

 1

EPC Tag Data Translation Standard
(TDT)

Release 2.2, Ratified, Feb 2025

 2

 3

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 2 of 108

Document Summary 4

Document Item Current Value

Document Name EPC Tag Data Translation Standard (TDT)

Document Date Feb 2025

Document Version 2.2

Document Issue

Document Status Ratified

Document Description

Contributors (Participant in TDS/TDT 2.0 MSWG) 5

Name Organisation

Dr. Mark Harrison (Chair) Milecastle Media Limited

Jeanne Duckett (Chair) Avery Dennison RFID

Jaewook Byun Auto-ID Labs at KAIST

Jin Mitsugi Auto-ID Labs at Keio University

HJ Cha Avery Dennison RFID

John Gallant Avery Dennison RFID

Akane Mitsui Avery Dennison RFID

Kevin Berisso BAIT Consulting

Shi Yu Beijing REN JU ZHI HUI Technology Co. Ltd.

Tony Ceder Charmingtrim

François-Régis DOUSSET DANONE SPA

Olivier Joyez DECATHLON

Yousuke Okayama DENSO WAVE Incorporated

Michael Isabell eAgile Inc.

Jim Springer EM Microelectronic

Odarci Maia Junior EMPRESA BRASILEIRA DE CORREIOS E TELEGRAFOS

Julie McGill FoodLogiQ

Aruna Ravikumar GS1 Australia

Sue Schmid GS1 Australia

Jeroen van Weperen GS1 Australia

Ethan Ward GS1 Australia

Eugen Sehorz GS1 Austria

Luiz Costa GS1 Brasil

Roberto Matsubayashi GS1 Brasil

Huipeng Deng GS1 China

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 3 of 108

Name Organisation

Zhimin Li GS1 China

Gao Peng GS1 China

Yi Wang GS1 China

Ruoyun Yan GS1 China

Marisa Lu GS1 Chinese Taipei

Sandra Hohenecker GS1 Germany

Roman Winter GS1 Germany

GSMP Calendar GS1 Global Office

Steven Keddie GS1 Global Office

Timothy Marsh GS1 Global Office

Craig Alan Repec GS1 Global Office

Greg Rowe GS1 Global Office

John Ryu GS1 Global Office

Claude Tetelin GS1 Global Office

Elena Tomanovich GS1 Global Office

Wayne Luk GS1 Hong Kong, China

K K Suen GS1 Hong Kong, China

Judit Egri GS1 Hungary

Linda Vezzani GS1 Italy

Koji Asano GS1 Japan

Kazuna Kimura GS1 Japan

Noriyuki Mama GS1 Japan

Mayu Sasase GS1 Japan

Yuki Sato GS1 Japan

Sergio Pastrana GS1 Mexico

Sarina Pielaat GS1 Netherlands

Gary Hartley GS1 New Zealand

Alice Mukaru GS1 Sweden

Heinz Graf GS1 Switzerland

Shawn Chen GS1 US

Norma Crockett GS1 US

JONATHAN GREGORY GS1 US

Ned Mears GS1 US

Andrew Meyer GS1 US

Gena Morgan GS1 US

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 4 of 108

Name Organisation

Amber Walls GS1 US

Guilda Javaheri Golden State Foods

Megan Brewster Impinj, Inc

Shekhar Nambi JOHNSON & JOHNSON PTE LTD

Shinichi Ike Johnson & Johnson

Blair Korman Johnson & Johnson

Ausias Vives Keonn Technologies SL

Fabian Moritz Schenk Lambda ID GmbH

Don Ferguson Lyngsoe Systems Ltd.

Danny Haak Nedap

Marisa Campos PROAGRIND, Lda.

Chris Brown Printronix Auto ID

Jeffrey Chen Printronix Auto ID

Akshay Koshti Robert Bosch GmbH

Mo Ramzan SML

Jerome Torro SNCF Rolling Stock Department

Holly Mitchell Seagull Scientific

Masatoshi Oka TOPPAN

Taira Wakamiya TOPPAN

Albertus Pretorius Tonnjes ISI Patent Holding GmbH

Elizabeth Waldorf TraceLink

Log of Changes 6

Release Date of Change Changed By Summary of Change

1.0 Jan 2006 Original publication

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 5 of 108

Release Date of Change Changed By Summary of Change

1.4 Jun 2009 Modified tagLength attribute in schema definition
to remove tagLength restriction
(EpcTagDataTranslation.xsd)
Added three new schema definition to support
GSRN-96, GDTI-96 and GDTI-113
Added example string format for GSRN and GDTI
in Table 3-1
Added bitPadDir attribute to the schema
definition to specify padding direction for binary
output. Added bitPadDir description to section
3.10 (Padding of fields) and replace existing table
in this section with flow chart to provide more
clarity
Added support for additional functions to the
schema definition to support arithimetic and
added these functions to section 3.14 (Core
Function)
Added table entry for bitPadDir to section 4.6
(Attributes)
Added GSRN and GDTI to section 9 (Glossary)
Added GSRN and GDTI to the section 10
(References)

1.6 Sep 2011 Mark Harrison Added new TDT definition file for ADI-var scheme
to support variable-length EPC identifier construct
for Aerospace & Defence, for the unique
identification of aircraft parts
Relaxed schema restrictions for the tagLength
and optionKey attributes of the <scheme>
element in EpcTagDataTranslation.xsd, in order
to accommodate the variable-length EPC
identifiers; tagLength and optionKey are not
required attributes of <scheme> for variable-
length EPC schemes such as ADI var.
Provided clarification in flowcharts (Figures
section 3.10) regarding the padding and stripping
of characters or bits when translating between
the binary level and other levels; the term 'NON-
BINARY' is replaced with 'TAG-ENCODING URI'
since only the tag-encoding URN format has a 1-
1 correspondence with the binary encoding for
each of the structural elements. Note that when
encoding from any level other than the BINARY
level, it is necessary to examine the
corresponding fields within the TAG-ENCODING
URI and BINARY levels in order to make use of
the flowcharts in Section 3.10. (The previous
version of these flowcharts did not make this
sufficiently clear - and for example, a field such
as itemref might be defined within the BINARY
and TAG-ENCODING levels but not defined in the
LEGACY level (if it cannot be unambiguously
parsed from the input (an element string or GS1
Application Identifier notation) without first
applying rules as defined in rule elements)
Errata corrections to TDT definition files defined
in TDT 1.4 (typically missing LEGACY_AI levels in
some schemes derived from GS1 identifier keys)
Updates to Figures & Tables to mention additional
formats introduced in TDT 1.4 and TDT 1.6.
XML comments used throughout the XSD schema
files for TDT to provide helpful annotation and
explanation.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 6 of 108

Release Date of Change Changed By Summary of Change

2.0 May 2023 Mark Harrison
Craig Alan Repec

WR-21-319: Update to the latest GS1 branding.
Update all existing TDT artefacts, add new TDT
artefacts for missing EPC schemes (including new
EPC schemes introduced in Tag Data Standard
2.0) and supporting tables introduced in TDS 2.0.
Provide all current artefacts in XML and JSON and
include support for GS1 Digital Link URIs, while
dropping support for ONS hostname (no longer of
use). Improve support for lookup of length of
GS1 Company Prefix for older EPC schemes and
improve handling of percent-encoding of symbol
characters in URN and Web URI formats.
Add chapter regarding encoding of additional
AIDC data after the EPC in the EPC/UII memory
bank for new EPC schemes. Add new sections for
new encoding/decoding methods introduced in
TDS 2.0 and to explain the use of 'encodedAI' for
encoding GS1 Application Identifiers within the
new EPC identifiers introduced in TDS 2.0. Added
explanation of new attribute 'valueIfNull' to
correctly handle SGLN schemes in which the GLN
extension (254) is not expressed in element
string, GS1 Digital Link URI or bare identifier.

2.1 draft
(unreleased)

Apr 2024 Mark Harrison
Craig Alan Repec

WR-24-019: Updated TDT artefacts
"TDT_TableF.json" and "TDT_TableF.xml" to align
with Table F in TDS 2.1 (February 2024), as
follows:
The entry for AI 37 is corrected from "f":4,
"g":8 to "g":4, "h":8, as was already the
case for AI 30, to fix incorrect column lettering.
Entries for AIs 3900-3909 is corrected from
"f":4, "g":15 to "g":4, "h":15, to fix
incorrect column lettering.
Entries for AIs 4330-4333, 7011, 7241-7242 and
8030 are added to provide support for these new
AIs, which are new in Release 24.0 of the GS1
General Specifications [GS1GS] (January 2024).
Introduced GS1_AI_JSON input/output format for
Tag Data Translation as a less ambiguous
alternative to GS1_ELEMENT_STRING – see
Section 0.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 7 of 108

Release Date of Change Changed By Summary of Change

2.2 Feb 2025 Mark Harrison
Craig Alan Repec
Nick Porter

Updated TDT_TableF.json and TDT_TableF.xml to
support all new GS1 Application Identifiers from
ratified GSCNs for the Release 25.0 of the GS1
General Specifications [GS1GS] (January 2025),
namely (7041), (716), (7250)-(7259)
as well as including errata fixes for some
missing/incorrect details for GS1 AIs (20), (242),
(30), (3100)-(3695), (37), (3900)-(3953), (402),
(421)-(426), (4309), (7004), (7030)-(7039),
(8001), (8005), (8011)
Added new parameter aiSequence within option
to indicate which GS1 Application Identifiers are
encoded within the EPC identifier when using that
option. This is used for pre-processing the input
when the input format is GS1_AI_JSON or
GS1_DIGITAL_LINK, in order to ensure that the
regular expression pattern provided within the
TDT definition file can match.
Added new parameter
gs1DigitalLinkKeyQualifiers within level for
GS1_DIGITAL_LINK only to indicate the
permitted sequential order of GS1 Application
Identifiers that may appear in the URI path
information after the primary identification key.
This is used for post-processing the output when
GS1_DIGITAL_LINK is selected as the output
format, in order to ensure that those GS1
Application Identifiers that should be expressed in
the URI path information do so, in the correct
sequence.
Please see new section 3.4.1 for further details
about pre-processing input values and post-
processing output values, due to the limitations
of regular expression patterns used within the
TDT definition file framework, as well as
limitations of ABNF grammar, especially
regarding correct handling of GS1 Application
Identifiers appearing within the URI path
information of GS1 Digital Link URIs.
Updated UML class diagram to show these new
parameters.
Updated all TDT definition files to provide the
length parameter directly within the field of
each BINARY level so that the corresponding
length of the value after conversion from binary
can be more easily accessed (previously only
shown for the corresponding field within the
TAG_ENCODING level).

Disclaimer 7

GS1 seeks to minimise barriers to the adoption of its standards and guidelines by making the intellectual property required 8
to implement them available, to the greatest extent possible, on a royalty-free basis, or when necessary, under a RAND 9
licence. Such royalty-free and RAND licences are provided pursuant to the GS1 IP Policy (available 10
here: https://www.gs1.org/standards/ip), which governs the work of work group participants who contribute to drafting 11
standards and guidelines, including this document. In addition to licences, the GS1 IP Policy provides various benefits and 12
obligations that apply to all implementers of GS1 standards and guidelines, and all implementations of GS1 standards are 13
subject to those terms. 14

Nevertheless, please note the possibility that an implementation of one or more features of this standard or guideline may 15
be the subject of a patent or other intellectual property right that is not covered by the licences granted pursuant to the IP 16
Policy. In addition, the licences granted under the IP Policy do not include the IP rights or claims of third parties who were 17
not participants in the corresponding standard development work group. 18

https://www.gs1.org/standards/ip

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 8 of 108

Accordingly, GS1 recommends that any person or organisation developing an implementation of this standard or guideline 19
should determine whether any patents or other intellectual property may encompass such implementation, and whether a 20
licence under a patent or other IP right is needed. The implementer should determine the potential need for licensing in 21
view of the details of the specific implementation being designed in consultation with that party's patent counsel. 22

The official versions of all GS1 standards and guidelines are provided as PDF files on GS1's online reference directory 23
(https://ref.gs1.org) (the "GS1 Reference"). Any other representations of standards or guidelines in any other format (e.g., 24
web pages) are provided for convenience and descriptive purposes only, and in the event of a conflict, the GS1 Reference 25
document shall govern. 26

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY 27
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR PARTICULAR PURPOSE, ACCURACY OR 28
COMPLETENESS, OR ANY WARRANTY OTHERWISE ARISING OUT OF THIS DOCUMENT. GS1 disclaims all liability for any 29
damages arising from any use or misuse of this document, whether special, indirect, consequential, or compensatory 30
damages, and including liability for infringement of any intellectual property rights, relating to use of information in or 31
reliance upon this document. 32

GS1 makes no commitment to update the information contained herein, and retains the right to make changes to this 33
document at any time, without notice. GS1® and the GS1 logo are registered trademarks of GS1 AISBL. 34

https://ref.gs1.org/

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 9 of 108

Table of Contents 35

0 Changes relative to previous versions .. 13 36

1 Introduction ... 14 37
1.1 What is an EPC? .. 14 38
1.2 Where is an EPC defined? – in the GS1 EPC Tag Data Standard ... 16 39
1.3 What is GS1 EPC Tag Data Translation? ... 18 40

2 Translation between various formats ... 21 41

3 Structure of TDT definition files .. 23 42
3.1 Patterns (Regular Expressions) ... 27 43
3.2 Grammar (Augmented Backus-Naur Form [ABNF]) .. 27 44
3.3 Rules for obtaining additional fields ... 28 45
3.4 Using the information in TDT definition files within a translation process 28 46

3.4.1 Pre-processing of input and post-processing of output ... 29 47
3.5 Definition of formats via Regular Expression Patterns and ABNF Grammar 32 48
3.6 Determination of the input format ... 33 49
3.7 Specification of the output format ... 33 50
3.8 Specifying supplied parameter values .. 33 51
3.9 Validation of values for fields and fields derived via rules ... 35 52
3.10 Restricting and checking ranges for values of numeric fields in base 10 35 53
3.11 Restricting and checking character ranges for values of fields ... 36 54
3.12 Padding of fields ... 37 55

3.12.1 Changes since TDT v1.0 .. 37 56
3.12.2 padChar and padDir .. 38 57
3.12.3 bitPadDir and bitLength ... 39 58
3.12.4 Summary of padding rules ... 39 59

3.13 Compaction and Compression of values of fields ... 42 60
3.14 Values of the name property of field objects within TDT definition files 42 61
3.15 Rules and Derived Fields .. 49 62

3.15.1 Decoding the GTIN (i.e. translating from pure-identity URN into an element string or 63
Application Identifier format) ... 50 64
3.15.2 Encoding the GTIN (i.e. translating from element string or Application Identifier format into 65
pure-identity URN) .. 50 66

3.16 Core Functions .. 50 67
3.17 Encoded GS1 Application Identifiers in new EPC schemes introduced in TDS 2.0 53 68

4 Encoding/Decoding of additional AIDC data after the EPC 60 69
4.1 Encoding additional AIDC data after the EPC ... 60 70
4.2 Decoding additional AIDC data after the EPC .. 61 71

5 TDT Definition Files – formal definition ... 64 72
5.1 Root object .. 64 73

5.1.1 Datatype Properties (inline XML attributes) .. 64 74
5.1.2 Object Properties (nested XML elements) ... 64 75

5.2 Scheme object .. 64 76
5.2.1 Datatype Properties (inline XML attributes) .. 65 77

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 10 of 108

5.2.2 Object Properties (nested XML Elements) ... 65 78
5.3 Level object .. 66 79
5.4 Option object .. 67 80
5.5 Field object .. 69 81

5.5.1 Rule object .. 71 82
5.6 encodedAI object .. 72 83

6 Translation Process .. 73 84

7 Tag Data Translation Software - Reference Implementation 75 85

8 Application Programming Interface .. 75 86
8.1 Client API ... 76 87
8.2 Maintenance API ... 77 88

9 TDT Schema, TDT Definition Files and TDT Tables 77 89

10 Glossary (non-normative)... 77 90

11 References .. 81 91

12 Flowcharts to assist encoding and decoding GS1 Application Identifiers 92
(within new EPC schemes and for additional AIDC data) 83 93

12.1 Encoding GS1 Application Identifiers .. 84 94
12.2 Decoding GS1 Application Identifiers ... 96 95

 96

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 11 of 108

Index of figures 97

Figure 1-1 Overview of EPC schemes and correspondence to GS1 Application Identifiers 14 98
Figure 1-2 Different formats of EPC as used in different layers of the GS1 System Architecture 15 99
Figure 1-3 EPC schemes and their various formats ... 17 100
Figure 1-4 Translation between different formats using TDT definition files and tables 19 101
Figure 1-5 Tag Data Translation process with examples of different formats. .. 20 102
Figure 2-1 Flowchart showing input and output parameters to a Tag Data Translation process. 21 103
Figure 2-2 Encoding and Decoding between different formats of an EPC. Note that when encoding, 104
additional parameters may need to be specified. ... 22 105
Figure 3-1 UML class diagram for TDT definition files ... 24 106
Figure 3-2 SGTIN-96 levels of representation .. 26 107
Figure 3-3 SGTIN-96 levels with multiple encoding options ... 26 108
Figure 3-4 SGTIN+ levels of representation .. 27 109
Figure 3-5 Summary of rules about whether or not to add or remove padding to a field when encoding from 110
other formats to binary encoding .. 40 111
Figure 3-6 Summary of rules about whether or not to pad or strip a field when decoding from binary 112
encoding to any format other than binary ... 41 113
Figure 3-7 Encoding GS1 Application Identifiers ... 58 114
Figure 3-8 Decoding GS1 Application Identifiers .. 59 115
Figure 4-1 Encoding AIDC data ... 61 116
Figure 4-2 Decoding AIDC data .. 63 117
Figure 12-1 Encoding each additional piece of AIDC data .. 84 118
Figure 12-2 E0 - Encoding +AIDC data after an EPC .. 85 119
Figure 12-3 E1 - Decoding one or more elements of encodedAI in new EPC schemes 86 120
Figure 12-4 E2- Decoding each element of encodedAI in new EPC schemes .. 87 121
Figure 12-5 E3 - Encoding the first component .. 88 122
Figure 12-6 E4 - Encoding the encoding indicator for the first component ... 89 123
Figure 12-7 E5 - Encoding the length indicator for the first component ... 90 124
Figure 12-8 E6 - Encoding the value for the first component ... 91 125
Figure 12-9 E7 - Encoding the second component ... 92 126
Figure 12-10 E8 - Encoding the encoding indicator for the second component... 93 127
Figure 12-11 E9 - Encoding the length indicator for the second component .. 94 128
Figure 12-12 E10 - Encoding the value for the second component ... 95 129
Figure 12-13 Decoding each additional piece of AIDC data ... 96 130
Figure 12-14 D0 - Decoding +AIDC data after an EPC .. 97 131
Figure 12-15 D1 - Use Table K to determine the length of an AI key .. 98 132
Figure 12-16 D2 - Decoding one or more elements of encodedAI in new EPC schemes 99 133
Figure 12-17 D3 - Decoding each element of encodedAI in new EPC schemes 100 134
Figure 12-18 D4 - Decoding the first component ... 101 135
Figure 12-19 D5 - Decoding the encoding indicator for the first component .. 102 136
Figure 12-20 D6 - Decoding the length indicator for the first component .. 103 137
Figure 12-21 D7 - Decoding the value for the first component .. 104 138
Figure 12-22 D8 - Decoding the second component ... 105 139
Figure 12-23 D9 - Decoding the encoding indicator for the second component 106 140
Figure 12-24 D10 - Decoding the length indicator for the second component .. 107 141
Figure 12-25 D11 - Decoding the value for the second component .. 108 142

