omitted for all 
levels except for the 
BINARY encoding level 

24 

bitPadDir Direction to insert ‘0’ to the 
binary value 

'LEFT', 'RIGHT' 

characterSet Allowed character set for 
this field, expressed in 

[0-9]*,[01]*, 
[0-9A-HJ-NP-Z]* 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 51 of 71       

regular expression character 
range notation 

padChar Character to be used to pad 
to required value of 
fieldlength. Omitted if no 
padding is required for the 
corresponding field outside 
of the BINARY level (e.g. 
within the TAG-
ENCODING level)   

'0', ' ' (ASCII space 
character) 

padDir Direction to insert pad 
characters.  

'LEFT', 'RIGHT' 

 1245 

 1246 

4.7 Rule Element 1247 

Attributes 1248 
Name Description Example Values 

type Indicates at which stage of 
the process the definition 
should be evaluated 

'EXTRACT', 'FORMAT' 

inputFormat Indicates whether the input 
parameter to the definition is 
in binary format or non-
binary ('string') format 

'STRING', 'BINARY' 

seq A sequence number to 
indicate the running order for 
definitions sharing the same 
mode value.  The definitions 
should be run in order of 
ascending 'seq' value 

1,2,3,4,5… 

newFieldName A name for the new field or 
variable whose value is 
determined by evaluating the 
definition 

Any string consisting of 
alphanumeric characters and 
underscore 

function An expression indicating 
how the new field can be 
determined from a function 
of already-known fields 

e.g. SUBSTR(itemref,0,1) 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 52 of 71       

decimalMinimum For numeric fields, the 
decimal minimum value 
allowed for this field 

e.g.  0 

decimalMaximum For numeric fields, the 
decimal maximum value 
allowed for this field 

e.g.  9999999 

length Required length of this field 
in string characters.   

7 

padChar Character to be used to pad 
to required value of 
fieldlength. Omitted if no 
padding is required.  Present 
if padding is required. 

'0', ' ' 

padDir Direction to insert pad 
characters 

'LEFT', 'RIGHT' 

bitLength Required length of this field 
in bits.  Omitted for all levels 
except for the BINARY 
encoding level 

e.g. 24 

bitPadDir Direction to insert ‘0’ to the 
binary value 

'LEFT', 'RIGHT' 

characterSet Allowed character set for 
this field, expressed in 
regular expression character 
range notation 

[0-9],[01] 

tableURL A URL where the data table 
can be obtained 

http://www.onsepc.com/ManagerTra
nslation.xml 

tableXPath An XPath expression for 
obtaining a particular 
attribute or element value 
from an XML table. 
The inline notation '$1', '$2' 
etc. indicates where the 
values of the first, second, 
etc. elements of the 
tableParams list should be 
substituted before passing to 
an XML parsing engine. 

/GEPC64Table/entry[@index='$1']/
@companyPrefix 

tableSQL A SQL expression for 
obtaining a particular field 
from a relational database 

SELECT companyPrefix FROM 
GEPC64Table WHERE index='$1' 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 53 of 71       

table. 

The inline notation '$1', '$2' 
etc. indicates where the 
values of the first, second, 
etc. elements of the 
tableParams list should be 
substituted before passing to 
a relational database query 
engine. 

tableParams A comma-delimited string 
list of fieldsnames whose 
actual values should be 
substituted into the 
tableXPath or tableSQL 
expressions 

e.g.  companyprefixindex 

 1249 
 1250 

5 Translation Process 1251 
 1252 
The execution of the rules in the TDT process takes place at two distinct processing 1253 
stages, denoted 'FORMAT' and 'EXTRACT', as explained in Table 8: 1254 

Stage Description 
EXTRACT Operates on fields after parsing of the inbound value 
FORMAT Operates on fields in order to prepare additional fields required by 

the grammar for formatting the output value. 