 143

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 12 of 108

Index of tables 144

Table 3-1 – Example formats for supplying existing identifier formats as the input value. 34 145
Table 3-2 Field names used within TDT definition files .. 43 146
Table 3-3 Basic built-in functions required to support encoding and deciding within the EPC schemes 147
currently defined in TDS 2.0 ... 50 148
Table 3-4 Comparison of how substring functions are defined in a number of modern programming 149
languages. The parameters offset and length are of integer type... 52 150
Table 6-1 The two stages for processing rules in Tag Data Translation .. 73 151

 152

 153

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 13 of 108

0 Changes relative to previous versions 154

Before TDT v2.2, an element string input was supported for both input and output for 155
implementations of GS1 EPC Tag Data Translation. This aligned closely with the format for human-156
readable information (HRI), in which the GS1 Application Identifier keys are enclosed within round 157
brackets. Multiple GS1 Application Identifiers and their values were specified within a single 158
concatenated string without line break characters. That approach unfortunately had a potential 159
ambiguity, since the round bracket characters were also valid literal characters within the GS1 AI 160
encodable character set 82 (see GS1 Gen Specs Figure 7.11-1). The new scheme DSGTIN+ 161
introduced the possibility that a date value (such as expiration date expressed via GS1 AI (17)) 162
could be specified in addition to the GTIN (01) and Serial Number (21). This led to a potential 163
ambiguity in the interpretation of an input string such as this: 164

(01)01234567890128(21)ABC123(17)240422 165

Should this be interpreted as having expiration date of 22nd April 2024 and Serial Number "ABC123" 166
or is the serial number actually "ABC123(17)240422" ? 167

To avoid this ambiguity, in TDT 2.2, such ambiguous element string syntax is dropped in favour of a 168
JSON object syntax, in which each GS1 Application Identifier key is enclosed in double quotes and 169
separated by a colon from its value (also in double quotes), with a comma separating multiple 170
key:value pairs. 171

Using the above example, JSON object syntax enables unambiguous distinction between: 172

{"01":"01234567890128","21":"ABC123","17":"240422"} 173

vs 174

{"01":"01234567890128","21":"ABC123(17)240422"} 175

Such JSON object syntax is supported in TDT 2.2 with the representation level 'GS1_AI_JSON' as a 176
replacement for the former representation level 'GS1_ELEMENT_STRING'. 177

For each EPC scheme, there is a TDT definition file with a hierarchical structure: scheme > level > 178
option > field in which various details are provided at each appropriate layer in the hierarchy. 179
This hierarchical structure is explained in further detail in section 3 of this standard. 180

The default ordering of all-numeric keys within JSON objects can be somewhat unpredictable or 181
counterintuitive. For this reason, the TDT definition files include a new parameter named 182
aiSequence, which appears within each option within the level for 'GS1_AI_JSON'. The value 183
of this parameter aiSequence is a JSON square bracket array of double-quoted numeric strings to 184
specify the order in which the GS1 Application Identifier keys are expected within the pattern and 185
grammar parameters within each option for that level for 'GS1_AI_JSON'. 186

For example, within the 'GS1_AI_JSON' level of DSGTIN+, the option with optionKey equal to 187
'4' has the following values for pattern, grammar and aiSequence: 188
pattern "^\\{\\s*\"01\"\\s*:\\s*\"([0-9]{14})\"\\s*,\\s*\"21\"\\s*:\\s*\"((?:[!%-?A-

Z_a-z]|\\\\\"){1,20})\"\\s*,\\s*\"17\"\\s*:\\s*\"([0-9]{6})\""
grammar "'{\"01\":\"' gtin '\",\"21\":\"' serial '\",\"17\":\"' expDate '\"}'"
aiSequence "[\"01\",\"21\",\"17\"]"

 189

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 14 of 108

1 Introduction 190

This chapter provides an introduction about the principles of an Electronic Product Code [EPC] and 191
the complementary roles of the GS1 EPC Tag Data Standard [TDS] (that normatively defines the 192
formats and encoding/decoding rules for EPCs) and this standard, the GS1 EPC Tag Data Translation 193
Standard [TDT] that makes such details more readily available to software as machine-readable 194
data. 195

1.1 What is an EPC? 196

The Electronic Product Code (EPC) is a globally unique instance-granularity identifier that is 197
designed to allow the automatic identification of objects anywhere. Two different physical objects 198
should not share the same EPC identifier. Such instance-level identification enables each individual 199
physical object to be tracked or traced individually as it moves through a supply chain or value 200
network and the same EPC should not appear simultaneously in two vastly different locations over 201
the same time period. EPC classes refer to collections of EPC instance identifiers that share 202
common characteristics. Examples of EPC classes include classes for GTIN, GTIN+Lot (LGTIN). 203
Note that although such EPC classes can be reported in EPCIS event data, an EPC class typically 204
contains multiple members, so class-level traceability does not offer the high fidelity of instance-205
level identification. 206

The majority of EPC schemes are defined for GS1 identifiers at instance-level granularity, although a 207
small number of EPC schemes are defined for non-GS1 identifiers. Figure 1-1 provides an overview 208
of current EPC schemes and the correspondence to instance-level GS1 identifiers. An important 209
feature in this Venn diagram is the grouping into older EPC schemes that were already defined 210
before TDS v2.0 and newer EPC schemes that were introduced in TDS v2.0. The differences 211
between these are discussed further in section 1.2 about TDS. 212
 213

Figure 1-1 Overview of EPC schemes and correspondence to GS1 Application Identifiers 214

 215
 216

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 15 of 108

Formally, an EPC is agnostic to the data carrier technology in which it is encoded. Although an EPC 217
is often associated with low-cost passive RFID tags (in which it is encoded in a compact binary 218
format), it can also be expressed as equivalent information in 2D bar codes as element strings or in 219
information systems (such as EPCIS event data), typically in a URI format that is independent of the 220
data carrier that was read. For example, a GS1 DataMatrix symbol that encodes a GTIN and Serial 221
Number (corresponding to GS1 Application Identifiers (01) and (21) respectively) can be considered 222
to be a data carrier expressing an SGTIN EPC identifier, even though it is encoded in a GS1 223
DataMatrix symbol as an element string rather than using the corresponding EPC binary format. 224
Similarly, for extended packaging applications, the same SGTIN might instead be expressed as a 225
GS1 Digital Link URI encoded natively within a QR Code®. 226

Figure 1-2 shows how different formats of EPC are used in different layers of the GS1 System 227
Architecture [GS1Arch]. 228

 229
Figure 1-2 Different formats of EPC as used in different layers of the GS1 System Architecture 230

 231

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 16 of 108

1.2 Where is an EPC defined? – in the GS1 EPC Tag Data Standard 232

The GS1 EPC Tag Data Standard [TDS] indicates how GS1 identification keys (GTIN, GLN, SSCC, 233
GRAI, GIAI, GSRN, GSRNP, GDTI, GCN, ITIP, CPI) and a small number of other identifier constructs 234
should be expressed as an Electronic Product Code (EPC). 235

For most EPC schemes, TDS defines a compact binary format suitable for encoding within the 236
EPC/UII memory bank of an RFID tag that could be attached to tangible physical objects, such as 237
individual instances of products, assets, components, coupons, loyalty cards etc. The binary format 238
consists of an EPC header (typically the first 8 bits), which indicates the EPC scheme, a fast filter 239
value (which can be used for distinguishing between different packaging levels or different kinds of 240
object), as well as various other structural components or data fields within an EPC. 241

For EPC schemes defined before TDS 2.0, those fields typically indicate the company responsible for 242
the object, the object class and a unique serial number. However, this approach required 243
knowledge of the length of the GS1 Company Prefix component, as well as some rather complex 244
rearrangement of the GS1 identifiers into a more structured format used in those EPC schemes, 245
originally to enable lookup in the Object Name Service, which is no longer supported by GS1 on a 246
global basis; lookup of identifiers is now primarily supported by resolver infrastructure for GS1 247
Digital Link URIs. The older EPC schemes based on GS1 identifiers use a partition table to handle 248
variations in the length of the GS1 Company Prefix component, which in turn can limit the capacity 249
of other components (such as the Item Reference) within those older EPC schemes; in most of the 250
older EPC schemes (with the exception of GIAI and CPI), the GS1 Company Prefix component and 251
the component that follows it are required to always sum to a fixed total number of digits for that 252
EPC scheme. 253

For the new EPC schemes introduced in TDS 2.0, the GS1 identifier is encoded intact, without any 254
rearrangement into separate fields to indicate GS1 Company Prefix and object class. These new 255
EPC schemes neither require knowledge of the length of the GS1 Company Prefix component nor 256
indicate the GS1 Company Prefix as a distinct structural component. These new binary encodings 257
therefore do not make use of a partition table based on the length of the GS1 Company Prefix. 258
Instead, any GS1 identification key that is all-numeric is encoded intact using 4 bits per digit and 259
without any rearrangement of digits or removal of the check digit. This 4-bit encoding can be 260
considered as an unsigned packed binary coded decimal encoding and although it is slightly less 261
efficient than integer encoding, it ensures consistently predictable bit positions for the digits of a 262
known GS1 Company Prefix, to support filtering over the air interface. This is particularly important 263
for GS1 identifiers such as GTIN, ITIP and SSCC that use an indicator digit or extension digit before 264
the GS1 Company Prefix; integer encoding of the values of GTIN, ITIP and SSCC would not result in 265
predictable bit positions nor the possibility of using bitmask filters if the initial indicator digit or 266
extension digit is unpredictable in the collection of tags being interrogated. For example, in the new 267
EPC schemes, a GTIN is always treated as 14 digits and is encoded as 56 contiguous bits. 268

These new EPC schemes introduced in TDS 2.0 support variable-length encoding and multiple 269
encoding options for each GS1 Application Identifier that can have an alphanumeric value, so the 270
total number of bits for most of the new EPC schemes introduced in TDS 2.0 is also variable. For 271
GS1 identification keys such as GIAI and CPI that begin with an initial numeric sequence followed by 272
an alphanumeric sequence, the initial numeric sequence is encoded using 4 bits per digit, then a 273
separator precedes the encoding of the alphanumeric sequence, itself beginning with an encoding 274
indicator and length indicator, to indicate the encoding method used and the number of characters 275
that follow, using that encoding method. This is intended to simplify the binary format and 276
encoding/decoding rules, while maintaining efficient use of bits and still supporting selection of the 277
primary GS1 identifier or the GS1 Company Prefix (if known) via the air interface. The new EPC 278
schemes also introduced the option to encode additional AIDC data after the end of the EPC within 279
the binary encoding of the EPC/UII memory bank. 280

TDS also defines URI formats for all EPC schemes – URN formats for the older EPC schemes defined 281
before TDS v2.0 and GS1 Digital Link URI formats for each EPC scheme (old and new) that is based 282
on GS1 identifiers. GS1 Digital Link URI formats are not defined for Tier 3 identifiers such as 283
USDOD-96, ADI-var or GID-96. 284

For older EPC schemes introduced before TDS v2.0, the tag-encoding URN provides a 1-1 mapping 285
with the binary number recorded in the physical tag and as such, indicates the bit-length of the tag 286
(for fixed-length EPCs) and usually also includes the filter value (usually 3 bits). The tag-encoding 287
URN is intended for low-level applications which need to write EPCs to tags or physically sort items 288
based on packaging level. 289

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 17 of 108

For older EPC schemes introduced before TDS v2.0, the pure-identity URN format isolates the 290
application software from needing to know details about the bit-length of the tags or any fast 291
filtering values, so that tags of different bit-lengths which code for the same unique object will result 292
in the same pure-identity URN, even though their tag-encoding URNs and binary formats will be 293
different. This means that if a manufacturer switches from using SGTIN-96 to SGTIN-198 for 294
tagging a particular product instance, the pure-identity URN format of that SGTIN EPC will remain 295
the same, even though the corresponding tag-encoding URN and binary format will be quite 296
different. 297

For newer EPC schemes introduced in TDS v2.0, TDS does not define a tag-encoding URN format or 298
pure-identity URN format – it only defines a binary format and the correspondence with element 299
string or GS1 Digital Link URIs. 300

TDS normatively defines how to translate between these different formats of an EPC identifier (e.g. 301
between binary format, URN formats, element strings, GS1 Digital Link URIs or other formats). 302
Section E.3 of Appendix E of Tag Data Standard v2.0 provides examples of the pure-identity URN, 303
tag-encoding URN and binary encoding for all EPC schemes introduced before TDS 2.0, together 304
with examples of binary encoding and equivalent element strings or GS1 Digital Link URIs for the 305
new EPC schemes introduced in TDS 2.0. 306

Figure 1-3 is a refinement of Figure 1-1 that shows which EPC formats are supported for each EPC 307
scheme in TDS 2.0 and TDT 2.0. Element string and GS1 Digital Link URI are only supported for 308
EPC schemes based on GS1 identifiers. Tag-encoding URN and Pure-identity URN are not defined 309
for the new EPC schemes introduced in TDS 2.0. For EPC schemes that are not based on GS1 310
identifiers, instead of an element string or GS1 Digital Link URI format, TDT definition files provide a 311
Text Element Identifier (TEI) format for ADI-var and a 'bare identifier' format for GID-96 and 312
USDOD-96, also available for all EPC schemes. 313

 314
Figure 1-3 EPC schemes and their various formats 315

 316
Before the ratification of EPCIS / CBV 2.0 and TDS 2.0, the canonical format of an EPC was the 317
pure-identity URN format, which was intended for communicating and storing EPCs in information 318
systems, databases and applications, in order to insulate them from knowledge about the physical 319
nature of the tag or data carrier; the pure-identity URN can be just a pure identifier. However, 320
pure-identity URNs have not been defined for the new EPC schemes introduced in TDS 2.0; for these 321
new EPC schemes, TDS 2.0 defines a binary format as well as equivalent element strings and GS1 322
Digital Link URIs and the encoding/decoding rules to translate between these. Unlike pure-identity 323

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 18 of 108

URNs, GS1 Digital Link URIs can function like URLs and directly link or redirect to various kinds of 324
information resources and services on the Web, via a simple Web request. 325

Now that TDS 2.0 and EPCIS / CBV 2.0 have been ratified, for all EPC schemes (old and new) that 326
are based on GS1 identifiers, a constrained subset of GS1 Digital Link URIs may be used as an 327
acceptable alternative to pure-identity URNs within EPCIS event data. If the data carrier content 328
does not express a specific Web URI stem, domain name or hostname, then it is most advisable to 329
use the URI stem for canonical GS1 Digital Link URIs, namely https://id.gs1.org/ . This approach 330
promotes consistency when constructing a GS1 Digital Link URI from other formats that expressed 331
no specific domain name, hostname or Web URI stem. 332

1.3 What is GS1 EPC Tag Data Translation? 333

The GS1 EPC Tag Data Standard [TDS] normatively defines EPC formats and encoding/decoding 334
rules as several pages of human-readable instructions, diagrams, tables and worked examples. 335

This standard, the GS1 EPC Tag Data Translation Standard [TDT], complements TDS by providing 336
such details in a machine-readable format, as a set of TDT definition files (one per EPC scheme) and 337
a number of associated tables that are used in conjunction with these. TDT definition files may 338
also make use of external tables, such as the table to lookup the length of a GS1 Company Prefix 339
based on its initial digits (see https://www.gs1.org/standards/bc-epc-interop). 340

The three objectives in the original charter of the Tag Data Translation working group were: 341

■ To develop the necessary specifications to express the current TDS encoding and decoding rules 342
in an unambiguous machine-readable format; this will allow any component in [GS1Arch] to 343
automatically translate between the binary and tag-encoding URN and pure-identity URN 344
formats of the EPC as appropriate. The motivation is to allow components flexibility in how they 345
receive or transmit EPCs, to reduce potential 'impedance mismatches' at interfaces in 346
[GS1Arch]. Open source implementations of software that demonstrate these capabilities may 347
also be developed. 348

■ To provide documentation of the TDS encodings in such a way that the current prose based 349
documentation can be supplemented by the more structured machine-readable formats. 350

■ To ensure that automated tag data translation processes can continue to function and also 351
handle additional numbering schemes, which might be embedded within the EPC in the future. 352
By aiming for a future-proof mechanism which allows for smooth upgrading to handle longer 353
tags (e.g. 256 bits) and the incorporation of additional encoding/decoding rules for other coding 354
systems, we expect to substantially reduce the marginal cost of redeveloping and upgrading 355
software as the industry domains covered by the EPC expand in the future. We envisage that 356
data which specifies the new rules for additional EPC schemes will be readily available for 357
download in much the same way as current anti-virus software can keep itself up to date by 358
periodically downloading new definition files from an authoritative source. 359

The aims of the original three objectives remain valid in TDT 2.0. However, the new EPC schemes 360
introduced in TDS 2.0 do not define tag-encoding URN or pure-identity URN formats, although they 361
do support translation to GS1 Digital Link URIs as well as the encoding of additional AIDC data after 362
the end of the EPC in the EPC/UII memory bank, as explained in section 4 of this standard. The 363
TDT definition files for the new EPC schemes are simpler but do rely on additional Tables F, K, E and 364
B to support the flexible variable-length, variable-encoding nature of the new EPC schemes and the 365
option of appending additional data after the EPC, based on GS1 Application Identifiers and their 366
values. 367

A TDT implementation can translate one format of EPC into another format, within a particular EPC 368
scheme. For example, it could translate from the binary format for a GTIN on a 96-bit tag to a 369
pure-identity URN format of the same identifier, although it could not translate an SSCC into an 370
SGTIN or vice versa. The TDT concept is illustrated in the figure below. 371

 372

https://id.gs1.org/
https://www.gs1.org/standards/bc-epc-interop

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 19 of 108

Figure 1-4 Translation between different formats using TDT definition files and tables 373

 374
TDT aims to support the automatic detection of an EPC scheme and format (whether binary, tag-375
encoding URN, pure-identity URN) or an instance-level GS1 identifier expressed as an element string 376
or GS1 Digital Link URI. However, when the input value is expressed as a GS1 element string, GS1 377
Digital Link URI, pure-identity URN or in 'bare identifier' notation, there may be multiple EPC 378
schemes that match and it is necessary to make a choice about which EPC scheme to use. The 379
choice of EPC scheme may depend on factors such as constraints on available memory in low-cost 380
tags or a desire to encode additional AIDC data beyond the EPC binary string in the EPC/UII 381
memory bank, a feature which is only supported in the new EPC schemes introduced in TDS 2.0. 382

TDT also aims to support validation of the input value and translation to an output value for a 383
specified output format, as shown in the figure below, which provides examples for each format. 384

 385
 386

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 20 of 108

Figure 1-5 Tag Data Translation process with examples of different formats. 387

 388
 389
An implementation of Tag Data Translation may take an input value in one particular format (binary 390
/ tag-encoding URN / pure-identity URN, element string, GS1 Digital Link URI, bare identifier or text 391
element identifier (ADI-var only)) and a specified output format, then return the result of translating 392
the input value into the specified output format. 393

Tag Data Translation capabilities may be implemented at any level of [GS1Arch], from readers, 394
through filtering middleware, as well as by applications, event repositories and networked databases 395
that implement the EPCIS interface, as well as for translation to/from element strings or GS1 Digital 396
Link URIs. 397

TDT definition files and tables can be used for validating EPC formats as well as for translating 398
between the different formats in a consistent way. They may be helpful wherever there is a need to 399
translate between these different EPC formats and their equivalent representations. This TDT 400
standard describes how to interpret the machine-readable TDT definition files and associated tables. 401
It contains details of their structure and elements and provides guidance on how they might be used 402
in automatic translation or validation software, whether standalone or embedded in other systems. 403

By providing a machine-readable framework for validation and translation of EPC identifiers, TDT is 404
designed to help to future-proof [GS1Arch] and in particular to reduce the pain or disruption if 405
further EPC identifier schemes are introduced in the future, to support additional industry sectors 406
and new applications and use cases. 407

Translation software may keep itself up to date by periodically checking for TDT definition files for 408
each EPC scheme and downloading any new files. After these TDT definition files and auxiliary tables 409
have been downloaded and stored locally, they can support offline translations or validations without 410
the need for a reliable or continuous Internet connection. TDT 2.0 also introduces a manifest file 411
that provides a list of all TDT definition files and tables that are considered current. 412

With TDT 2.0, the TDT definition files and associated tables are now all made available in XML and 413
JSON format. Note that this does not impose a requirement for all levels of [GS1Arch] to implement 414
XML or JSON parsers. Indeed, TDT functionality may be included within derived products and 415
services offered by solution providers and the existence of additional or updated TDT definition files 416
may be reflected within software/firmware updates released by those providers. For example, a 417
solution provider, such as the manufacturer of an RFID reader or RFID label printer, may 418
periodically check for the latest TDT definition files and tables, then use data binding software to 419
compile these into hierarchical software data objects, which could be saved more compactly as 420
serialised objects accessible from the particular programming language in which their reader 421
software/firmware is written. The solution provider could make these serialised objects available for 422
download to owners of their products – or bundle them with firmware updates, thus eliminating the 423
need for either embedding or real-time parsing of the original TDT definition files and tables in XML 424
or JSON format within their solutions. 425

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 21 of 108

Individual TDT definition files are provided for each EPC scheme (i.e. separate files for SGTIN-96, 426
SGTIN-198, SSCC-96, GID-96, SGTIN+, DSGTIN+ etc.) for older EPC schemes and for the new EPC 427
schemes introduced in TDS 2.0, together with associated tables. The corresponding XML Schema 428
Definition (XSD) files and JSON Schema files are also provided for validation purposes. 429
These artefacts are available at https://ref.gs1.org/standards/tdt/artefacts 430

Version control is achieved within each TDT definition file via version numbers and timestamps of 431
updates. A manifest file (in JSON and XML) is also provided, listing all current TDT definition files 432
and tables and the date of last update for each of these. If any corrections or modifications are 433
made to the current set of TDT definition files and tables, the manifest files SHALL also be updated 434
accordingly and indicate the current set of files and tables. The purpose of the manifest file is to 435
make it easier for translation software to check whether it has a complete set of files and to identify 436
from the manifest file when the other files and tables have been added, updated or deprecated. 437

Because TDS 2.0 introduced new EPC schemes with simpler binary formats and encoding/decoding 438
rules, as well as support for fields that are variable-length or variable-encoding, the TDT definition 439
files for the new EPC schemes make use of Tables F, K, E and B to encode/decode those GS1 440
Application Identifiers correctly to/from the binary encoding, as well as to support encoding 441
additional AIDC data after the binary encoding of the EPC. The TDT definition files for the new EPC 442
schemes introduce a new field 'encodedAI' that is used in conjunction with these tables. Section 443
3.17 of TDT 2.0 explains this in further detail. 444

2 Translation between various formats 445

The figure below illustrates the provision of additional supplied parameters to supplement the details 446
that can be extracted from the input value. 447

Figure 2-1 Flowchart showing input and output parameters to a Tag Data Translation process. 448

 449

 450

TDT refers to any translation of the format in the direction of the binary format as 'encoding', 451
whereas any translation away from the binary format is 'decoding'. This is illustrated in the figure 452
below. 453
 454

https://ref.gs1.org/standards/tdt/artefacts

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 22 of 108

Figure 2-2 Encoding and Decoding between different formats of an EPC. 455
Note that when encoding, additional parameters may need to be specified. 456

 457
In the figure above, there are actually two distinct groups of supplied parameters – those such as 458
gs1companyprefixlength which may be required for use in older EPC schemes if the input value 459
is an element string or GS1 Digital Link URI – and others, such as filter and dataToggle, which 460
are only required to format the output for specific formats, such as binary or tag-encoding URN; 461
dataToggle is only available for use with the new EPC schemes introduced in TDS 2.0. Note that 462
tagLength is not used for formatting the output value but may be used for selecting between older 463
EPC schemes in situations where an input value such as an element string, bare identifier format or 464
GS1 Digital Link URI could be encoded using more than one alternative EPC scheme; the value 465
specified for tagLength indicates which EPC scheme is preferred when multiple schemes are 466
possible, since the value of tagLength that is specified should match the scheme that specifies the 467
same value of tagLength as a property of the scheme class (where specified). For example, in 468
situations where the input is an element string or GS1 Digital Link URI that expresses values for 469
GS1 Application Identifiers (01) = GTIN and (21) = Serial Number, it would be possible to encode 470
the binary encoding of the EPC using either SGTIN-96, SGTIN-198 or SGTIN+. If tagLength is 471
specified as "96" within the requiredFormattingParameters, then the SGTIN-96 scheme should be 472
used in preference to the SGTIN-198 scheme. 473

In order to enable TDT implementations to check that all the required information has been supplied 474
to perform a translation, the level component of the TDT definition files may contain the attribute 475
requiredParsingParameters to indicate which parameters are required for parsing input values 476
from that level and requiredFormattingParameters to indicate which parameters are required 477
for formatting the output value in that output format level. Further details on these attributes 478
appear in section 3, which describes the TDT definition files and their structure in further detail. For 479
the binary or tag-encoding URN levels of many older EPC schemes introduced before TDS 2.0, 480
tagLength is a required formatting parameter. This means that there can be situations where 481
more than one TDT definition file has a pattern matching the input (e.g. if translating an SGTIN with 482
an all-numeric serial number from pure-identity URN format to any format except binary or tag-483
encoding URN). In such situations, it should not matter which of the matching definition files is 484
selected. 485

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 23 of 108

The newer EPC schemes introduced in TDS 2.0 support encoding of additional AIDC data after the 486
binary encoding of the EPC. For such schemes, dataToggle is included within 487
requiredFormattingParameters. Its value is set to 0 if no additional AIDC data is encoded or 488
to 1 is additional AIDC data is encoded. 489

When encoding older EPC schemes based on GS1 identifiers, the length of the GS1 Company Prefix 490
component can be specified via gs1companyprefixlength, which should be supplied when 491
translating from element strings or GS1 Digital Link URIs to binary, tag-encoding URN or pure-492
identity URN formats for such older EPC schemes. As already mentioned in section 1.3, the GCP 493
length lookup table at https://www.gs1.org/standards/bc-epc-interop may be useful, although it has 494
incomplete global coverage. 495

The filter parameter can specify the filter value to use. For the appropriate choice of filter value 496
to use with a particular identifier scheme, please refer to the filter tables defined in TDS. 497

The tagLength parameter is used to help an implementation of Tag Data Translation to select the 498
appropriate TDT definition file among older EPC schemes that correspond to the same identifier but 499
which differ in length, e.g. to choose between GRAI-96, GRAI-170 depending on whether the value 500
of tagLength is set to 96 or 170. For the value of the tagLength parameter, it is necessary to 501
consider the available size (in bits) for the EPC identifier memory in the RFID tag (e.g. 96 bits or 502
higher) - and whether this is sufficient. [Non-normative example: for example, the GRAI-170 EPC 503
scheme supports alphanumeric serial codes that cannot be encoded within a 96-bit tag.] 504

A desirable feature of a Tag Data Translation process is the ability to automatically detect both the 505
EPC scheme and the input format of the input value. This is particularly important when multiple 506
tags are being read – when potentially several different EPC schemes could all be used together and 507
read simultaneously. 508

For example, a shipment arriving on a pallet may consist of a number of cases tagged with SGTIN 509
identifiers and a returnable pallet identified by a GRAI identifier but also carrying an SSCC identifier 510
to identify the shipment as a whole. If a portal reader at a dock door simply returns a number of 511
binary EPCs, it is helpful to have translation software which can automatically detect which binary 512
values correspond to which EPC scheme, rather than requiring that the EPC scheme and input 513
format are specified in addition to the input value. 514

3 Structure of TDT definition files 515

A TDT definition file is defined in TDS for each EPC scheme for which a binary format is defined. 516
Machine-readable TDT definition files are normative artefacts of this standard and are provided in 517
XML and JSON format. 518

Each TDT definition file is a hierarchical data structure with epcTagDataTranslation as its root 519
element or main property and typically one scheme nested within that. The UML class diagram 520
below defines the hierarchical structure of a TDT definition file. 521
 522

https://www.gs1.org/standards/bc-epc-interop

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 24 of 108

Figure 3-1 UML class diagram for TDT definition files 523

 524
 525

Within each scheme, a separate level object is defined for each format of an EPC. Each level 526
has a type property that is a value from a list of enumerated values that indicates correspondence 527
to the binary format, an element string, GS1 Digital Link URI, tag-encoding URN, pure-identity URN 528
or other format. 529

Within each level that is GS1_DIGITAL_LINK, the parameter gs1DigitalLinkKeyQualifiers 530
(introduced in TDT 2.2) indicates the sequence of GS1 Application Identifiers that may appear within 531
the URI path information after the primary identification key. For example, for schemes SGTIN-96, 532
SGTIN-198, SGTIN+ and DSGTIN+, gs1DigitalLinkKeyQualifiers has the value 533
["22","10","21"], indicating the sequence in which these GS1 Application Identifiers (if present) 534
should appear after the primary identification key in the URI path information of a GS1 Digital Link 535
URI, following a post-processing step or before a pre-processing step. Section 3.4.1 provides 536
further details about pre-processing of input and post-processing of output. 537

Within each level are one or more option objects. For older EPC schemes based on GS1 538
identifiers and defined before TDS 2.0, each option within a level corresponds to a row of the 539
corresponding partition table for that EPC scheme, so each level typically contained seven option 540
objects, corresponding to GS1 Company Prefix lengths in the range 6-12 digits. 541

For older EPC schemes based on GS1 identifiers, the appropriate option element is selected either 542
by matching a hard-coded partition value from the input data (where this is supplied in binary 543
format or URN format) – or from the length of the GS1 Company Prefix (which SHALL be supplied 544
independently if encoding from the GS1 identifier key). This approach also allows the TDT definition 545
files to specify the length and minimum and maximum values for each numeric field, which will 546
often vary, depending on which option was selected – i.e. depending on the length of the GS1 547
Company Prefix used. 548

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 25 of 108

The TDT definition file for the ADI-var EPC scheme uses option elements differently, to support the 549
permitted alternative variations within that EPC regarding how the unique identifier is constructed. 550

The TDT definition file for the new DSGTIN+ EPC scheme uses option elements in a further 551
different way, to support different meanings of the prioritised date field (e.g. to distinguish between 552
best before date, use by date, production date etc.) 553

Within each option element, the format of the EPC is expressed as both a regular expression 554
pattern (for matching the input value), and as an Augmented Backus-Naur Form (ABNF) grammar 555
for formatting the output value. 556

For older EPC schemes based on GS1 identifiers, the regular expression patterns and ABNF 557
grammar are therefore subtly different for each option within a particular level – usually in the 558
literal values of the bits that express the partition value and in the lengths of digits or bits for each 559
of the subsequent field values (where delimiters such as a period '.' separate these fields within 560
URN formats) – or in the case of the element strings, GS1 Digital Link URIs and binary format, the 561
way in which groups of digits or bits are grouped within the regular expression pattern. This 562
approach makes it easier to automatically detect the boundary between GS1 company prefix and 563
item reference simply by regular expression pattern matching, although care should be taken to 564
ensure that only one option has a pattern that matches any valid input for that EPC scheme. 565
Negative lookahead constructs within regular expressions can be helpful for ensuring this. They 566
appear within ADI-var and CPI-var schemes to indicate that a specific sub-pattern must not follow. 567
For example, pattern values for CPI-var include sub-patterns such as ((?:(?!000000)[01]{6})+), 568
which matches groups of 6 bits provided that not all six bits are set to zero (000000) because that 569
set of bits acts as a delimiter within the binary encoding for CPI-var. 570

Within each option, the various fields matched using the regular expression capture groups are 571
specified, together with any constraints that may apply to them (e.g. maximum and minimum 572
values or constraints on length and character set), as well as information about how they should be 573
properly formatted in both binary level and other levels (i.e. information about the number of 574
characters or bits, when a certain length is required, as well as information about any padding 575
conventions which are to be used (e.g. left-pad with '0' to reach the required length of a particular 576
field). 577

Within each option, the parameter aiSequence (introduced in TDT 2.2) indicates the sequence of 578
GS1 Application Identifiers that are encoded within the EPC identifier when the level is either 579
GS1_AI_JSON or GS1_DIGITAL_LINK. 580

Each level can also include zero ore more rule objects, which are explained in further detail later. 581
These are used for computing additional field values derived from field values that are that have 582
been extracted from the input value or are already known or previously computed using a preceding 583
rule. 584

Within each option, one or more field objects are defined, to provide details about the structure 585
and format of each structural component within an EPC format. 586

The figures below illustrate how this hierarchical structure of TDT definition files applies to the EPC 587
schemes SGTIN-96 and SGTIN+, one TDT definition file per EPC scheme, each scheme containing 588
one or more level, each level containing one or more option and, where appropriate, also 589
containing one or more rule, each option containing one or more field structures. 590

 591

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 26 of 108

Figure 3-2 SGTIN-96 levels of representation 592

 593
Figure 3-3 SGTIN-96 levels with multiple encoding options 594

 595

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 27 of 108

Figure 3-4 SGTIN+ levels of representation 596

 597

3.1 Patterns (Regular Expressions) 598

Within each option, a regular expression pattern may be used to test for a match against an 599
input value and extract groups of characters, digits or bits from the input value, so that their values 600
may later be used for constructing the output value in the desired output format, after performing 601
any additional processing that is required, such as translation between binary and base 10 602
(decimal), padding etc. The TDT standard refers to each of these variable parts as a field. A 603
field is used to represent structural components within an EPC, such as the Serial Number, Filter 604
value etc. For older EPC schemes defined before TDS 2.0, other examples of fields include the GS1 605
Company Prefix (which is typically related to the licensee of the GS1 identification key) and the Item 606
Reference (or related fields such as Asset Reference, Location Reference etc., depending on the EPC 607
scheme). For new EPC schemes introduced in TDS 2.0 and within the level elements that 608
represent the element string and GS1 Digital Link URI formats for all EPC schemes based on GS1 609
identifiers, an intact GS1 identifier such as a GTIN or SSCC can also be a field. Further details 610
about patterns are provided in section 3.5. For the binary level within the TDT definition files for 611
new EPC schemes introduced in TDS 2.0, the regular expression pattern is not expected to match 612
the whole of the binary encoding of the EPC identifier; typically it only matches the header, data 613
toggle and filter value (and in the case of the DSGTIN+ scheme, also matches the prioritised data 614
type indicator and prioritised date field); beyond these fields which are matched using the regular 615
expression pattern in new EPC schemes, the remaining of the binary encoding of the EPC is 616
handled using the information provided by encodedAI (explained in section 3.17) and if 617
dataToggle matches a value of '1', then using section 4 to decode any additional AIDC data that 618
was encoded after the binary encoding of the EPC in such new schemes introduced in TDS 2.0. 619

The values for pattern within TDT definition files within the binary level make no use of the 'match 620
at end' anchor indicated by the $ character, since additional AIDC data may be encoded after the 621
EPC binary encoding for new EPC schemes introduced in TDS 2.0 or trailing pad bits of '0' may be 622
present up to the next 16-bit word boundary in all EPC schemes. Where additional AIDC data is 623
encoded, this must immediately follow the end of the EPC binary string and there should be no 624
intervening pad bits up to a 16-bit word boundary. 625