 1255 
Table 8 – The two stages for processing rules in Tag Data Translation 1256 

 1257 
The rules for each scheme are within the context of a particular level of representation. 1258 
The first block of rules, 'EXTRACT' are tied to the inbound representation level.  The 1259 
last block of rules, 'FORMAT' is tied to the outbound representation level. Each block 1260 
may consist of zero or more rule elements.  The rules within each block are executed in 1261 
a strict order, as specified by an ascending integer-based sequence number, indicated by 1262 
the attribute 'seq' of the rule element.  1263 

The translation process is described by the following steps: 1264 

 1265 

1. Setup 1266 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 54 of 71       

Read the input value and the supplied extra parameters.   1267 
Populate an associative array of key-value pairs with the supplied extra parameters. 1268 

During the translation process, this associative array will be populated with additional 1269 
values of extracted fields or fields obtained through the application of rules of type 1270 
'EXTRACT' or 'FORMAT'   1271 
Note the desired outbound level. 1272 

 1273 

2. Determine the coding scheme and inbound representation level.   1274 
To find the scheme and level that matches the input value, consider all schemes and the 1275 
prefixMatch attribute of each level element within each scheme.   1276 

If the prefixMatch string matches the input value at the beginning, the scheme and 1277 
level should be considered as a candidate for the inbound representation.  If the scheme 1278 
element specifies a tagLength attribute, then if the value of this attribute does not 1279 
match the value of the tagLength key in the associative array, then this scheme and 1280 
level should no longer be considered as a candidate for the inbound representation. 1281 

 1282 

3. Determine the option that matches the input value 1283 
To find the option that matches the input value, consider any scheme+level candidates 1284 
from the previous step.  For each of these schemes, if the optionKey attribute is 1285 
specified within the scheme element in terms of the name of a supplied parameter (e.g. 1286 
gs1companyprefixlength), check the associative array of supplied parameters to 1287 
see if a corresponding value is defined and if so, select the option element for which 1288 
the optionKey attribute of the option element has the corresponding value.   1289 

 1290 
e.g. if a candidate scheme has a scheme attribute 1291 
optionKey="gs1companyprefixlength" and the associative array of supplied 1292 
extra parameters has a key=value pair gs1companyprefixlength=7, then only the 1293 
option element having attribute optionKey="7" should be considered. 1294 

 1295 

If the optionKey attribute is not specified within the scheme element or if the 1296 
corresponding value is not present in the associative array of supplied extra parameters, 1297 
then consider each option element within each scheme+level candidate and check 1298 
whether the pattern attribute of the option element matches the input value at the 1299 
start of the string.   1300 

 1301 
When a match is found, this option should be considered further and the corresponding 1302 
value of the optionKey attribute of the option element should be noted for use in 1303 
step 6. 1304 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 55 of 71       

 1305 
 1306 

4. Parse the input value to extract values for each field within the option 1307 

Having found a scheme, level and option matching the input value, consider the field 1308 
elements nested within the option element.   1309 

 1310 

Matching of the input value against the regular expression provided in the pattern 1311 
attribute of the option element should result in a number of backreference strings being 1312 
extracted.  These should be considered as the values for the field elements, where the 1313 
seq attribute of the field element indicates the sequence in which the fields are extracted 1314 
as backreferences, from the start of the input value, e.g. the value from the first 1315 
backreference should be considered as the value of the field element with seq="1", 1316 
the value of the second backreference is the value of the field element with seq="2". 1317 

 1318 

For each field element, if a characterSet attribute is specified, check that the 1319 
value of the field falls entirely within the specified character set. 1320 

 1321 

For each field element, if the compaction attribute is null, treat the field as an 1322 
integer.  If the type attribute of the input level was "BINARY", treat the string of 0 and 1323 
1 characters matched by the regular expression backreference as a binary string and 1324 
convert it to a decimal integer. 1325 

 1326 

If the decimalMinimum attribute is specified, check that the value is not less than the 1327 
decimal minimum value specified. 1328 
 1329 

If the decimalMaximum attribute is specified, check that the value is not greater than 1330 
the decimal maximum value specified. 1331 

 1332 
If the inbound representation was binary, perform any necessary stripping, conversion of 1333 
binary to integer or string, padding, referring to the procedure described in the flowchart 1334 
Figure 9b. 1335 

 1336 

5. Perform any rules of type EXTRACT within the inbound option in order to 1337 
calculate additional derived fields 1338 

Now run the rules that have attribute type="EXTRACT" in sequence, to determine any 1339 
additional derived fields that must be calculated after parsing of the input value.  1340 

 1341 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 56 of 71       

Store the resulting key-value pairs in the associative array after checking that the value 1342 
falls entirely within the permitted characterSet (if specified) or within the permitted 1343 
numeric range (if decimalMinimum or decimalMaximum are specified) and 1344 
performing any necessary padding or stripping of characters. 1345 
 1346 

6. Find the corresponding option in the outbound representation 1347 
To find the corresponding option in the outbound representation within the same scheme, 1348 
select the level element having the desired outbound representation and within that, 1349 
select the option element that has the same value of the optionKey attribute that was 1350 
noted at the end of step 3 1351 

 1352 

7. Perform any rules of type FORMAT within the outbound representation in order 1353 
to calculate additional derived fields 1354 

Run any rules with attribute type="FORMAT" in sequence, to determine any additional 1355 
derived fields that must be calculated in order to prepare the output format.  1356 

 1357 

Store the resulting key-value pairs in the associative array after checking that the value 1358 
falls entirely within the permitted characterSet (if specified) or within the permitted 1359 
numeric range (if decimalMinimum or decimalMaximum are specified) and 1360 
performing any necessary padding or stripping of characters. 1361 

 1362 

8. Use the grammar string and substitutions from the associative array to build the 1363 
output value 1364 

Consider the grammar string for that option as a sequence of fixed literal strings (the 1365 
characters between the single quotes) interspersed with a number of variable elements, 1366 
whose key names are indicated by alphanumeric strings without any enclosing single 1367 
quotation marks.   1368 

 1369 
Perform lookups of each key name in the associative array to substitute the value of each 1370 
variable element, substituting the corresponding value in place of the key name.   1371 
 1372 

Note that if the outbound representation is binary, it is necessary to convert values from 1373 
decimal integer or string to binary, performing any necessary stripping or padding, 1374 
following the method described in the flowchart Figure 9a. 1375 
 1376 

Concatenate the fixed literal strings and values of variable together in the sequence 1377 
indicated by the grammar string and consider this as the output value. 1378 

 1379 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 57 of 71       

 1380 

5.1 Tag Data Translation Software - Reference Implementation 1381 
A reference implementation may be a package / object class or subroutine, which may be 1382 
used at any part of the EPC Network technology stack and integrated with existing 1383 
software.  Additionally, for educational and testing purposes, it will be useful to make a 1384 
Tag Data Translation capability available as a standalone service, with interaction either 1385 
via a web page form for a human operator or via a web service interface for automated 1386 
use, enabling efficient batch conversions. 1387 

6 Application Programming Interface 1388 
There are essentially two interfaces to consider for Tag Data Translation software, 1389 
namely a client-side interface, which provides conversion methods for users and a 1390 
maintenance interface, which ensures that the translation software is kept up-to-date with 1391 
the latest encoding/decoding definitions data. 1392 

6.1 Client API 1393 
public String translate(String epcIdentifier, String 1394 
parameterList, String outputFormat) 1395 

Translates epcIdentifier from one representation into another within the same 1396 
coding scheme. 1397 
Parameters: 1398 

epcIdentifier – The epcIdentifier to be converted.  This should be expressed as 1399 
a string, in accordance with one of the grammars or patterns in the 1400 
TDT markup files, i.e. a binary string consisting of characters '0' 1401 
and '1', a URI (either tag-encoding or pure-identity formats), or a 1402 
serialized identifier expressed as in Table 3. 1403 

parameterList – This is a parameter string containing key value pairs, using the 1404 
semicolon [';'] as delimiter between key=value pairs. For 1405 
example, to convert a GTIN code the parameter string would 1406 
look like the following: 1407 

filter=3;companyprefixlength=7;tagLength=96 1408 

outputFormat – The output format into which the epcIdentifier SHALL be 1409 
converted. The following are the formats supported: 1410 
1. BINARY 1411 
2. LEGACY 1412 
3. LEGACY_AI 1413 
4. TAG_ENCODING 1414 
5. PURE_IDENTITY 1415 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 58 of 71       

6. ONS_HOSTNAME 1416 

 1417 
Returns: 1418 

The converted value into one of the above formats as String. 1419 
 1420 

Throws: 1421 

TDTTranslationException – Throws exceptions due to the following 1422 
reason: 1423 

1. TDTFileNotFound – Reports if the engine could not locate the configured 1424 
definition file to compile.  1425 

2. TDTFieldBelowMinimum - Reports a (numeric) Field that fell below 1426 
the decimalMinimum value allowed by the TDT markup  1427 

3. TDTFieldAboveMaximum - Reports a (numeric) Field that exceeded the 1428 
decimalMaximum value allowed by the TDT markup 1429 

4. TDTFieldOutsideCharacterSet - Reports a Field containing 1430 
characters outside the characterSet range allowed by the TDT markup 1431 

5. TDTUndefinedField - Reports a Field required for the output or an 1432 
intermediate rule, whose value is undefined 1433 