3.2 Grammar (Augmented Backus-Naur Form [ABNF]) 626

An Augmented Backus-Naur Form (ABNF) grammar may be used to express how the output is 627
reassembled from a sequence of literal values such as URI prefixes, strings and fixed binary headers 628
with the variable components, i.e. the values of the various fields. For the grammar attributes of the 629
TDT definition files, in accordance with the ABNF grammar conventions, fixed literal strings SHALL 630
be single-quoted, whereas unquoted strings act as placeholders and SHALL indicate that the value of 631
the field named by the unquoted string SHOULD BE inserted in place of the unquoted string. Further 632
details about grammar are provided in section 3.5. 633

Square brackets denote that a sequence within the grammar that is optional or conditional. Square 634
bracket notation is used within the TDT definition files for SGLN-96, SGLN-195 and SGLN+ in order 635

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 28 of 108

to indicate that the grammar components corresponding to the GLN extension (254) and its value 636
are conditional within the output formats for BARE_IDENTIFIER, ELEMENT_STRING or 637
GS1_DIGITAL_LINK; if the value equals the value specified by the valueIfNull attribute of 638
field, then the sequence within square brackets should not be included within the output string 639
when the output is one of these output formats. Conversely, if the input format is 640
BARE_IDENTIFIER, ELEMENT_STRING or GS1_DIGITAL_LINK and if the input string does not 641
included information about the GLN extension (254) and its value, that component is considered to 642
be null and the value given by the valueIfNull attribute ("0") SHALL be used in place of a null 643
value when encoding to an output format that is BINARY, TAG_ENCODING or PURE_IDENTITY. 644

For the binary level within the TDT definition files for new EPC schemes introduced in TDS 2.0, the 645
grammar also includes a field named encodedAI. This indicates the point at which the remainder of 646
the EPC binary string is formatted or encoded as specified in section 3.17. 647

3.3 Rules for obtaining additional fields 648

Not all fields that are required for formatting the output value are obtained directly from pattern-649
matching of the input format. Sometimes additional fields are required to be computed. For 650
example, when translating a SGTIN-96 from binary to element strings, it will be possible to extract a 651
GS1 Company Prefix, Indicator Digit and Item Reference and Serial Number from pattern-matching 652
on the binary input – but the output format needs other fields such as Check Digit, Indicator Digit, 653
which SHOULD be computed from the fields that were extracted from the input value. For this 654
reason, the TDT definition files may also include sequences of rule structures. Each rule 655
expresses how an additional field may be computed via functions operating on one or more 656
field(s) whose value(s) is/are already known. Further details about rules are provided in section 657
3.15. 658

Furthermore, there are some fields that cannot even be computed from fields whose values are 659
already known and which SHALL therefore be specified independently as supplied parameters. For 660
example, when translating a GTIN value together with a serial number into the binary format, it 661
may be necessary to specify independently which length of tag to use (e.g. 96 bit or 198 bit) and 662
also the fast filter value to be used. Such supplied parameters would be specified in addition to 663
specifying the input value and the desired output format. As illustrated in Figure 2-2, additional 664
parameters SHOULD be supplied together with the input value when performing encoding. For 665
decoding, it is generally not necessary to supply any additional parameters. 666

3.4 Using the information in TDT definition files within a translation process 667

The primary normative artefacts of the GS1 Tag Data Translation standard is the collection of TDT 668
definition files and tables, which enables encoding and decoding between various formats for each 669
particular EPC scheme. This generic design requires open and highly flexible format of rules for 670
translation software to encode/decode based on the input value. A TDT definition file is a machine-671
readable file (in XML or JSON) that expresses the encoding/decoding and validation rules for each of 672
the EPC schemes defined in the GS1 Tag Data Standard that has a binary encoding. 673

This chapter provides a descriptive explanation of how to interpret the TDT definition files in the 674
context of a translation process. Chapter 4 provides a formal explanation of the elements and 675
attributes within the TDT definition files. 676

There are seven fundamental steps to a translation: 677

■ Use of a prefixMatch value and a regular expression pattern to automatically detect the 678
input format and EPC scheme of the supplied input value 679

■ If the detected input level is GS1_AI_JSON or GS1_DIGITAL_LINK, pre-processing of the input 680
may be required – see section 3.4.1.1 681

■ Using the capture groups within the regular expression pattern to extract values of each 682
field from the input value. Capture groups are typically indicated using round brackets. 683

■ Further processing of each field extracted from the input value, in order to translate from the 684
input format to the desired output format. This includes splitting or joining of strings, translation 685
between binary strings and numeric/alphanumeric strings, addition or removal of padding. 686

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 29 of 108

■ Using the rule definitions to calculate any additional field values required for parsing the 687
input or formatting the output. Such rule definitions are also used to indicate when to use 688
percent-encoding to encode or decode specific symbol characters that need to be escaped within 689
URN or URL / Web URI formats. 690

■ Using the ABNF grammar to prepare the specified output format, substituting the actual value of 691
each field where indicated in the grammar. 692

■ If the output level is GS1_DIGITAL_LINK, additional post-processing may be necessary. This is 693
described in section 3.4.1.2. 694

Note that the prefixMatch attribute in the TDT definition files is provided to allow TDT 695
implementations to perform automatic detection of the input format more efficiently. For older EPC 696
schemes introduced before TDS 2.0 and based on GS1 identifiers, multiple option elements are 697
specified within a particular level element; each option will have a pattern attribute with a 698
subtly different regular expression as its value. The prefixMatch attribute of the enclosing level 699
element expresses a fragment of these patterns that is common to all of the nested option 700
elements. If the value of the prefixMatch attribute fails to match the input value, a TDT 701
implementation need not test each nested option for a pattern match, since they will not match if 702
the prefixMatch does not already match the input value. Only for those levels where the 703
prefixMatch attribute matches the input string value should the patterns of the nested option 704
elements be considered for matching. Within the newer EPC schemes introduced in TDS 2.0, only 705
the scheme DSGTIN+ makes use of multiple option elements, in order to distinguish between 706
different meanings of the prioritised date value, e.g. one option element interprets the value as an 707
expiration date, while other option elements interprets the value as a harvest date or production 708
date. 709

Note that in the TDT definition files, the prefixMatch attribute SHALL be expressed as a substring 710
to match the input value. The prefixMatch attribute SHOULD NOT be expressed in the TDT 711
definition files as a regular expression value, since a simple string match should suffice. Software 712
implementations MAY typically translate the prefixMatch attribute string value into a regular 713
expression, if preferred, by prefixing with a leading caret ['^'] symbol (to require a match at the 714
start of the string) and by escaping certain characters as required, e.g. escaping the dot character 715
as '\.' or '\\.'. However, for GS1 Digital Link URI format introduced in TDS 2.0 and TDT 2.0, 716
prefixMatch cannot provide a highly specific match to the input value at the start of the input 717
string because any domain name may be used and any arbitrary URI path information may also be 718
present before the part of the URI path information that is characteristic of GS1 Digital Link URIs, 719
such as the URI path information structure that begins /01/ for GS1 Digital Link URIs based on the 720
GTIN identifier. Therefore, in TDT 2.0 prefixMatch is set to 'http' for each level that represents a 721
GS1 Digital Link URI format and it is necessary to use the regular expression specified in each 722
pattern in order to distinguish between the various EPC schemes and options when attempting 723
auto-detection of the input format. Furthermore the regular expression pattern specified for GS1 724
Digital Link URIs is not expected to match at the start of the input string but instead matches the 725
part that is specific to that EPC scheme, e.g. matching for /01/ and /21/ in all SGTIN EPC schemes 726
including DSGTIN+. Accordingly, the regular expression pattern for GS1 Digital Link URIs does not 727
have a leading caret (^) symbol (to require a match at the start of the string), whereas the 728
pattern values for all other levels within in TDT 2.0 definition files do have such a caret as a 729
'match at start' anchor. The regular expression pattern for element string and GS1 Digital Link URI 730
end with a word boundary anchor (\b) to effectively match to the end or to a non-word character 731
such as the question mark character that precedes a URI query string. 732

3.4.1 Pre-processing of input and post-processing of output 733

The GS1 Tag Data Translation standard was originally developed to support translation between EPC 734
binary strings, the EPC URN formats and the corresponding element strings of GS1 Application 735
Identifiers. TDT v2.0 added support for GS1 Digital Link URI syntax, as well as providing machine-736
readable tables to support the encoding/decoding of additional AIDC data that may be encoded after 737
the EPC binary string for the new EPC schemes introduced in version 2.0 of the GS1 Tag Data 738
Standard. 739

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 30 of 108

A primary use of EPCs is as an open standard identifier with instance-granularity for use within 740
EPCIS events. As a result, within GS1 Tag Data Translation, the pattern and grammar for the 741
GS1_DIGITAL_LINK level corresponds to the constrained subset of GS1 Digital Link URIs that 742
contain the bare minimum number of GS1 Application Identifiers needed to construct an instance-743
level identifier, such as GTIN (01) and Serial Number (21), even though GS1 Digital Link URI syntax 744
supports some additional optional URI path elements and also supports expression of GS1 745
Application Identifiers in the URI query string to express various data attributes, such as expiration 746
date or net weight of variable-measure trade items. 747

As a result of this, when a GS1 Digital Link URI is provided as the input value to an implementation 748
of GS1 Tag Data Translation, an additional pre-processing step may be needed to transform it into 749
the constrained format that is supported by the TDT definition files for each EPC scheme. 750

Conversely, when GS1 Digital Link URI is selected as the output format, a post-processing step may 751
be needed to reinstate some specific GS1 Application Identifiers (e.g. consumer product variant (22) 752
and batch/lot (10)) into the URI path information, since these would otherwise be excluded from 753
the constrained GS1 Digital Link URI format prepared by using the grammar details provided by GS1 754
Tag Data Translation definition files. 755

3.4.1.1 Pre-processing of input 756

To assist with the pre-processing step, a new parameter, aiSequence appears within the option 757
elements within the level element for GS1_DIGITAL_LINK and GS1_AI_JSON. This is an ordered 758
list of the GS1 Application Identifiers handled by the pattern, corresponding to the GS1 Application 759
Identifiers that will be encoded within the EPC binary string. 760

For SGTIN schemes, this corresponds to ["01","21"]. For DSGTIN, this corresponds to lists such as 761
["01","21","17"] etc., where the third element depends on which prioritised date GS1 AI is 762
supported by that option. 763

If the input is provided using the GS1_AI_JSON notation, the regular expression patterns expect to 764
match a JSON object in which the GS1 Application Identifiers appear strictly in the sequence 765
specified by aiSequence otherwise the pattern provided within the TDT definition file cannot 766
match the input. For any GS1 Application Identifiers not included within the aiSequence list, the 767
ordering does not matter. For the new EPC schemes introduced in TDS 2.0, such additional GS1 768
Application Identifiers may be encoded after the EPC binary string, within the EPC/UII memory 769
bank. 770

If the input is provided using GS1 Digital Link URI format and if the URI path information expresses 771
any GS1 Application Identifiers that are not present within the aiSequence list, the pre-processing 772
step must reformat the GS1 Digital Link URI input in order to remove those GS1 Application 773
Identifiers and their values from the URI path information and express them via the URI query 774
string instead, otherwise the pattern provided within the TDT definition file cannot match the 775
input. 776

The figure below illustrates how a pre-processing step can make use of the details specified within 777
the aiSequence parameter to rearrange the input value so that it can potentially match the 778
pattern specified within the TDT definition file for that option. 779

 780

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 31 of 108

 781

3.4.1.2 Post-processing of output 782

To assist with post-processing, a new parameter, gs1DigitalLinkKeyQualifiers appears within 783
the level element for GS1_DIGITAL_LINK and provides an ordered list of GS1 Application 784
Identifiers that may appear within the URI path information of a GS1 Digital Link URI after the 785
primary identification key and its value. Note that the primary identification key (such as GTIN "01" 786
for all SGTIN / DSGTIN schemes) is not included within the list of 787
gs1DigitalLinkKeyQualifiers – it always precedes these within the URI path information. 788

If GS1_DIGITAL_LINK is selected as the output format, the set of decoded GS1 Application 789
Identifiers and their values should be checked, in case any of them are listed within the ordered list 790
specified by the gs1DigitalLinkKeyQualifiers parameter. For any such GS1 Application 791
Identifiers, the post-processing step should reinstate those GS1 Application Identifiers and their 792
values within the URI path information and in the specified sequence, instead of expressing those 793
GS1 Application Identifiers and their values in the URI query string. 794

The figure below illustrates how a post-processing step can make use of the details specified within 795
the gs1DigitalLinkKeyQualifiers parameter to rearrange the output value so that GS1 796
Application Identifiers that should appear within the URI path information of a syntactically valid 797
GS1 Digital Link URI do actually appear within the URI path information (rather than the URI query 798
string) and in the correct sequence, consistent with the formal grammar defined within the GS1 799
Digital Link URI Syntax standard. 800

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 32 of 108

 801

3.5 Definition of formats via Regular Expression Patterns and ABNF Grammar 802

The TDT standard uses regular expression patterns and Augmented Backus-Naur Form (ABNF) 803
[ABNF] grammar expressions to express the structure of the EPC in various formats. 804

The regular expression patterns are primarily intended to be used to match the input value and 805
extract values of particular fields via groups of bits, digits and characters which are indicated within 806
the conventional round bracket parentheses that indicate capturing groups in regular expressions. 807

The regular expression patterns provided in the TDT definition files SHALL be written according to 808
the PERL-Compliant Regular Expressions [PCRE], with support for zero-length negative lookahead. 809

It is not sufficient to use the XSD regexp type as documented at 810
http://www.w3.org/TR/xmlschema-2/ because it is sometimes useful to be able to use a 811
negative lookahead '?!' construct within the regular expressions. The implementations of regular 812
expressions in JavaScript, Perl, Java, C#, .NET all allow for negative lookahead. Note that the TDT 813
definition files for ADI-var and CPI-var make use of the negative lookahead construct in the patterns 814
at the BINARY level in order to make the patterns more restrictive and to avoid the situation where 815
a valid binary string might match more than one option. 816

The ABNF grammar form allows the TDT definition files to express the output string as a 817
concatenation of fixed literal values and fields whose values are variables determined during the 818
translation process. In the ABNF grammar, the fixed literal values are enclosed in single quotes, 819
while the names of the variable elements are unquoted, indicating that their values should be 820
substituted for the names at this position in the grammar. All elements of the grammar are 821
separated by space characters. The TDT definition files use the Augmented Backus-Naur Form 822
(ABNF) for the grammar rather than simple Backus-Naur Form (BNF) in order to improve readability 823
because the latter requires the use of angle brackets around the names of variable fields, which 824
would need to be escaped to < and > respectively for use in an XML document. 825

The field elements within each option allow the constraints and formatting conventions for each 826
individual field to be specified unambiguously, for the purposes of error-checking and validation of 827
EPCs. 828

The use of regular expression patterns, ABNF grammar and separate nested field elements with 829
attributes for each of the fields enables the constraints (minimum, maximum values, character set, 830
required field length etc.) to be specified independently for each field, providing flexibility in the URI 831

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 33 of 108

formats, so that, for example, an alphanumeric serial number field could co-exist alongside an all-832
numeric GS1 Company Prefix field. 833

3.6 Determination of the input format 834

A desirable feature of any Tag Data Translation software is the ability to automatically detect the 835
format of the input string received, whether in binary, tag-encoding URN, pure-identity URN, 836
element strings or GS1 Digital Link URIs, where required. Furthermore, the EPC scheme should also 837
be detected. For older EPC schemes with a fixed bit count, the tag-length SHALL either be 838
determined from the input value (i.e. given a binary string or tag-encoding URN), – or otherwise, 839
where the input value does not indicate a particular tag-length (e.g. pure-identity URN, element 840
strings or GS1 Digital Link URI format, together with additional serialization, where required), the 841
intended tag-length of the output SHALL be specified additionally via the supplied parameters when 842
the input value is either a pure-identity URN, an element string or GS1 identifier key expressed 843
using Application Identifier (AI) format, together with additional serialization, where required, none 844
of which specify the tag-length themselves. It is important that this initial matching can be done 845
quickly without having to try matching against all possible patterns for all possible schemes, tag 846
lengths and lengths of the GS1 Company Prefix. 847

For this reason the Tag Data Translation definition files specify a prefixMatch for each level of 848
each scheme, which SHALL match from the beginning of the input value. If the prefix-match 849
matches, then the translation software can iterate in further detail through the full regular 850
expression patterns for each of the options to extract parameter values – otherwise it should 851
immediately skip to try the next possible prefixMatch to test for a different scheme or different 852
format, without needing to try each pattern for all the option elements nested within each of 853
these, since all of the nested regular expression patterns fall under the same value of 854
prefixMatch. 855

3.7 Specification of the output format 856

The Tag Data Translation process only permits encoding or decoding between different formats of 857
the same scheme. i.e. it is neither possible nor meaningful to translate a GTIN into an SSCC – but 858
within any given scheme, it is possible to translate between multiple formats, such as binary, tag-859
encoding URN, pure-identity URN, element strings or GS1 Digital Link URIs, depending on which of 860
these is supported by that scheme. Translation to/from Text Element Identifier strings is also 861
possible for the Aerospace & Defence Identifier (ADI). Translation to/from a 'Bare Identifier' format 862
is also supported for all current EPC schemes. 863

With this constraint, it should be possible for Tag Data Translation software to perform a translation 864
if the input value and the output format level are specified. 865

3.8 Specifying supplied parameter values 866

Decoding from the binary level through the tag-encoding URN, pure-identity URN and finally to the 867
element strings or GS1 Digital Link URIs only ever involves a potential loss of information. It is not 868
necessary to specify supplied parameters when decoding, since the binary and tag-encoding formats 869
already contain more information than is required for the pure-identity URN, element string or GS1 870
Digital Link formats. 871

Encoding often requires additional information to be supplied independently of the input string. 872
Examples of additional information include: 873

■ Independent knowledge of the length of the GS1 Company Prefix 874

■ Intended length of the physical tag (64-bit, 96-bit …) to be encoded 875

■ Fast filter values (e.g. to specify the packaging type – item/case/pallet) 876

It should be possible to provide these supplied parameters to Tag Data Translation software. In all 877
the cases above, this may simply populate an internal key-value lookup table or associative array 878
with values of parameters. These parameters are additional to those that are automatically 879
extracted from parsing the input string using the matching groups of characters within the 880
appropriate matching regular expression pattern. 881

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 34 of 108

Table 3-1 shows examples of how the input value should be formatted for serialized identifiers. 882
Table 3-1 – Example formats for supplying existing identifier formats as the input value. 883

EPC Scheme Example format for input GS1 identifier keys, showing GS1 AIs in JSON format or 'bare
identifier' format for EPC schemes where no GS1 element string format is defined.