6. TDTSchemeNotFound - Reported if no matching Scheme can be found 1434 
via prefixMatch 1435 

7. TDTLevelNotFound - Reported if no matching Level can be found via 1436 
prefixMatch 1437 

8. TDTOptionNotFound - Reported if no matching Option can be found 1438 
via the optionKey or via matching the pattern 1439 

9. TDTLookupFailed - Reported if lookup in an external table failed to 1440 
provide a value – reports table URI and path expression. 1441 

10. TDTNumericOverflow – Reported when a numeric overflow occurs 1442 
when handling numeric values such as serial number. 1443 

 1444 

6.2 Maintenance API 1445 
public void refreshTranslations() 1446 

Checks each subscription for any update, reloading new rules where necessary and forces 1447 
the software to reload or recompile its internal representation of the encoding/decoding 1448 
rules based on the current remaining subscriptions. 1449 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 59 of 71       

 1450 
 1451 
 1452 
 1453 
 1454 
 1455 

1456 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 60 of 71       

7 TDT Schema and Markup Definition  1457 
 1458 

See http://www.gs1.org/gsmp/kc/epcglobal/tdt for the latest version of 1459 
the TDT schema and TDT definition files for each EPC scheme.  1460 

1461 

http://www.autoidcenter.org/
http://www.epcglobalinc.org/standards/tdt


 
 
 Copyright ©2006-2011EPCglobal® 61 of 71       

8 Glossary (non-normative) 1462 
This section provides a non-normative summary of terms used within this specification.  1463 
For normative definitions of these terms, please consult the relevant sections of the 1464 
document. 1465 

Term Meaning 

[Numbering/Coding] 
Scheme 

A well-defined method of assigning an identification 
code to an object / shipment / location / transaction 

Serialised Provides a unique serial number for each unique object 
referenced using that coding scheme 

GTIN Global Trade Item Number – used to identify traded 
objects and services. 

SSCC 

 

Serial Shipping Container Code – provides a globally 
unique reference number for each shipment 

GLN 

 

Global Location Number – used to identify physical 
locations but also legal and organizational entities and 
departments 

GRAI 
 

Global Returnable Asset Identifier – used to identify 
returnable assets such as pallets and crates, gas 
cylinders, etc. 

GIAI Global Individual Asset Identifier – used to identify 
assets owned by an organisation, which are not being 
traded – often used for tracking inventory of high value 
equipment 

GSRN The Global Service Relation Number (GSRN) may be 
used to identify the recipient of services in the context 
of a service relationship. 

GDTI The Global Document Type Identifier is the 
Identification Key for a document type combined with 
an optional serial number 

GID 
 

General Identifier – original hierarchical structure 
proposed for EPC by Auto-ID Centre.  GID is a generic 
scheme, not specifically aligned with any particular 
GS1 identifier key or other existing identifier scheme. 

GS1 identifier keys 
 

Fundamental identifiers used for distinct purposes and 
defined in the GS1 General Specifications. 
Examples include GTIN, SSCC, GLN, GRAI, GIAI, 
GDTI, GSRN.  Tag Data Standard 1.6 defines EPC 
representations of these. 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 62 of 71       

Term Meaning 

Levels of 
Representation 

The way in which the identifier is represented.  
Examples of different types of representation include 
sequences of binary digits (bits), sequences of numeric 
or alphanumeric characters, as well as Uniform 
Resource Identifiers (URIs) 

Input Value The identifier to be translated.  The format is which it is 
expressed is the Inbound Representation. 

Inbound 
representation 

The way in which the identifier is supplied to the 
translation software.  This may be auto-detected from 
the input value. 

Outbound 
representation 

The way in which the output from the translation 
software should be expressed.  This must be specified 
by the client. 

Binary A sequence of binary digits or bits, consisting of only 
the digits '0' or '1' 

Non-Binary Form An integer, numeric or alphanumeric character string 
when not expressed in the corresponding binary format 

URI / URN 

 

A Uniform Resource Identifier / Uniform Resource 
Name – a string that uniquely identifies any particular 
object.  Unlike a URL (Uniform Resource Locator) 
which may change when a web page moves from one 
website to another, the URI is intended to be a 
permanent reference, fixed for all time – even if the 
underlying binding to a particular website address 
changes.  The URI is therefore at a higher level of 
abstraction than a URL.  Currently most web browser 
technology will only resolve URLs – but not URIs. 

Tag-Encoding URI 

 

A URI format which encodes the physical tag length 
and fast-filter values in addition to the information 
encoded in the pure-identity URI.  Intended for low-
level applications – e.g. sorting machines, tag writers, 
etc. 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 63 of 71       

Term Meaning 

Pure-Identity URI 

 

A more abstract URI format that provides each object 
with a unique identity but conveys no information 
regarding the physical limitations of the tag used to 
deliver that EPC.   
If an object is tagged with either a 64-bit tag or a 96-
bit tag, then although the binary representation and 
tag-encoding URIs will differ, the pure-identity URI 
will be the same.  Intended for use by high-level 
applications which are not concerned with writing to 
tags nor sorting on packaging level. 

  

Physical Level[s] 
 

Representations where the encoding conveys 
information about the physical tag length (number of 
bits) and/or the packaging/classification level of the 
object.  Specifically, the binary representation and tag-
encoding URI. 

Identity Level[s] 

 

Higher-level representations that say nothing about the 
physical tag length, nor include explicit information 
about the packaging/classifcation level.  Specifically 
the pure-identity URI, element string and Application 
Identifier (AI) representation 

Supplied parameters 
 

Parameters that shall be supplied in addition to the 
input value, mainly because the input value itself lacks 
specific information required for constructing the 
output.   

Options 
 

Variations to handle variable-length data partitions, 
such as those resulting from the variable-length GS1 
Company Prefix in the GS1 family of coding schemes.  
Where multiple options are specified, the same number 
of options should be specified for each level of 
representation and translation should always translate 
from the matching option within the inbound level to 
the corresponding option within the outbound level. 

Regular Expression 
Pattern 

A notation for representing sub-patterns of particular 
groups of characters to match 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 64 of 71       

Term Meaning 

ABNF Grammar 

 

Augmented Backus-Naur Form.  Defined in RFC 2234. 
[ http://www.ietf.org/rfc/rfc2234.txt ] 
Notation indicating how the result can be expressed 
through a concatenation of fixed literal values and 
values of variable fields, whose values are previously 
determined.  

[Fast] Filter 

 

A number which is used to conveniently select only 
EPCs of a particular packaging level or classification – 
e.g. a filter within a smart reader may be configured to 
report only the cases and pallets – but not all of the 
items within those cases.  The fast filter value may also 
be used for filtering and sorting. 

Header 

 

A binary EPC prefix which indicates the coding 
scheme and usually also the tag length.  Headers of 2 
bits and 8 bits are defined in the EPC Tag Data 
Standard specification 

Field 

 

The variable elements of the EPC in any of its 
representations – each partition or field has a logical 
role, such as identifying the responsible company (e.g. 
the manufacturer of a trade item) or the object class or 
SKU.  Tag Data Translation software uses the regular 
expression pattern to extract values for each field.  
These may be temporarily stored in variables or an 
associative array (key-value lookup table) until they are 
later required for substitution into the outbound format. 

Rules 
 

There are already a number of requirements to perform 
various string manipulations and other calculations in 
order to comply with the current TDS specification.  
Neither the regular expression patterns nor the ABNF 
grammar contain any embedded inline functions.  
Instead, additional fields are embedded and a separate 
list of rules are provided, in order to define how their 
values should be derived from fields whose values are 
already known.  The rules also indicate the context and 
running order in which they should be executed, 
namely by specifying the scheme, level and stage of 
execution (Extract or Format) and the running order as 
an integer index, with functions executed in ascending 
order of the sequence number indicated by the seq 
attribute 

http://www.autoidcenter.org/
http://www.ietf.org/rfc/rfc2234.txt


 
 
 Copyright ©2006-2011EPCglobal® 65 of 71       

Term Meaning 

Prefix Match 

 

The Prefix Match is a substring which is used to 
determine the scheme of the inbound string.  This is 
merely a method of optimizing the performance of 
translation software by limiting the number of pattern-
match tests that are required, since the translation 
software only attempts full pattern matching and 
processing for the options of those schemes/levels 
whose Prefix Match matches at the start of the input 
value. 

OptionKey 
 

The OptionKey is used to identify the appropriate 
option to use where multiple variations are specified to 
deal with partitions of variable length.  A default 
strategy may be to simply iterate through all the 
possible options and find only one where the format 
string matches the inbound string.  However, this 
approach fails when multiple options match the 
inbound value.  In this case, the translation software 
can use the enumerated value of the OptionKey to 
select the appropriate option to use.  Each option entry 
is numbered – and each level specifies (via the name of 
a field) the appropriate option to choose.  For example 
for the GS1 codes, the level element always specifies 
that the OptionKey="companyprefixlength" , so for a 
GS1 Company Prefix of '0037000', then field 
"companyprefixlength" would be specified as 7 via the 
supplied parameters and therefore Option #7 would be 
chosen for both the inbound and outbound levels.  