SGTIN {"01":"00037000302414","21","10419703"}

SSCC {"00":"000370003024147856"}

SGLN {"414":"0003700030241","254":"1041970"}

GRAI {"8003":"00037000302414274877906943"}

GIAI {"8004":"00370003024149267890123"}

GSRN {"8018":"061414123456789012"}

GDTI {"253":"0073796100001"}

GID generalmanager=5;objectclass=17;serial=23
[No corresponding GS1 element string format]

USDOD cageordodaac=AB123;serial=3789156
[No corresponding GS1 element string format]

ADI ADI CAG 359F2/PNO PQ7VZ4/SEQ M37GXB92
ADI CAG 3Y302/SER JK23M895
ADI CAG 3Y302/serial=#284957MH

ADI DAC 4987JK/PNO PQ7VZ4/SEQ M37GXB92
ADI DAC 294HMX/SER JK23M895
ADI DAC 4987JK/serial=#284957MH

[TEI strings prefixed with 'ADI' and space character,
no corresponding AI format]

Note: TDT definition files support the following formats: 884

■ 'TEI' for Text Element Identifier format of ADI-var only 885

■ 'Bare identifier' for all EPC schemes 886

■ 'Element string' and 'GS1 Digital Link URI' for all EPC schemes based on GS1 Tier 1 identifiers. 887

■ 'Pure identity URN' and 'Tag encoding URN' for older EPC schemes introduced before TDS 2.0 888

■ Binary format for all EPC schemes for which a binary format is defined in TDS. (There are EPC 889
schemes -- such as UPUI -- for which no binary encoding is currently defined in TDS, so TDT 890
does not define a binary format or even provide a TDT definition file for such schemes.) 891

Note that in Tag Data Translation implementations, the values extracted from the input format of 892
the EPC SHALL always override the values extracted from the supplied parameters; i.e. the 893
parameter string may specify 'filter=5' – but if the input format of the EPC encodes a fast filter 894
value of 3, then the value of 3 shall be used for the output since the value extracted from the input 895
value overrides any values supplied via the supplied parameters. Similarly, additional lookup 896
mechanisms such as the tables at https://www.gs1.org/standards/bc-epc-interop can often be used 897
to determine the length of a GS1 Company Prefix from its initial digits. In older EPC schemes where 898
the value of gs1companyprefixlength needs to be known and can be determined from the input 899
string, knowledge of the expected start position of the GS1 Company Prefix component (see details 900
about gcpOffset) through the use of such lookup mechanisms, the length value obtained 901
automatically by such a procedure SHALL override the corresponding value that may have been 902
specified via the the supplied parameters in situations where there are conflicting values. 903

Nowadays, JavaScript Object Notation (JSON) is well supported as a portable and robust way of 904
exchanging structured data such as lists and objects / associative arrays across many programming 905

https://www.gs1.org/standards/bc-epc-interop

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 35 of 108

languages. However, JSON was still in its infancy when the GS1 Tag Data Translation standard was 906
originally developed. For this reason, the associative array of key=value pairs for the supplied 907
parameters SHALL be passed as a string format, using a semicolon [;] as the delimiter between 908
multiple key=value pairs. A string in this format can be readily translated into an associative array 909
in most modern programming languages, while remaining portable and independent of 910
programming language. The equivalent JSON representation would enclose the associative array in 911
curly brackets { } and use a comma instead of a semi-colon as the delimiter between multiple key : 912
value pairs, using a colon rather than equals sign as the separator between each key and its 913
corresponding value, i.e. an associative array of supplied parameters expressed in JSON as 914
{key1 : value1, key2 : value2 } is expressed as a string formatted as "key1=value1;key2=value2". 915

3.9 Validation of values for fields and fields derived via rules 916

The field object and the rule object contain several properties (attributes) for validating and 917
ensuring that the values for a particular field falls within valid ranges, both in terms of numeric 918
ranges, as well as lengths of characters, allowed character ranges and the use of padding 919
characters. TDT definition files explicitly specify the format and constraints of each field in order 920
to support future extensibility. 921

Within the TDT definition files for SGLN and within the level for BARE_IDENTIFIER, 922
ELEMENT_STRING and GS1_DIGITAL_LINK, an additional attribute (valueIfNull) is present. If 923
the input format is one of these levels and if the input string does not indicate a value for the GLN 924
extension (254), the null value for 'serial' or 'urlEscapedSerial' SHALL be treated as if it 925
were "0" when the output format is BINARY, TAG_ENCODING or PURE_IDENTITY. 926

If the input format is one of BINARY, TAG_ENCODING or PURE_IDENTITY and the input string 927
expresses a value for the serial GLN extension (254) equal to the value of valueIfNull ("0"), then 928
when translating to any of BARE_IDENTIFIER, ELEMENT_STRING or GS1_DIGITAL_LINK, the 929
component that expresses the valueIfNull attribute SHALL NOT be included in the output string; 930
this means that the component for GLN extension (254) and its value would be omitted. 931

3.10 Restricting and checking ranges for values of numeric fields in base 10 932

In some cases, the numeric range which can be expressed using the specified number of bits 933
exceeds the maximum base 10 value permitted for that identifier in its formal specification. 934

For example, the serial number of an SSCC may be up to ten base 10 digits – permitting the base 935
10 numbers 1 – 9,999,999,999. This requires 34 bits to encode in binary. However, 34 bits would 936
allow numbers in the range 0-17,179,869,183, although those between 10,000,000,000 and 937
17,179,869,183 are deemed not valid for use as the serial reference of an SSCC – and should result 938
in an error if an attempt is made to encode these into an SSCC. 939

In order to prevent encoding of numbers outside the ranges permitted by TDS, the minimum and 940
maximum limits of each numeric field in base 10 are indicated via the field attributes 941
decimalMinimum and decimalMaximum. Where these attributes are omitted, no numeric 942
(minimum,maximum) limits are specified and checking of numeric range NEED NOT be performed 943
by TDT implementations. Otherwise, where numeric values are specified, the software should check 944
that the value of the field lies within the inclusive range, i.e. 945

decimalMinimum <= value of field <= decimalMaximum 946

Values which fall outside of the specified range should throw an exception. 947

Note: Many of the structural components within EPC schemes and TDT definition files correspond to 948
'big integers' that exceed the capacity of native integer representation in most programming 949
languages. For this reason, translation software should consider the use of dedicated 'big integer' 950
data types (where available) or additional software libraries/modules to support big integers 951
correctly, in order to avoid unwanted rounding errors or loss of precision. It is for this reason that 952
both decimalMinimum and decimalMaxmimum and other big integer values are expressed as 953
numeric string values within the TDT definition files and tables, in order to avoid loss of precision or 954
unwanted rounding errors when using native methods (such as JSON.parse() within JavaScript) 955
for parsing JSON data, while such methods do not yet consistently provide adequate support for big 956
integers across all programming languages. 957

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 36 of 108

3.11 Restricting and checking character ranges for values of fields 958

The characterSet property of the field object indicates the allowed range of characters which 959
may be present in that field. The range is usually expressed using the same square-bracket 960
notation as for character ranges within regular expressions, although for the URN formats and GS1 961
Digital Link URI formats, the pattern and characterSet now use non-capturing groups with explicit 962
indication of percent-encoded sequences for symbol characters that must be 'escaped' in URN or 963
URI format; this approach ensures that each valid symbol character is counted once even when it is 964
percent-encoded as a 3-character sequence %hh where h is a placeholder for hexadecimal 965
characters 0-9 and A-F. Further details about percent-encoding of symbol characters in URNs and 966
Web URIs / URLs can be found in section 3.16 that explains the new rule functions URNENCODE, 967
URNDECODE, URLENCODE and URLDECODE. The asterisk symbol (*) following the closing square 968
bracket or end of the non-capturing group indicates that 0 or more characters within this range are 969
required to match the field in its entirety. Implementations may find it useful to add a leading caret 970
('^') and a trailing dollar symbol ('$') to ensure that the characterSet matches the entire field. e.g. 971
for [0-7]* in the TDT definition files, TDT implementations may use ^[0-7]*$ as the corresponding 972
regular expression for matching if the character set was specified as [0-7]*. 973

For example, 974

[01]* permits only characters '0' and '1' 975

[0-7]* permits only characters '0' thru '7' inclusive 976

[0-9]* permits only characters '0' thru '9' inclusive 977

[0-9 A-Z\-]* permits digits '0' thru '9', the SPACE character (ASCII 32) and upper-case letters 'A' 978
thru 'Z' inclusive and the hyphen character. 979

(?:[A-Za-z0-9\"._-]|%21|%26|%27|%28|%29|%2A|%2B|%2C|%2F|%3A|%3B|%3C|%3D|%3E|%3F|%25)* 980

is an example of a non-capturing group that permits characters A-Z a-z 0-9 and all symbol 981
characters within the 82-character GS1 invariant subset of ISO/IEC 646 when symbol characters are 982
percent-encoded within a URL or GS1 Digital Link URI. 983

The characterSet attribute can be used to check that all of the characters fall within the 984
permitted range. For example, the serial number for Component/Part Identifier (CPI) is required to 985
be all-numeric, up to 12 digits, as defined for GS1 Application Identifier (8011). Accordingly, the 986
characterSet for the field that corresponds to the CPI serial number is expressed as [0-9]*. If the 987
input string specifies a serial number for CPI that contains any characters that are not wholly 988
numeric, this should result in an error. 989

Many instance-granularity GS1 identifiers can be encoded using more than one EPC scheme – one 990
only supporting numeric serial numbers (SGTIN-96), another for alphabetic serial numbers (SGTIN-991
198) as well as alternative new EPC schemes introduced in TDS 2.0, e.g. SGTIN+, DSGTIN+. 992

In EPC schemes introduced before TDS 2.0, the presence of the compaction attribute within a 993
field or rule in the BINARY level SHALL indicate that a particular field is to be interpreted as 994
the binary encoding of a character string; its absence SHALL indicate that the field should be 995
interpreted as an integer value or all-numeric string, with leading pad characters if the padChar 996
attribute is also present and the integer value has fewer digits than the length attribute specifies. 997

In the new EPC schemes introduced in TDS 2.0, the TDT definition files make no use of the 998
compaction attribute; instead the encodedAI attribute indicates the sequence of GS1 Application 999
Identifiers that are to be encoded next and translation software needs to make use of Table F to 1000
determine the available format for the value of each GS1 Application Identifier. Explicit 3-bit 1001
encoding indicators are used in the binary encoding of such new EPC schemes because they support 1002
variable encoding methods for alphanumeric character strings. 1003

Tag Data Translation software SHOULD NOT rely upon particular values of the characterSet 1004
attribute as an alternative to taking notice of the compaction attribute; certain EPC schemes, such 1005
as the US DOD's CAGE code omit certain characters, such as the letter 'I' in order to reduce 1006
confusion with the digit '1', when the CAGE code is communicated in human-readable format – in 1007
this case, the characterSet attribute may look like '[0-9A-HJ-NP-Z]*', in which case a naïve 1008
search for 'A-Z' in the characterSet attribute would fail to match, even though the binary value 1009
SHOULD BE translated to a character string because the compaction attribute was present. 1010

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 37 of 108

3.12 Padding of fields 1011

For all older EPC schemes defined before TDS 2.0, TDT 2.0 makes no changes to the logic or rules 1012
for padding of fields that were already in place in TDT 1.6. 1013

3.12.1 Changes since TDT v1.0 1014

Certain fields within either the binary format, the URI formats and also the element string and GS1 1015
Digital Link URI formats require the padding of the value to a particular number of characters, digits 1016
or bits, in order to reach a particular length for that field. 1017

In TDS v1.3, additional EPC identifier schemes were introduced to support GS1 identifiers that have 1018
alphanumeric serial codes. Examples of these include the SGTIN-198, SGLN-195, GRAI-170 and 1019
GIAI-202. In such schemes, TDS specifies that the alphanumeric serial codes should be encoded 1020
using 7 bits per character (7-bit compacted ASCII). In some situations, the alphanumeric serial 1021
codes are allowed to have variable length in the GS1 General Specifications [GS1GS]. This in turn 1022
means that the total number of bits required to encode the alphanumeric serial field varies, 1023
depending on its length. For the GRAI-170 and GIAI-202 in particular, TDS requires the result of 1024
such 7-bit compaction of the serial number to be appended to the right with zero bits to reach a 1025
specified total number of bits. This is in marked contrast with the practice of prepending binary 1026
padding bits to the left for binary-encoded all-numeric serial numbers, such as those in SGTIN-96. 1027

Version 1.4 of TDT took the opportunity to make the rules for padding of fields less ambiguous, both 1028
before and after encoding to binary or before and after decoding from binary. The attributes 1029
padDir, padChar and length continue to have the same meanings as in TDT v1.0 – but TDT 1.4 1030
also explicitly introduced a new bitPadDir attribute at the binary level to indicate whether padding 1031
with bits is required – and if so, in which direction. This is necessary because since TDS v1.3, it 1032
became necessary to also allow for padding with bits to the right, in the case of alphanumeric fields. 1033
This was not anticipated in TDT v1.0. The bitPadDir attribute is therefore intended to avoid 1034
confusion or overloading of meaning on the role of the padDir and padChar attributes, which 1035
continue to play an important role in the padding or stripping of pad characters from the 1036
corresponding field in levels other than the binary level. 1037

When encoding to binary from any other level except for binary, the field itself may be padded (prior 1038
to any translation to binary) with characters such as ‘0’ or space if the padChar and padDir 1039
attributes are present in the binary level. 1040

An example of where this occurs is the CAGE code field in USDOD-96, where the 5-character CAGE 1041
code is prepended with a space character to the left before these six characters are encoded in 1042
binary as 48 bits. (The reason for this is so that the USDOD-96 could also accommodate a 6-1043
character DODAAC code instead of a 5-character CAGE code). 1044

After translating to binary, some fields need to be padded either to the left or to the right with 1045
leading/trailing zero bits respectively, depending on the value of the new bitPadDir attribute. 1046

For example, the serial number in SGTIN-96 has bitPadDir set to "LEFT" to indicate that the 1047
binary field should be prepended to the left with zero bits when encoding. In contrast, for the serial 1048
code of a GRAI-170 or GIAI-202 bitPadDir is set to "RIGHT" to indicate that the binary field 1049
should be appended to the right with zero bits when encoding. 1050

When decoding from the binary level to any other level, there is sometimes a need to strip the 1051
leading/trailing bits from a particular direction prior to translation from binary to integer or character 1052
string (depending on the presence/absence and value of the compaction attribute). 1053

An example of this is the stripping of the trailing zeros from the serial field of a GRAI-170 or GIAI-1054
202 upon decoding from binary, before translating to a character string. 1055

After translation from binary, the field value may need to be padded with characters such as '0' if 1056
the padChar and padDir attributes are present in the output level or in the tag-encoding level. 1057

An example of where this occurs is the GS1 Company Prefix, which may have significant leading 1058
zeros. For example, the GS1 Company Prefix 0037000 would require this. 1059

Alternatively, the sequence of characters decoded from the binary may contain a pad character that 1060
needs to be stripped in order to produce the corresponding field in the output level or tag-encoding 1061
level. 1062

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 38 of 108

An example of where this occurs is the CAGE code field in USDOD-96, where the 48-bit binary 1063
encoding consists of six characters consisting of the 5-character CAGE code, prepended with a space 1064
character to the left, which should not appear in the URI formats nor as part of the 5-character 1065
CAGE code. (The reason for this is so that the USDOD-96 could also accommodate a 6-character 1066
DODAAC code instead of a 5-character CAGE code within the same field). 1067

Because TDS allows bits to be padded either to the left or to the right, depending on the field and 1068
EPC identifier scheme, TDT allows the attributes bitPadDir and bitLength to appear within the 1069
field or rule elements but only when those field or rule elements are nested within a level 1070
element where attribute type is ”BINARY”. 1071

3.12.2 padChar and padDir 1072

The padChar attribute SHALL consist of a single character to be used for padding. Typically this is 1073
the '0' digit (ASCII character 48 [30 hex]). Other EPC schemes MAY specify the space character 1074
(ASCII character 32 [20 hex]) or a different character to use. 1075

The padChar attribute indicates the character to be used for padding in formats other than BINARY. 1076
If a field or rule element contains a padChar attribute, then within the same level, the field 1077
SHALL be padded with repetitions of the character indicated by the padChar attribute, in the 1078
direction indicated by padDir attribute so that the padded value of the field has the length of 1079
characters as specified by the length attribute. This applies at the validation, parsing, rule 1080
execution and formatting stages of the translation process. 1081

The padDir attribute SHALL take a string value of either 'LEFT' or 'RIGHT', indicating whether the 1082
padding characters should appear to the left or right of the unpadded value. 1083

The attributes length, padDir and padChar MAY appear within any field or rule element of 1084
the TDT definition files. Within each field element, all three SHALL either be present together – or 1085
all three SHALL be absent together. Within rule elements, there is no requirement for the padDir 1086
and padChar attributes to be present, even if the length attribute is specified; functions defined in 1087
rules may return a value which does not require further padding – in this case, the length attribute 1088
may be specified, merely in order to verify that the result is of the correct length of characters. 1089

When padChar, padDir and length appear as attributes within a field or rule element within 1090
the tag-encoding level element, this indicates that the corresponding field in all levels except for 1091
binary may need to be padded with the padding character padChar within this format. 1092

When padChar and padDir and length appear within a field or rule within the binary level 1093
element, this indicates that the field should be padded with the padding character padChar 1094
indicated in the output level or tag-encoding level in the direction padDir only immediately prior to 1095
translation to binary and that when decoding away from the binary level, such padding characters 1096
should be stripped if the attributes padChar and padDir are absent from the tag-encoding level. 1097

For example, for a GS1 Company Prefix, all levels except for binary should have padChar=”0” and 1098
padDir=”LEFT” because the leading zeros are significant and should appear in the URI formats, 1099
element strings, GS1 Digital Link URIs and 'bare identifier' format. 1100

In contrast, for the CAGE code in USDOD-96, padChar=” ” and padDir=”LEFT” and these 1101
attributes only appear in the binary level, because any leading space padding should be stripped 1102
before the CAGE code or DODAAC code is inserted in a URI format. 1103

For any EPC identifier scheme, the attributes padChar and padDir should not appear within a field 1104
or rule within the binary level if they also appear within the same field or rule within other levels. If 1105
padChar and padDir are specified in a field or rule within the binary level and also in the 1106
corresponding field or rule in any other level, the TDT definition file should be considered invalid. 1107
Note that some fields that appear within the binary level do not appear in all other levels. For 1108
example, the filter value never appears in the pure-identity URN level. For this reason, in section 1109
3.10.1, the flowchart advises checking of the tag-encoding URN format to see whether or not 1110
padChar and padDir are defined for each field corresponding to the fields defined within the binary 1111
level. 1112

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 39 of 108

3.12.3 bitPadDir and bitLength 1113

For field or rule elements contained within a level element where attribute type is ”BINARY”, 1114
the additional attributes bitPadDir and bitLength may also appear. The bitPadDir attribute 1115
may either be absent or if present, must take a string value of either ‘LEFT’ or ‘RIGHT’ 1116

For the serial number field of SGTIN-96, bitPadDir is ’LEFT’, whereas for the serial code field of 1117
GRAI-170, bitPadDir is ’RIGHT’ 1118

3.12.4 Summary of padding rules 1119

Figure 3-5 is a flowchart summary of the rules about whether or not to add or remove padding 1120
when encoding from a field in a level other than binary to the corresponding binary encoding. 1121

Figure 3-6 is a flowchart summary of the rules about whether or not to pad a field (or strip padding 1122
characters) when decoding a binary encoding of a field to an output level that is not binary (e.g. to 1123
be used in the URI formats, element strings, GS1 Digital Link URI format or 'bare identifier' format). 1124

Note that in the tag-encoding URN format, pure-identity URN format and GS1 Digital Link URI 1125
format, some fields may support symbol characters and some of these may need to be escaped 1126
using percent-encoding when expressed within a URN format or Web URI / URL format. 1127

In such situations, within the TDT definition file, a field that is present within the binary level may 1128
not be present with the same field name within the tag-encoding URN level. For example, SGTIN-1129
198 supports serial numbers from the GS1 AI encodable character set 82, specified in Figure 7.11-1 1130
of the GS1 General Specifications. The final field within the binary level of the TDT definition file for 1131
SGTIN-198 is named 'serial', whereas within the tag-encoding level, the final field is named 1132
'urnEscapedSerial'. These are considered to be semantically equivalent fields and rules defined 1133
within the tag-encoding level (and also within the pure-identity level and GS1 Digital Link level) 1134
express the functions for converting between these semantically equivalent fields, by either applying 1135
or removing percent-encoding for those symbol characters that need to be escaped within URN or 1136
Web URI formats, as appropriate. 1137

If the output format is binary and the input format is one of tag-encoding URN, pure-identity URN or 1138
GS1 Digital Link URI, any percent-encoded symbol characters that may be present in the capture 1139
groups extracted from matching the input value using the regular expression pattern must first be 1140
unescaped, by applying the rule(s) of type 'EXTRACT' in order to calculate the corresponding non-1141
escaped field and value that can then be encoded into binary using the logic of Figure 3-5. 1142

If the input format is binary and the specified output format is one of tag-encoding URN, pure-1143
identity URN or GS1 Digital Link URI, after applying the logic of Figure 3-6 to obtain non-escaped 1144
output values for each field, it is necessary to apply any rules of type 'FORMAT' defined within the 1145
specified output level in order to calculate the corresponding escaped (percent-encoded) field and 1146
value to be substituted in the grammar that is defined for the specified output level. 1147

 1148

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 40 of 108

Figure 3-5 Summary of rules about whether or not to add or remove padding to a field when encoding from 1149
other formats to binary encoding 1150

 1151

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 41 of 108

Figure 3-6 Summary of rules about whether or not to pad or strip a field when decoding from 1152
binary encoding to any format other than binary 1153

 1154

 1155

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 42 of 108

For example, for a 96-bit SGTIN, for the field whose name is "companyprefix", the other levels define a 1156
length attribute of 7, a padChar of '0' and the padDir as 'LEFT' for the option where optionKey is 7. For 1157
the corresponding binary level where optionKey is 7, bitLength is 24, bitPadDir is 'LEFT' and 1158
compaction, padDir and padChar are all absent. This means that when decoding, a 24-bit binary value of 1159
'000000001001000010001000' read from the tag for the field named companyprefix should be stripped 1160
of its leading zero bits at the LEFT edge, then translated to the integer 37000, then padded to the LEFT with 1161
the pad character '0' to reach a total of 7 characters, yielding '0037000' as the numeric string value for this 1162
field. 1163

For a SGLN where the length of the companyprefix is 12 digits, the location reference is a string of 1164
zero characters length. This may result in URIs which look strange because there is an empty string 1165
between two successive dot delimiters, e.g. '..' in a URN which looks like 1166
urn:epc:id:sgln:123456789012..12345 1167

This is however correct – and it is incorrect to render the zero-length field as '0' between the dot (.) 1168
delimiters because '0' is of length 1 character – not zero characters length as required by the 1169
length attribute of the appropriate field object. 1170

3.13 Compaction and Compression of values of fields 1171

In older EPC schemes defined before TDS 2.0, when strings other than purely numeric strings are to 1172
be encoded in the binary format, the field element contains an additional attribute, compaction. 1173
Absence of the compaction attribute SHALL indicate that the binary value represents an integer or 1174
all-numeric string. Presence of the compaction attribute SHALL indicate that the binary value 1175
represents a character string encoded into binary using a per-character compaction method for 1176
reducing the number of bits required. Allowed values are '5-bit', '6-bit', '7-bit' and '8-1177
bit', referring to the compaction methods described in ISO/IEC 15962 [ISO15962], in which the 1178
most significant 3/2/1/0 bits of the 8-bit ASCII byte for each character are truncated. 1179

Note that a compaction value of '8-bit' SHALL be used to indicate that each successive eight 1180
bits should be interpreted as an 8-bit ASCII character, even though there is effectively no 1181
compaction or per-byte truncation involved, unlike the other values of the compaction attribute. 1182

3.14 Values of the name property of field objects within TDT definition files 1183

The name property of field objects within the TDT definition files SHALL consist of lower case or 1184
lower camel case alphanumeric words with no spaces or hyphens. The use of a name within one EPC 1185
scheme does not imply any correlation with an identically named field within a different EPC 1186
scheme; each EPC scheme effectively uses its own private namespace for field names. The table 1187
below lists some field names that are used in the EPC schemes appearing in TDT definition files, 1188
although it is not exhaustive. However, the field names already defined in this table should be 1189
considered for re-use where appropriate when creating a new TDT definition file; a new TDT 1190
definition file should not redefine such field names to have a different meaning, nor should a 1191
different field name be introduced if one of the existing defined field names would suffice. 1192
 1193

 1194

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 43 of 108

Table 3-2 Field names used within TDT definition files 1195

Field name EPC
scheme(s) in
which it
appears

Explanation

assettype

GRAI-96

GRAI-170
Assigned by the managing entity to a particular
class of asset

bestBeforeDate DSGTIN+

End of the period under which the product will
retain specific quality attributes or claims even
though the product may continue to retain positive
quality attributes after this date.

cage ADI-var

A Commercial And Government Entity (CAGE) code
(also including a NATO CAGE (NCAGE) code) -
used within the ADI-var scheme)

cageordodaac USDOD-96

Either a Commercial And Government Entity or a
Department of Defense Activity Address Code
(used with DOD-96 scheme) [USDOD]

comppartref CPI-96

CPI-var
Assigned by the managing entity to a particular
object class.

couponref SGCN-96 Assigned by the managing entity for the coupon .

cpi CPI-96

CPI-var

CPI+

Component / Part Identifier

cpiserial CPI-96

CPI-var
Assigned by the managing entity to an individual
object.

dataToggle CPI+

DSGTIN+

GDTI+

GIAI+

GRAI+

GSRN+

GSRNP+

ITIP+

SGCN+

SGLN+

SGTIN+

SSCC+

A single bit that appears immediately after the 8-
bit header of the new EPC+ schemes and before
the 3-bit filter value, indicating whether or not
additional AIDC data is encoded after the EPC
within the EPC/UII memory bank. When the single
bit is set to 0, no additional AIDC data is encoded,
whereas a value of 1 indicates that additional AIDC
data is encoded.

documenttype Identifies the Document Type within a company for
a GDTI.

docType GDTI-96

GDTI-113

GDTI-174

Identifies the Document Type within a company for
a GDTI

dodaac ADI-var

A Department of Defense Activity Address Code
(used within the ADI-var scheme).

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 44 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

encodedAI CPI+

DSGTIN+

GDTI+

GIAI+

GRAI+

GSRN+

GSRNP+

ITIP+

SGCN+

SGLN+

SGTIN+

SSCC+

Used in conjunction with TDS tables F, K, E and B
to encode/decode GS1 Application Identifiers
correctly to/from the binary encoding within the
new EPC schemes introduced in TDS 2.0.
Note that encodedAI does not behave exactly like
other fieldnames in the sense of taking a single
string or binary value. encodedAI appears within
the level where type is 'BINARY', within the
value of grammar, where it acts as a placeholder
for the sequence of bits resulting from the binary
encoding of the sequence GS1 Application
Identifiers indicated by the list of values of the
encodedAI property of option, ordered in
ascending order of seq,using the internal values
specified by name and formatted as defined in
Table F for the specified ai. See also section 3.17
for further details about encodedAI.
While encodedAI does not correspond to any
capture group in the regular expression pattern,
when decoding from binary, all remaining bits of
the EPC identifier after the last matching capture
group are considered to correspond to encodedAI
in the new EPC schemes and should be decoded as
values of the specified GS1 Application Identifiers
and stored internally using the corresponding
values of name, for use when constructing the
output string.

expDate DSGTIN+ Expiration date, which determines the limit of
consumption or use of a product/coupon.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 45 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

filter ADI-var

CPI-96

CPI-var

GDTI-96

GDTI-113

GDTI-174

GIAI-96

GIAI-202

GIAI+

GRAI-96

GRAI-170

GRAI+

GSRN-96

GSRN+

GSRNP-96

GSRNP+

ITIP-110

ITIP-212

ITIP+

SGCN-96

SGCN+

SGLN-96

SGLN-195

SGLN+

SGTIN-96

SGTIN-198

SGTIN+

SSCC-96

SSCC+
USDOD-96

Fast filter value.

For most EPC schemes, the filter value consists of
3 bits and supports an integer value in the range
0-7.

ADI-var uses a 6-bit filter value, supporting integer
values in the range 0-63.

USDOD-96 uses a 4-bit filter value, supporting
integer values in the range 0-15.

firstFreezeDate DSGTIN+

The first freeze date is applicable to products that are
frozen directly after slaughtering, harvesting, catching or
after initial processing of the product.

gcn SGCN+ Global Coupon Number

gdti GDTI+ Global Document Type Identifier

gdtiprefix GDTI-96

GDTI-113

GDTI-174

The initial 13 numeric digits of a GDTI before the
alphanumeric serial component. This consists of
the GS1 Company Prefix and Document Type
(together totalling 12 digits), followed by the single
digit GS1 check digit calculated over those 12
digits.

generalmanager

GID-96

Identifies an organisational entity that is
responsible for maintaining the numbers in
subsequent GID fields – Object Class and Serial
Number.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 46 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

giai GIAI-96 Global Individual Asset Identifier

gln

SGLN-96

SGLN-195

SGLN+

Global Location Number

valueOf8003

GRAI+ The pad character of 0, followed by Global
Returnable Asset Identifier

grai GRAI-170 The entirety of the GRAI including its serial
component, excluding the pad digit that
immediately follows (8003) but which which is not
part of the GRAI.

graiprefix GRAI-96

GRAI-170
The initial 13 numeric digits of the GRAI, excluding
the pad digit that immediately follows (8003),
which is not part of the GRAI and also excluding
the final serial component of the GRAI that
appears after the check digit. These 13 digits
consist of a GS1 Company Prefix and Asset Type,
together totalling 12 digits, followed by a single
digit GS1 check digit calculated over those 12
digits.

gs1companyprefix CPI-96

CPI-var

GDTI-96

GDTI-113

GDTI-174

GIAI-96

GIAI-202

GRAI-96

GRAI-170

GSRN-96

GSRNP-96

ITIP-110

ITIP-212

SGCN-96

SGLN-96

SGLN-195

SGTIN-96

SGTIN-198

SSCC-96

GS1 Company Prefix (GCP)

gs1companyprefixindex An integer-based lookup key for accessing the real
gs1Company Prefix – for use with 64-bit tags

gs1companyprefixlength Length of a GS1 company prefix as a number of
characters – base 10 integer
e.g. for gs1company prefix = '0037000' 
gs1companyprefixlength=7

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 47 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

gsrn

GSRN-96

GSRN+
Global Service Relation Number - Recipient

gsrnp

GSRNP-96

GSRNP+
Global Service Relation Number - Provider

gtin DSGTIN+

SGTIN-96

SGTIN-198

SGTIN+

Global Trade Item Number

harvestDate DSGTIN+

Date when an animal was slaughtered or killed, a
fish has been caught, or a crop was harvested.
This date is determined by the organisation
conducting the harvesting.

indassetref GIAI-96

GIAI-202
A serialised asset reference – for use with the GIAI

itemref ITIP-110

ITIP-212

SGTIN-96

SGTIN-198

Identifies the Object Type or SKU within a
particular company for a GTIN

itip

ITIP-110

ITIP-212

ITIP+

Identification of Trade Item Pieces

locationref

SGLN-96

SGLN-195
Identifies the Location within a company for a GLN

objectclass GID-96 Identifies a class or “type” of thing within the GID
scheme.

originalpartnumber ADI-var

The original part number (PNO) for an aircraft part
(used in ADI-var in the situation where a company
serializes uniquely only within the original part
number)

packDate DSGTIN+

The packaging date is the date when the goods
were packed as determined by the packager.

piece

ITIP-110

ITIP-212
Within the ITIP, the piece number identifies an
individual piece of the trade item.

prependedserial

SGCN-96

This corresponds to the string value of the field
named serial but prefixed by the character "1",
when using the "Numeric String" encoding /
decoding methods defined in TDS 2.0 section
14.3.6 and 14.4.6.

prodDate DSGTIN+

Production or assembly date, as determined by the
manufacturer.

sellByDate DSGTIN+

Indicates the date specified by the manufacturer as
the last date the retailer is to offer the product for
sale to the consumer.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 48 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

serial ADI-var

CPI+

DSGTIN+

GDTI-96

GDTI-113

GDTI-174

GID-96

GRAI-96

GRAI-170

ITIP-110

ITIP-212

ITIP+

SGCN-96

SGLN-96

SGLN-195

SGLN+

SGTIN-96

SGTIN-198

SGTIN+

USDOD-96

Serial component – numeric or alphanumeric

For schemes based on GTIN or ITIP (e.g.
DSGTIN+, SGTIN+, SGTIN-96, SGTIN-198, ITIP+,
ITIP-110, ITIP-212), this corresponds to the value
of Application Identifier (21).

For other schemes, the serial component
corresponds to a serial component within the
primary identifier or may correspond to an
extension that may be used in conbination with the
primary identifier in order to construct a compound
identification key with globally unique instance-
level granularity.

serialref SSCC-96 A serialised reference – e.g. for use with the SSCC

serviceref GSRN-96

GSRNP-96
Identifies the service relation within a particular
company for a GSRN

sgcnprefix SGCN-96 The initial 13 digits of the GCN, including the GS1
Company Prefix, Coupon Reference and Check
Digit but excluding the serial component.

sscc

SSCC-96

SSCC+
Serial Shipping Container Code

tagLength (all fixed-
length
schemes)

64/96/256 etc. – number of bits for the EPC
identifier

total

ITIP-110

ITIP-212
Within the ITIP, the total count provides the total
number of individual pieces of the trade item.

urlEncodedCPI CPI+

This corresponds to the value of the field named
cpi but using percent-encoding where appropriate
to encode any literal symbol characters that must
be escaped in URL or Web URI format

urlEscapedGdti GDTI+

This corresponds to the value of the field named
gdti but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URL or Web URI format

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 49 of 108

Field name EPC
scheme(s) in
which it
appears

Explanation

urlEscapedGiai

GIAI+

This corresponds to the value of the field named
giai but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URL or Web URI format

urlEscapedGrai

GRAI+

This corresponds to the value of the field named
grai but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URL or Web URI format

urlEscapedIndAssetRef GIAI-202

This corresponds to the value of the field named
indassetref but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URL or Web URI format

urlEscapedSerial DSGTIN+

GDTI-174

GRAI-170

ITIP-212

ITIP+

SGLN-195

SGLN+

SGTIN-198

SGTIN+

This corresponds to the value of the field named
serial but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URL or Web URI format

urnEscapedIndAssetRef GIAI-202

This corresponds to the value of the field named
indassetref but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URN format

urnEscapedSerial GDTI-174

GRAI-170

ITIP-212

SGLN-195

SGTIN-198

This corresponds to the value of the field named
serial but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URN format

urnEncodedCompPartRef CPI-var

This corresponds to the value of the field named
comppartref but using percent-encoding where
appropriate to encode any literal symbol characters
that must be escaped in URN format

 1196

3.15 Rules and Derived Fields 1197

Certain fields required for formatting the output format are not obtained simply from pattern 1198
matching of the input format. A sequence of rules allows the additional fields to be derived from 1199
fields whose values are already known. 1200

The reason why this is necessary is that there is often some rearrangement of the original identifier 1201
required in order to translate into the pure-identity URN format. Examples include string 1202
rearrangement such as the relocation of the initial indicator digit or extension digit to the front of 1203
the item reference field – or for decoding, the re-calculation of the GS1 checksum – and appending 1204
this as the last digit of the GS1 identifier key, where appropriate. By working through an example 1205
for the GTIN, it is clear that although the processing steps are reversible between encoding into the 1206
pure-identity URN and decoding into the GS1 identifier key, the way in which those steps are 1207

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 50 of 108

defined takes on an unsymmetrical appearance in the sequence of rules. An example illustrates this 1208
point: 1209

3.15.1 Decoding the GTIN (i.e. translating from pure-identity URN into an element 1210
string or Application Identifier format) 1211