Encoding 
 

A conversion process towards the binary 
representation, i.e in the direction: 
 

Application Identifier (AI) representation or Element 
String  Pure-identity URI  Tag-encoding URI  
Binary 

Decoding 
 

A conversion process away from the binary 
representation, i.e in the direction: 
 

Binary  Tag-encoding URI  Pure-identity URI   
Application Identifier (AI) representation or Element 
String  ONS hostname 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 66 of 71       

Term Meaning 

Built-In Functions 

 

Functions that should be supported by all 
implementations of the tag data translation software, 
irrespective of the programming language in which the 
software was actually written.  See Table 6. 

TDT XML Markup / 
Definition files 
 

A well-defined machine-readable structured packet of 
data that represents the patterns, grammar, rules, and 
field constraints for each identifier coding scheme.  Tag 
data translation software should periodically receive 
updated versions or patches of the XML markup tables, 
which it can then use to update its own internal set of 
rules for performing the conversions, whether this is 
done at run-time or compile-time. The TDT XML 
definition files are freely downloadable.   

[EPC] [Tag Data] 
Translation Software 

 

A piece of software that performs conversions between 
different representations of the EPC within any given 
coding scheme.  The translation software may be a 
library module or object which may be accessed by / 
embedded within any technology component in the 
EPC Network technology stack.  It may also be 
implemented as a standalone service, such as an 
interactive web page form or a web service for 
automated batch-processing of conversions. 

EPC Tag Data 
Validation Software 

Software which need not perform any transalation but 
may nevertheless make use of the Tag Data Translation 
markup files in order to validate that an EPC in any of 
its representations conforms to a valid format. 

EPC Network 
[Technology] Stack 
 

This consists of several architectural building blocks in 
order to connect physical objects with information 
systems. The technology stack includes: 
 
EPC – the Electronic Product Code 

Tags and Readers 
Filtering and Collection middleware 

Object Name Service (ONS 
EPC Information Service (EPCIS). 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 67 of 71       

Term Meaning 

Checksum / Check 
Digit 
 

A number that is computed algorithmically from other 
digits in a numerical code in order to perform a very 
basic check of the integrity of the number; if the check 
digit supplied does not correspond to the check digit 
calculated from the other digits, then the number may 
have been corrupted.  The check digit is in a way 
analogous to a message digest of a data packet or 
software package – except that message digests tend to 
be more robust since they consist of strings of several 
characters and hence many more possible permutations 
than a single check digit 0-9, with the result that there 
is a much smaller probability that a corrupted number 
or data packet will product the same message digest 
than that it will fortuitously produce a valid check digit.  
The algorithm for computing the check digit for GS1 
coding schemes is specified at 
http://www.gs1.org/productssolutions/barcodes/support
/check_digit_calculator.html 
ISO 7064 is a standard specifying a generic framework 
for check digit calculations. 

GS1 Company Prefix A number allocated by GS1 which uniquely specifies a 
unique company – often the manufacturer of a trade 
item 

GS1 Company Prefix 
Index 

An integer used to obtain the full GS1 Company Prefix 
via a lookup table, keyed on the smaller integer number 
of the GS1 Company Prefix Index.  This is used with 
the 64-bit schemes in order to allocate a larger range of 
bits for the remaining data partitions.  The GS1 
Company Prefix Index is tabulated in XML and 
comma-separated value formats at 
http://www.onsepc.com 

 1466 

9 References 1467 
 1468 
EPCglobal Architecture Framework Document 1469 

 http://www.gs1.org/gsmp/kc/epcglobal/architecture 1470 
 1471 

TDS - EPCglobal Tag Data Standard 1472 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 68 of 71       

See EPCglobal, “EPC Tag Data Standard”, v1.6 ratified on *** 1473 
http://www.gs1.org/gsmp/kc/epcglobal/tds/  1474 

 1475 
ONS- Object Naming Service 1476 

See EPCglobal, “EPCglobal Object Naming Service (ONS), Version 1.0.1,”   1477 
Ratified Standard, May 2008, http://www.gs1.org/gsmp/kc/epcglobal/ons/ 1478 