■ indicatordigit = SUBSTR(itemref,0,1); 1212

■ itemrefremainder = SUBSTR(itemref,1); 1213

■ gtinprefix = CONCAT(indicatordigit,companyprefix,itemrefremainder); 1214

■ checkdigit = GS1CHECKSUM(gtinprefix); 1215

The above are all examples of rules to be executed at the 'EXTRACT' stage, i.e. immediately after 1216
parsing the input value. 1217

3.15.2 Encoding the GTIN (i.e. translating from element string or Application Identifier 1218
format into pure-identity URN) 1219

(assumes gs1companyprefixlength is passed as a supplied parameter) 1220

■ gtinprefixremainder=SUBSTR(gtin,1,12); 1221

■ indicatordigit=SUBSTR(gtin,0,1); 1222

■ itemrefremainder=SUBSTR(gtinprefixremainder,gs1companyprefixlength); 1223

■ itemref=CONCAT(indicatordigit,itemrefremainder); 1224

■ gs1companyprefix=SUBSTR(gtinprefixremainder,0,gs1companyprefixlength); 1225

The above are all examples of rules to be executed at the 'FORMAT' stage, i.e. when constructing 1226
the output value. 1227

As the above examples show, the definitions of particular fields (e.g. itemrefremainder) depends 1228
upon whether encoding or decoding is being performed (or equivalently, whether the field is 1229
required for formatting the output value – or being extracted from the input value), since each 1230
successive definition depends on prior execution of the definitions preceding it, in the correct order, 1231
in order that all the required fields are available. 1232

The rules in the example above apply generally, with minor modifications to all of the older GS1 EPC 1233
schemes defined before TDS 2.0. It is worth noting that each of the above rule steps contains only 1234
one function or operation per step, which means that even a very simple parser can be used, 1235
without needing to deal with nesting of functions in parentheses. 1236

TDT 2.0 introduces additional rules in all EPC schemes for GS1 Digital Link URI format, as well as for 1237
pure-identity URN and tag-encoding URN formats, to ensure that all symbol characters that need to 1238
be percent-encoded in URN or URL format (including GS1 Digital Link URI) are correctly encoded 1239
and decoded. This is explained in further detail in the next section – see details for new functions 1240
URNENCODE, URNDECODE, URLENCODE and URLDECODE introduced in TDT 2.0. 1241

3.16 Core Functions 1242

The core functions which SHALL be supported by Tag Data Translation software in order to 1243
encode/decode the EPC schemes are described in the table below. 1244

 1245
Table 3-3 Basic built-in functions required to support encoding and deciding within the EPC schemes 1246
currently defined in TDS 2.0 1247

Function and parameters Result of function

SUBSTR (string,
offset)

The substring starting at offset

(offset =0 is the first character of string)

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 51 of 108

Function and parameters Result of function

SUBSTR (string,
offset, length)

The substring starting at offset (offset =0 is the first character
of string) and of length characters

CONCAT (string1,
string2, string3,…)

The sequential concatenation of the specified string parameters

LENGTH(string) Returns the number of characters of a string

GS1CHECKSUM (string) Computes the GS1 check digit given a string containing all the digits
that precede (but do not include) the check digit

URNENCODE(string) Returns a copy of the string in which each of the characters specified
below is replaced with the corresponding percent-encoded sequence:

Symbol " & / < > ? # %

Percent-
encoded
sequence

%22 %26 %2F %3C %3E %3F %23 %25

URNDECODE(string) Returns a copy of the string in which each of the percent-encoded
sequences specified below is replaced with the corresponding symbol
character:

Percent-
encoded
sequence

%22 %26 %2F %3C %3E %3F %23 %25

Symbol " & / < > ? # %

URLENCODE(string) Returns a copy of the string in which each of the characters specified
below is replaced with the corresponding percent-encoded sequence:

Symbol ! & ' () * + ,

Percent-
encoded
sequence

%21 %26 %27 %28 %29 %2A %2B %2C

Symbol / : ; < = > ? # %

Percent-
encoded
sequence

%2F %3A %3B %3C %3D %3E %3F %23 %25

URLDECODE(string) Returns a copy of the string in which each of the percent-encoded
sequences specified below is replaced with the corresponding symbol
character:

Percent-
encoded
sequence

%21 %26 %27 %28 %29 %2A %2B %2C

Symbol ! & ' () * + ,

Percent-
encoded
sequence

%2F %3A %3B %3C %3D %3E %3F %23 %25

Symbol / : ; < = > ? # %

 1248

In order to make full use of the Tag Data Translation definition files, implementations of translation 1249
software should provide equivalent functions in the programming language in which they are 1250
written, either by the use of native functions or custom-built methods, functions or subroutines. 1251

In this version of Tag Data Translation, the requirement that implementations should be able to 1252
recalculate check digits only applies to the older GS1 EPC schemes defined before TDS 2.0, when 1253

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 52 of 108

output in the GS1 element string or GS1 Digital Link URI format is required. Further details about 1254
calculation of the GS1 check digit can be found in section 7.9.1 of the GS1 General Specifications 1255
[GS1GS]; GS1 also maintains an online check digit calculator [GCheckD] at 1256
https://www.gs1.org/services/check-digit-calculator. 1257

It is important to note that modern programming languages (including JavaScript, Java, C++, C#, 1258
Visual Basic, Perl, Python) do not all share the same convention in the definitions of their native 1259
functions, especially for string functions. In some languages the first character of the string has an 1260
index 0, whereas in others, the first character has an index 1. Furthermore, many of the languages 1261
provide a substring function which takes two additional parameters as well as the string itself. 1262
Usually, the first of these is the start index, indicating the starting position where the substring 1263
should be extracted. However, some languages (e.g. Java, Python) define the last parameter as the 1264
end index, whereas others (C++, VB.Net, Perl) define it as the length of the substring, i.e. number 1265
of characters to be extracted. The table below indicates a number of language-specific equivalents 1266
for the three-parameter SUBSTR function in Table 3-3. 1267
 1268

Table 3-4 Comparison of how substring functions are defined in a number of modern programming 1269
languages. The parameters offset and length are of integer type 1270

 SUBSTR(string,offset,length) Notes

JavaScript String.substr(offset,length)

String.substring(offset,endIndex)
endIndex = offset+length
the character at endIndex is
excluded from the returned
substring

C++

String.substr(offset, length);

C# String.Substring(offset, length);

Perl substr($stringvariable, offset, length);

Visual Basic String.Substring(offset,length)

Java Java.lang.String

String.substring(offset, endIndex)
endIndex = offset+length

Python String[offset:end] end = offset+length

 1271

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 53 of 108

3.17 Encoded GS1 Application Identifiers in new EPC schemes introduced in TDS 2.0 1272

The new EPC schemes introduced in TDS 2.0 include variable-length structural components and some of these may also be alphanumeric. 1273
For alphanumeric structural components, TDS 2.0 makes use of encoding indicators to allow the most efficient encoding method to be 1274
selected, depending on the actual value, typically requiring fewer bits per character for more restrictive character sets. 1275

Because of this flexibility in the new EPC schemes, it is not possible to declare in advance exactly how many bits will be required for the 1276
value of each GS1 Application Identifier that is encoded after the EPC header, AIDC data toggle and 3-bit filter value. Instead, a new 1277
encodedAI element appears nested within option and indicates (via the ai attribute) which GS1 Application Identifier is to have its value 1278
encoded next, as well as the name of an internal variable that should hold its value, similar to the use of the name attribute within field or 1279
rule elements. Also in common with field or rule elements, a seq attribute indicates the sequential order in which the value of the GS1 1280
Application Identifier should be encoded. 'encodedAI' also appears in the ABNF grammar for new EPC schemes introduced in TDS 2.0 to 1281
indicate where the binary representation of the values of those encoded GS1 Application Identifiers appears in the binary string, namely 1282
after the bits that encode the filter value. 1283

For each GS1 Application Identifier key specified via the ai attribute of an encodedAI element, the GS1 AI key (such as '01' or '21') should 1284
be found in column a of Table F. Columns b-h of Table F provide guidance about how the first component of its value should be formatted in 1285
binary. Columns i-o of Table F provide corresponding guidance about the formatting of the second component of its value, where a second 1286
component exists only for some GS1 Application Identifiers. 1287

The remainder of this section provides a worked example for SGTIN+ assuming that the value of the GTIN (01) is 09506000134352 and the 1288
value of the Serial Number (21) is abc123. The flowcharts in chapter 12 explain each step of the process. 1289

The BINARY level of the TDT definition file for SGTIN+ appears in XML as follows: 1290

<level type="BINARY" prefixMatch="11110111" requiredFormattingParameters="filter,dataToggle"> 1291
 <option optionKey="1" pattern="^11110111([01])([01]{3})" grammar="'11110111' dataToggle filter 1292
encodedAI"> 1293
 <field seq="1" decimalMinimum="0" decimalMaximum="1" characterSet="[01]*" bitPadDir="LEFT" 1294
bitLength="1" name="dataToggle"/> 1295
 <field seq="2" decimalMinimum="0" decimalMaximum="7" characterSet="[01]*" bitPadDir="LEFT" 1296
bitLength="3" name="filter"/> 1297
 <encodedAI ai="01" name="gtin" seq="3"/> 1298
 <encodedAI ai="21" name="serial" seq="4"/> 1299
 </option> 1300
</level> 1301
 1302
and equivalently in JSON as: 1303
 1304
"level": [{ 1305
 "type": "BINARY", 1306
 "prefixMatch": "11110111", 1307

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 54 of 108

 "requiredFormattingParameters": "filter,dataToggle", 1308
 "option": [{ 1309
 "optionKey": 1, 1310
 "pattern": "^11110111([01])([01]{3})", 1311
 "grammar": "'11110111' dataToggle filter encodedAI", 1312
 "field": [{ 1313
 "seq": 1, 1314
 "decimalMinimum": 0, 1315
 "decimalMaximum": 1, 1316
 "characterSet": "[01]*", 1317
 "bitPadDir": "LEFT", 1318
 "bitLength": 1, 1319
 "name": "dataToggle" 1320
 }, 1321
 { 1322
 "seq": 2, 1323
 "decimalMinimum": 0, 1324
 "decimalMaximum": 7, 1325
 "characterSet": "[01]*", 1326
 "bitPadDir": "LEFT", 1327
 "bitLength": 3, 1328
 "name": "filter" 1329
 } 1330
], 1331
 "encodedAI": [{ 1332
 "ai": "01", 1333
 "name": "gtin", 1334
 "seq": 3 1335
 }, { 1336
 "ai": "21", 1337
 "name": "serial", 1338
 "seq": 4 1339
 }] 1340
 }] 1341
 }, 1342
 ... 1343
] 1344

 1345

This indicates that the first field (seq="1") is of bitLength=1 and encodes the value of variable 'dataToggle'. 1346

The second field (seq="2") is of bitLength=3 and encodes the value of variable 'filter'. 1347

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 55 of 108

The third (seq="3") piece of data encodes the value of GS1 Application Identifier (01), using the value in variable 'gtin'. 1348

The fourth (seq="4") piece of data encodes the value of GS1 Application Identifier (21), using the value in variable 'serial'. 1349

After encoding/decoding the 1-bit data toggle and 3-bit filter value, the value of the GTIN, AI (01) is encoded or decoded. Looking up AI 1350
(01) in Table F, a row can be found that looks like this in XML: 1351

<row a="01" b="Fixed-length numeric" c="14.5.4" d="14" e="56"></row> 1352
 1353
or equivalently, like this in JSON: 1354
 1355
"rows": [1356
 ... 1357
 {"a":"01", "b":"Fixed-length numeric", "c":"14.5.4", "d":"14", "e":"56"}, 1358
 ... 1359
] 1360
 1361

This indicates that the encoding method 'Fixed-length numeric' (as defined in section 14.5.4 of TDS 2.0) must be used, that the value 1362
should be 14 digits, encoded as 56 bits (using 4 bits per digit). 1363

If encoding an SGTIN+, the 14-digit value of the GTIN must therefore be encoded as the next 56 bits following the EPC header, data toggle 1364
and filter value. If decoding an SGTIN+, the next 56 bits after the EPC header, data toggle and filter value must be read and decoded using 1365
the 'Fixed-length numeric' method and translated to a 14-digit value that is to be stored in the variable named 'gtin' (specified in the 1366
encodedAI element <encodedAI ai="01" name="gtin" seq="3"/>). 1367

Moving on to the next encoded GS1 Application Identifier, a lookup of AI (21) in Table F finds a row that looks like this in XML: 1368

<row a="21" b="Variable-length alphanumeric" c="14.5.6" f="3" g="5" h="20"></row> 1369
 1370
or equivalently, like this in JSON: 1371
 1372
"rows": [1373
 ... 1374
 {"a":"21", "b":"Variable-length alphanumeric", "c":"14.5.6", "f":"3", "g":"5", "h":"20"}, 1375
 ... 1376
] 1377
 1378

This time, the encoding method is specified to be "Variable-length alphanumeric" as specified in section 14.5.6 of TDS 2.0. Also specified 1379
(via column f) is that a 3-bit encoding indicator shall be used, followed (via column g) by a 5-bit length indicator. Column h specifies that 1380
the maximum permitted length for the value is 20 characters for serial number (21). Section 14.5.6 of TDS 2.0 explains the encoding 1381
method 'Variable-length alphanumeric' and contains a decision tree and number of subsections that define encodings that depend on the 1382
actual character set used in the value. Table E lists the various encoding options and the corresponding character sets supported by each. 1383
For this example, if the serial number (21) is "abc123", it is most efficient to use lower-case hexadecimal encoding, corresponding to row 2 1384

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 56 of 108

of Table E. Column f of Table E provides a regular expression for the supported character set. Column b of Table E provides the 1385
corresponding 3-bit value for the encoding indicator, in this case '010'. 1386

So after encoding the 56 bits of GTIN, the next 3 bits should be the encoding indicator, set to '010' in this worked example for a serial 1387
number of 'abc123', followed by a 5-bit length indicator. If encoding the serial number (21) value of 'abc123', the length indicator should 1388
indicate 6 characters and should therefore appear as '00110', which is 6 in binary, left-padded to a total of 5 bits for the length indicator. 1389
Following this, the encoding method determines how many remaining bits express the value. In this example, variable-length lower case 1390
hexadecimal uses 4 bits per hexadecimal character, so 4 bits/character x 6 characters = 24 bits for encoding the value. In this example, 1391
those 24 bits would be '1010 1011 1100 0001 0010 0011', in order to encode 'abc123'. Note that Table B lists the number of bits needed to 1392
encode N characters for each value of the encoding indicator. Table B can also be used to calculate the number of bits, which avoids the 1393
need for floating-point calculations in constrained systems that might find a table lookup more efficient. 1394

For decoding the serial number (21) from a binary string, the same row for AI (21) from Table F is also used, as shown earlier. 1395

Column f indicates that a 3-bit encoding indicator must be read, followed by a 5-bit length indicator (indicated by column g). If the 3-bit 1396
encoding indicator is '010'. A lookup of '010' in column b of Table E reveals which encoding method had been used, in this case 'variable-1397
length lower case hexadecimal' using 4 bits per character. After reading the 3-bit encoding indicator, column g of the Table F row for AI 1398
(21) indicates that a 5-bit length indicator should be read. If its value is '00110', then 6 characters have been encoded. Since the selected 1399
encoding method uses 4 bits per character, then it will be necessary to read 4 x 6 = 24 bits and to interpret these as 6 lower-case 1400
hexadecimal characters. 1401

It should be clear from the above worked example that particularly for structural components that are variable-length or alphanumeric, it 1402
would not be possible to prescribe the bitLength value via a field element, so instead an encodedAI element is used to make use of lookup 1403
in Table F and Table E. Table B is also useful for looking up the number of bits to be used for each encoding method, for a specified number 1404
of characters. 1405

Column a of Table B is as follows in XML: 1406

<column id="a" name="Length" description="Number of digits or characters"></column> 1407
 1408

or equivalently in JSON: 1409
 1410
"columns": [1411

{"id":"a","name":"Length","description":"Number of digits or characters"}, 1412

... 1413

] 1414
 1415

Searching the columns of Table B for a match where encodingIndicator="2" (the base 10 value corresponding to '010') yields the following 1416
column in XML: 1417

<column id="d" name="Variable-length lower case hexadecimal" description="Bits required for numeric string 1418
/ lower case hexadecimal encoding at 4 bits/digit" encodingIndicator="2" specSection="14.5.6.3"></column> 1419
 1420

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 57 of 108

or equivalently, in JSON: 1421
 1422
"columns": [1423

... 1424
{"id":"d","name":"Variable-length lower case hexadecimal","description":"Bits required for numeric 1425
string / lower case hexadecimal encoding at 4 bits/digit","encodingIndicator":2, 1426
"specSection":"14.5.6.3"}, 1427
... 1428

] 1429
 1430

In this example, if we know that the length is 6 characters, so searching Table B for a match where a="6" yields the following row in XML: 1431

<row a="6" b="20" c="24" d="24" e="32" f="36" g="42" /> 1432
 1433
or equivalently, in JSON: 1434
 1435
"rows": [1436

... 1437
{"a":"6","b":"20","c":"24","d":"24","e":"32","f":"36","g":"42"}, 1438
... 1439

] 1440

Reading the value of column d in this row reveals the number of bits to be read, in this case 24 bits. 1441

Table B is particularly useful to avoid the need for any floating-point arithmetic calculations when the encoding method is either 'Variable-1442
length numeric string' (encoding indicator '000') or ' Variable-length URN Code 40' (encoding indicator '101'), for which the number of bits 1443
is not simply an integer multiplied by the number of characters. * MERGEFORMAT* MERGEFORMAT 1444

Mark Harrison
Will this disappear in the final version?