 1479 
GTIN – Global Trade Item Number 1480 

GLN – Global Location Number 1481 
SSCC – Serial Shipping Container Code 1482 

GRAI – Global Returnable Asset Identifier 1483 
GIAI – Global Individual Asset Identifier 1484 

GSRN – Global Service Relation Number 1485 
GDTI – Global Document Type Identifier 1486 

GS1 (formerly EAN UCC Company Prefix) 1487 
GS1 Check Digit Calculation 1488 

 See http://www.gs1.org under 'The EAN.UCC System' > 'Identification' 1489 
 1490 

US DOD / CAGE and DODAAC codes in passive tags 1491 
 See http://www.acq.osd.mil/log/rfid/ under 'Passive Tag Data' 1492 

 1493 
NAPTR – Naming Authority Pointer records 1494 

 See RFC2915 at http://www.ietf.org/rfc/rfc2915.txt?number=2915 1495 
 1496 

PCRE – Perl-Compliant Regular Expressions 1497 
 See http://www.pcre.org 1498 

 1499 
ABNF – Augmented Backus-Naur Form 1500 

 See RFC2234 at http://www.ietf.org/rfc/rfc2234.txt?number=2234 1501 
 1502 

URI – Uniform Resource Identifiers 1503 
See RFC2396 at http://www.ietf.org/rfc/rfc2396.txt?number=2234 1504 

 1505 

http://www.autoidcenter.org/
http://www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
http://www.gs1.org/
http://www.acq.osd.mil/log/rfid/
http://www.ietf.org/rfc/rfc2915.txt?number=2915
http://www.pcre.org/
http://www.ietf.org/rfc/rfc2234.txt?number=2234
http://www.ietf.org/rfc/rfc2396.txt?number=2234


 
 
 Copyright ©2006-2011EPCglobal® 69 of 71       

CGI – Common Gateway Interface 1506 
 See http://hoohoo.ncsa.uiuc.edu/cgi/ 1507 

 1508 
UML – Unified Modelling Language 1509 

 See http://www.uml.org/ 1510 
 1511 

ISO AFI – Application Family Identifier 1512 
 See ISO/IEC 15693 and ISO/IEC 15961 and 15962  1513 

 1514 
UHF Generation 2 Protocol 1515 

See  EPCglobal, “EPC™ Radio-Frequency Identity Protocols Class-1 Generation-1516 
2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1517 
1.2.0,” EPCglobal Specification, May 2008, 1518 
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-1519 
20080511.pdf. 1520 

 1521 

XML DOM (Document Object Model) and XPath 1522 
 See http://www.w3.org/TR/xpath 1523 

 1524 

10  Acknowledgement of Contributors and Companies 1525 
Opted-in during the Creation of this Standard 1526 
(Informative) 1527 

 1528 

Disclaimer 1529 

Whilst every effort has been made to ensure that this document and the 1530 
information contained herein are correct, GS1 EPCglobal and any other party 1531 
involved in the creation of the document hereby state that the document is 1532 
provided on an “as is” basis without warranty, either expressed or implied, 1533 
including but not limited to any warranty that the use of the information herein 1534 
with not infringe any rights, of accuracy or fitness for purpose, and hereby 1535 
disclaim any liability, direct or indirect, for damages or loss relating to the use of 1536 
the document.  1537 

 1538 
Below is a list of active participants and contributors in the development of TDT 1539 
1.6. This list does not acknowledge those who only monitored the process or 1540 
those who chose not to have their name listed here. Active participants status 1541 

http://www.autoidcenter.org/
http://www.uml.org/
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.w3.org/TR/xpath


 
 
 Copyright ©2006-2011EPCglobal® 70 of 71       

was granted to those who generated emails, attended face-to-face meetings and 1542 
conference calls that were associated with the development of this standard. 1543 

Member Company Member Type or WG Role 

Dr. Mark Harrison Auto-ID Labs Editor of TDT 1.6 

Rajiv Singh Garud Technology Services Inc Member 

Ms. Sue Schmid GS1 Australia Member 

Kevin Dean GS1 Canada Member 

Mr. Han Du GS1 China Member 

Mr. Lionel Willig GS1 France Member 

Mr. Ralph Troeger GS1 Germany Member 

Ian Robertson GS1 Global Office GS1 GOStaff 

Mark Frey GS1 Global Office GSMP Group 
Facilitator/Project 
Manager/ISO Liaison 
WG4/SG1 

Frank Sharkey GS1 Global Office GS1 GO Staff 

KK Suen GS1 Hong Kong Member 

Mr. Koji Asano GS1 Japan Member 

Ms. Reiko Moritani GS1 Japan Member 

Ms. Yuko Shimizu GS1 Japan Member 

Mrs. Sylvia Stein GS1 Netherlands Member/Facilitator 
Ms. Alice Mukaru GS1 Sweden Member 

Mr. Heinz Graf GS1 Switzerland Member 

Ray Delnicki GS1 US Member 

Mr. James Chronowski GS1 US Co-chair 

Ken Traub Ken Traub Consulting LLC Editor of TDS 1.6 

Denton Clark Lockheed Martin Member 

Dr. Patrick King Manufacture francaise des 
Pneumatiques Michelin 

Member 

Mr. Rick Schuessler Motorola Co-chair 

Mr. Henk Dannenberg NXP Semiconductors Member 

Kevin Ung The Boeing Company Member 

Steve Lederer The Goodyear Tire & Rubber Co. Member 

http://www.autoidcenter.org/


 
 
 Copyright ©2006-2011EPCglobal® 71 of 71       

*Prior to this version of TDT 1.6 being created in the TDTS WG, previous 1544 
versions were created in the SAG TDT WG where Mark Harrison and Vijay 1545 
Sundhar presided as co-Chairs. 1546 
 1547 

The following list in corporate alphabetical order contains all companies that were 1548 
opted-in to the Tag Data and Translation Standard Working Group and have 1549 
signed the EPCglobal IP Policy as of June 24, 2011 1550 

 1551 
Company Name 

Auto-ID Labs 
Garud Technology Services Inc 
GS1 Australia 
GS1 Austria 
GS1 Canada 
GS1 China 
GS1 France 
GS1 Germany 
GS1 Global Office 
GS1 Hong Kong 
GS1 Ireland 
GS1 Japan 
GS1 Korea 
GS1 Netherlands 
GS1 New Zealand 
GS1 Poland 
GS1 Sweden 
GS1 Switzerland 
GS1 UK 
GS1 US 
Impinj, Inc 
INRIA 
Ken Traub Consulting LLC 
Lockheed Martin 
Manufacture francaise des Pneumatiques 
Michelin 
Motorola 
NXP Semiconductors 
QED Systems 
The Boeing Company 
The Goodyear Tire & Rubber Co. 
 1552 

http://www.autoidcenter.org/

	Terminology
	Status of this document
	Changes from previous versions
	1 Introduction
	1.1 Overview
	1.2 Tag Data Translation Charter
	1.3 Tag Data Translation Concept
	1.4 Role within the EPC Network Architecture
	1.5 Tag Data Translation Process
	1.6 Expressing different representations of EPC
	Patterns (Regular Expressions)
	Grammar (Augmented Backus-Naur Form [ABNF])
	Rules for obtaining additional fields

	1.7 Translation Process Steps

	2 Tag Data Standard
	2.1 Overview
	2.2 Many Schemes, Multiple Levels within each scheme and multiple options within each level

	3 TDT Markup and Logical Process
	3.1 TDT Artifacts
	3.2 TDT Markup
	3.3 Definition of Formats via Regular Expression Patterns and ABNF Grammar
	3.4 Determination of the inbound representation
	3.5 Specification of the outbound representation
	3.6 Specifying supplied parameter values
	3.7 Validation of values for fields and fields derived via rules
	3.8 Restricting and checking decimal ranges for values of fields
	3.9 Restricting and checking character ranges for values of fields
	3.10 Padding of fields
	Changes since TDT v1.0
	padChar and padDir
	bitPadDir and bitLength
	3.10.1 Summary of padding rules

	3.11 Compaction and Compression of fields
	3.12 Names of fields used within the TDSv1.6 schemes
	3.13 Rules and Derived Fields
	3.14 Core Functions

	4 TDT Markup - Elements and Attributes
	4.1 Root Element
	Attributes
	Elements

	4.2 Scheme Element
	Attributes
	Elements

	4.3 Level Element
	Attributes
	Elements

	4.4 Option Element
	Attributes
	Elements

	4.5 Field Element
	4.6 Attributes
	4.7 Rule Element
	Attributes


	5 Translation Process
	5.1 Tag Data Translation Software - Reference Implementation

	6 Application Programming Interface
	6.1 Client API
	6.2 Maintenance API

	7 TDT Schema and Markup Definition 
	8 Glossary (non-normative)
	9 References
	10  Acknowledgement of Contributors and Companies Opted-in during the Creation of this Standard (Informative)