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 58 of 108

Figure 3-7 Encoding GS1 Application Identifiers 1445

 1446
 1447

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 59 of 108

Figure 3-8 Decoding GS1 Application Identifiers 1448

 1449

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 60 of 108

4 Encoding/Decoding of additional AIDC data after the EPC 1450

The new EPC schemes introduced in TDS 2.0 all support the ability to encode additional AIDC data immediately after the EPC binary string 1451
within the EPC/UII memory bank, as explained in section 15.3 of TDS 2.0. The following subsections explain the encoding and decoding 1452
procedures in further detail, using worked examples. Chapter 12 provides flowcharts to describe each step in further detail. 1453

4.1 Encoding additional AIDC data after the EPC 1454

If encoding additional AIDC data, the dataToggle bit SHALL be set to 1. Consider the first piece of AIDC data to be encoded. Firstly, encode 1455
the corresponding GS1 Application Identifier key, using 4 bits per digit. For example, to encode expiration date (17), write '0001 0111'. 1456
Alternatively, to encode a net weight value using AI (3103), write '0011 0001 0000 0011'. 1457

Next, lookup the GS1 Application Identifier key in column a of Table F. For the two examples above, Table F contains the following rows: 1458

<row a="17" b="6-digit date YYMMDD" c="14.5.8" d="6" e="16"></row> 1459
<row a="3103" b="Fixed-Bit-Length Numeric String" c="14.5.2" d="6" e="20"></row> 1460

Then to encode the corresponding values, refer to the relevant sections of TDS 2.0 (as described in the sections indicated by column c of 1461
Table F). 1462

For encoding methods that use fixed-length values, column d of table F indicates the number of characters for the value, while column e of 1463
Table F indicates the number of bits. 1464

For encoding methods that support variable-length values, column f indicates the number of bits to encode for the encoding indicator (either 1465
column f is empty/absent or its value is 3), while column g indicates the number of bits to encode for the length indicator. The number of 1466
bits for the length indicator is always sufficient to be able to express the maximum permitted length for the value or component of the value 1467
(as expressed in column h). 1468

The values of a small number of GS1 Application Identifiers are expressed within Table F as two components, rather than a single 1469
component. In this case, columns i-o may be populated with details for the second component of the value. For example, GS1 Application 1470
Identifier (7030) has the following row in Table F, with details for a first component (columns b-h) and a second component (i-o): 1471

<row a="7030" b="Fixed-Bit-Length Numeric String" c="14.5.2" d="3" e="10" 1472
 i="Variable-length alphanumeric" j="14.5.6" m="3" n="5" o="27"></row> 1473

The value of each GS1 Application Identifier is then encoded using the methods specified in columns b / c (and column i / j) resulting in a 1474
further number of bits specified by the sum of column e and column o (if specified). 1475

Any further AIDC data is encoded using the same procedure, writing the GS1 Application Identifier key first, as 8 bits for a 2-digit key such 1476
as (17) or (10), 12 bits for a 3-digit key such as (420) or 16 bits for a 4-digit key such as (3103), then using Table F to encode the 1477
corresponding value in binary. 1478

Flowcharts in section 12.1 provide the logic for encoding additional AIDC data after the EPC. 1479
 1480

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 61 of 108

Figure 4-1 Encoding AIDC data 1481

 1482
 1483

4.2 Decoding additional AIDC data after the EPC 1484

If the dataToggle bit was set to 1, then additional AIDC data has been encoded immediately after the binary EPC string. After reading the 1485
binary EPC string, using the procedure detailed in chapter 3.17, read a further 8 bits and decode these as two hexadecimal characters. If 1486
either character is in the range a-f/A-F, stop; alphanumeric data headers are not yet defined in TDS 2.0. If both characters are in the range 1487

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 62 of 108

0-9, concatenate these and lookup the value in column a of Table K. Read the value of columns b and c. Column b indicates whether this 1488
corresponds to the first two digits of a 2-digit, 3-digit or 4-digit GS1 Application Identifier key. Column c indicates whether a further 0, 4 or 1489
8 bits must be read (interpreting each set of 4 bits as a hexadecimal character). For example, if the first 8 bits correspond to hexadecimal 1490
characters '8' and '0', a lookup '80' in column a of Table K yields this row: 1491

<row a="80" b="4" c="8"></row> 1492

From this, column b indicates that '80' are the first two digits of a 4-digit GS1 Application Identifier key, (80xx) where xx is not yet known. 1493
Column c indicates that a further 8 bits must be read. If those further 8 bits correspond to hexadecimal characters '0' and '8', then the 4-1494
bit GS1 Application Identifier is actually (8008), by concatenating the initial '80' (read from the initial 8-bit data header) with the additional 1495
digits '0' and '8'. 1496

Next, lookup the GS1 Application Identifier key in column a of Table F. Doing so for (8008) yields the following row: 1497

<row a="8008" b="Variable-precision date+time" c="14.5.11"></row> 1498

Column b indicates that the next bits are encoded using the Variable-precision date+time method, described (see column c) in section 1499
14.5.11 of TDS 2.0. 1500

After decoding those bits using that method and setting those as the value of the corresponding GS1 Application Identifier key, (8008) in 1501
this example, repeat this procedure in case further GS1 Application Identifiers and their values are encoded, reading a further 8 bits for the 1502
next data header. 1503

Flowcharts in section 12.2 provide the logic for decoding additional AIDC data after the EPC. 1504

 1505

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 63 of 108

Figure 4-2 Decoding AIDC data 1506

 1507
 1508

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 64 of 108

5 TDT Definition Files – formal definition 1509

TDT definition files are currently provided in XML and JSON for the following EPC schemes: 1510
 1511
SGTIN-96, SGTIN-198, SSCC-96, SGLN-96, SGLN-195, GRAI-96, GRAI-170, GIAI-96, GIAI-202, 1512
GDTI-96, GDTI-174, GSRN-96, GSRNP-96, SGCN-96, ITIP-110, ITIP-212, CPI-96, CPI-var, GID-96, 1513
USDOD-96, ADI-var, SGTIN+, DSGTIN+, SSCC+, SGLN+, GRAI+, GIAI+, GDTI+, GSRN+, 1514
GSRNP+, SGCN+, ITIP+, CPI+. 1515

The remainder of this chapter is written in a way that attempts to use neutral language that can 1516
explain the structure of a TDT definition file, whether it is formatted in XML or JSON. An object 1517
corresponds to a data object or class within the UML class diagram (see Figure 3-1) and always 1518
corresponds to an XML element or JSON object/class/dictionary. In XML, simple datatype properties 1519
of an object may be expressed as inline XML attributes, while more complex object properties are 1520
expressed in XML as nested child elements because their values are structured. JSON has no 1521
concept of elements or inline attributes – only objects (also known as classes or dictionaries), lists 1522
(also known as arrays) and properties (also known as keys). 1523

5.1 Root object 1524

The epcTagDataTranslation object is the root object or root-level property of each TDT 1525
definition file. Within it, a number of metadata properties such as version, date and 1526
epcTDSVersion are defined, together with the scheme property (see section 5.2). 1527

5.1.1 Datatype Properties (inline XML attributes) 1528

Name Description Example Values

version TDT Definition version
number

2.0

date Creation Date 2023-*** TBD

epcTDSVersion TDS Specification version 2.0

5.1.2 Object Properties (nested XML elements) 1529

Name Description

scheme Please see Section 5.2 for more details

5.2 Scheme object 1530

For every EPC scheme defined in TDS, the scheme object provides details of encoding/decoding 1531
rules and formats for use by TDT implementations. 1532

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 65 of 108

5.2.1 Datatype Properties (inline XML attributes) 1533

Name Description Example Values

name Name of the EPC scheme SGTIN-96, SGTIN-198, SSCC-
96, SGLN-96, SGLN-195,
GRAI-96, GRAI-170, GIAI-96,
GIAI-202, GDTI-96, GDTI-
174, GSRN-96, GSRNP-96,
SGCN-96, ITIP-110, ITIP-
212, CPI-96, CPI-var, GID-
96, USDOD-96, ADI-var,
SGTIN+, DSGTIN+, SSCC+,
SGLN+, GRAI+, GIAI+, GDTI+,
GSRN+, GSRNP+, SGCN+,
ITIP+, CPI+

optionKey The name of a variable whose
value determines which one of
multiple options to select. Note
that optionKey is no longer a
required attribute within the
scheme structure, although it is
still specified for fixed-length EPC
constructs. Even if the
optionKey value is not specified
within a scheme, nested option
structures are nevertheless
numbered with an optionKey
attribute and translation is
performed between option
structures that have the same
value of optionKey attribute
present within the option
structure.

companyprefixlength

tagLength This refers to the length of the
EPC identifier itself (e.g. the bits
encoded from position 20h in the
EPC/UII memory bank of a Gen2
tag). The tagLength attribute
shall not be specified for a
variable-length EPC identifier,
although it shall be specified for
all fixed-length EPC identifiers.

The tagLength attribute SHALL
NOT be specified for a variable-
length EPC identifier, including all
the newer EPC schemes
introduced in TDS 2.0.

96 or larger values.

5.2.2 Object Properties (nested XML Elements) 1534

Name Description

level Contains option elements expressing a pattern, grammar and
encoding/decoding rules for each format. See section 5.3 for further
details.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 66 of 108

5.3 Level object 1535

For each format, prefixMatch and type is specified for each level. Nested within the level 1536
element are option objects (which provide the pattern regular expressions for parsing the input 1537
into fields and ABNF grammar for formatting the output), as well as rule objects used for 1538
computing additional field values from functional operations from field values that are already 1539
known. 1540

Datatype Properties (inline XML Attributes) 1541

Name Description Example Values

type Indicates format BINARY
TAG_ENCODING
PURE_IDENTITY
BARE_IDENTIFIER
ELEMENT_STRING
GS1_DIGITAL_LINK

TEI

prefixMatch Prefix value required for each
encoding/decoding level

00001010

uri:epc:tag:sscc-96

uri:epc:id:sscc

sscc=

(00)

requiredParsingParameters Comma-delimited string listing
names of fields whose values may
need to be specified in the list of
suppliedParameters in order to
parse the fields of an input value
at this level. Note that for
gs1companyprefixlength it
may be possible to determine this
through use of the tables provided
at
https://www.gs1.org/standards/bc
-epc-interop or through other
means. See also the gcpOffset
property of the Field object

gs1companyprefixleng
th

requiredFormattingParameters Comma-delimited string listing
names of fields whose values may
need to be specified in the list of
suppliedParameters in order to
format the output value at this
level. Note that if a value for
uriStem is not specified via
suppliedParameters, a value of
https://id.gs1.org/ should be
assumed as the default value,
since this will result in a reference
GS1 Digital Link URI.

filter,tagLength,uri
Stem, dataToggle

https://www.gs1.org/standards/bc-epc-interop
https://www.gs1.org/standards/bc-epc-interop
https://id.gs1.org/

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 67 of 108

Name Description Example Values

gs1DigitalLinkKeyQualifiers An ordered sequence of GS1
Application Identifiers that should
appear in the specified order after
the primary identification key and
its value within the URI path
information when the output is
GS1 Digital Link.
See section 3.4.1.2 for further
details of post-processing of GS1
Digital Link URI output and the
use of the
gs1DigitalLinkKeyQualifiers
parameter.
Note that in the TDT definition files
provided in JSON format, this is a
JSON list using square brackets.
For the TDT definition files
provided in XML format, this
parameter is provided as an inline
XML attribute and expressed as a
JSON string, in which every double
quote character appears escaped
as " Implementations of Tag
Data Translation that rely on the
XML definition files will need to
unescape the double quote
characters then use a JSON
parsing function in order to create
the corresponding ordered list of
GS1 Application Identifiers for this
parameter.

["22","10","21"]
for all SGTIN / DSGTIN+
schemes.

Object Properties (nested XML Elements) 1542

Name Description

option Contains patterns and grammar

rule Contains rules required for determining values of additional variables
required

5.4 Option object 1543

Each option object provides the pattern regular expressions for parsing the input into fields and 1544
ABNF grammar for formatting the output. For EPC schemes defined before TDS 2.0, multiple 1545
option elements are used as a way of implementing rows of partition tables and the corresponding 1546
variations in length of the GS1 Company Prefix component and often the next structural component 1547
(whose length typically decreases as the length of the GS1 Company Prefix component increases). 1548
The new EPC schemes introduced in TDS 2.0 do not make use of partition tables based on the 1549
length of the GS1 Company Prefix, which need not be known when using the new EPC schemes. 1550
The only new EPC scheme currently using multiple option elements is DSGTIN+, in which each 1551
option element corresponds to a different value of the 4-bit date type indicator fields (and 1552
interpretation of a different 6-digit date field for each option). 1553

AIs SHALL be specified in a strict sequence when providing input for the DSGTIN+ scheme as 1554
ELEMENT_STRING, BARE_IDENTIFIER. The current TDT definition files for DSGTIN+ expect that, 1555
within ELEMENT_STRING and GS1_DIGITAL_LINK and BARE_IDENTIFIER, the GTIN (01) will be 1556
specified first, followed by the serial number (21) in second position, followed by the prioritised date 1557
field (e.g. (17) for expiration date) in third position. This sequence is important, because the 1558
patterns specified for DSGTIN+ will not match an alternative sequence (e.g. such as gtin, date, 1559

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 68 of 108

serial or date, gtin, serial). GS1 Digital Link already enforces/requires this sequence because the 1560
date field appears in the URI query string. 1561

Datatype Properties (inline XML Attributes) 1562

Name Description Example Values

optionKey A fixed value which the optionKey
attribute of the <scheme> element SHALL
match if this option is to be considered,
provided that the optionKey attribute is
specified within the <scheme> element.
For variable-length EPCs, the optionKey
attribute might not be specified within the
<scheme> element but is still used for
ensuring that the <option> element for
the output format is appropriate for the
<option> element for the input format.
For all EPCs, translation SHALL always be
between two <option> elements having
the same value of their optionKey
attribute

Any string value but for GS1 identifier
keys, the values
'6','7','8','9','10','11','12' are used in
GS1-based EPC schemes defined
before TDS 2.0 and correspond to the
length of the GS1 Company Prefix
component.
In the case of ADI-var, the
optionKey is used to distinguish
between six recognized variations in
the way in which the unique identifier
may be constructed. In this
situation, the optionKey is simply a
number to represent a particular
variation but has no specific
correspondence to a particular field.
In the case of DSGTIN+, the
optionKey is used to distinguish
between different meanings of the
prioritised date field, e.g. best before
data vs expiration date vs production
date vs harvest date.

pattern A regular expression pattern to be used for
parsing the input string and extracting the
values for variable fields

^00101111([01]{4})00100000([01]{
40})([01]{36})

grammar An ABNF grammar indicating how the
output can be reassembled from a
combination of literal values and substituted
variables (fields)

'00101111' filter cageordodaac serial

N.B. single quoted strings indicate
fixed literal strings, unquoted strings
indicate substitution of the
correspondingly named field values.
Square brackets enclose grammar
components that are optional or
conditional.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 69 of 108

Name Description Example Values

aiSequence An ordered sequence of GS1 Application
Identifiers that should appear in the
specified order in order for the input value
to be able to match the pattern provided in
the TDT definition file. See section 3.4.1.1
for further details about pre-processing of
the input and use of the aiSequence
parameter.
Note that in the TDT definition files provided
in JSON format, this is a JSON list using
square brackets. For the TDT definition files
provided in XML format, this parameter is
provided as an inline XML attribute and
expressed as a JSON string, in which every
double quote character appears escaped as
" Implementations of Tag Data
Translation that rely on the XML definition
files will need to unescape the double quote
characters then use a JSON parsing function
in order to create the corresponding
ordered list of GS1 Application Identifiers
for this parameter.

["01","21"] for the GS1_AI_JSON and
GS1_DIGITAL_LINK levels for all
SGTIN EPC schemes.

["01","21","17"] and other variations
for other prioritised date fields within
the GS1_AI_JSON and
GS1_DIGITAL_LINK levels for all
DSGTIN+ EPC scheme.

Object Properties (nested XML Elements) 1563

Name Description

field Provides information about each of the variables, e.g. (min, max)
values, allowed character set, length, padding etc.

encodedAI For new EPC schemes defined in TDS 2.0, provides information about
which GS1 Application Identifiers have their values appearing next
within the binary string, according to the format rules defined in Table F
for each of those GS1 Application Identifiers.

5.5 Field object 1564

Datatype Properties (Inline XML Attributes) 1565

Name Description Example Values

seq The sequence number for a particular sub-
pattern matched from a regular expression
– e.g. 1 denotes the first sub-pattern
extracted

1, 2, 3…

name The name of the variable (or field) – just a
reference used to ensure that each field
may be used to construct the output
format

filter, companyprefix,
itemref, serial, …

decimalMinimum Minimum value allowed for this field in
base 10

"0"

decimalMaximum Maximum value allowed for this field in
base 10

"9999999"

length Required length of this field in string
characters.

7

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 70 of 108

Name Description Example Values

bitLength Required length of this field in bits.
Omitted for all levels except for the BINARY
encoding level

24

bitPadDir Direction to insert ‘0’ to the binary value 'LEFT', 'RIGHT'

characterSet Allowed character set for this field,
expressed in regular expression character
range notation or as a non-capturing group
that expresses explicit percent-encoded
sequences in place of the symbol
characters that must be escaped in URN or
URL formats.

[0-9]*,[01]*,
[0-9A-HJ-NP-Z]*

padChar Character to be used to pad to required
value of fieldlength. Omitted if no padding
is required for the corresponding field
outside of the BINARY level (e.g. within the
TAG-ENCODING level)

'0', ' ' (ASCII space character)

padDir Direction to insert pad characters. 'LEFT', 'RIGHT'

gcpOffset For EPC schemes defined before TDS 2.0,
the field that corresponds to a primary GS1
identification key constructed from a GS1
Company Prefix includes this property
gcpOffset within all levels that are not
BINARY, TAG_ENCODING or
PURE_IDENTITY. The value (0 or 1)
indicates the position of the GS1 Company
Prefix relative to the start of the field
value.
A value of 0 for gcpOffset indicates that
the GS1 Company Prefix starts at the start
of the field value (with zero offset from the
left).
A value of 1 for gcpOffset indicates that
the GS1 Company Prefix starts at the
character of the field value (after an offset
of 1 character from the left).
SGTIN, ITIP and SSCC have a value of '1'
for gcpOffset because of the presence of
an indicator digit or extension digit
preceding the GS1 Company Prefix. All
other schemes have a value of '0' for
gcpOffset.

This enables comparison of the initial digits
of the GS1 Company Prefix with the details
provided at
https://www.gs1.org/standards/bc-epc-
interop (which may be helpful for
automatically determining the length of the
GS1 Company Prefix, where this needs to
be known for many older EPC schemes
defined before TDS 2.0)

'0', '1'

https://www.gs1.org/standards/bc-epc-interop
https://www.gs1.org/standards/bc-epc-interop

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 71 of 108

Name Description Example Values

valueIfNull Specifies a value in one format (input or
output) that matches a null or undefined
value of the corresponding field within the
other (output or input).
If translating from any of BINARY,
TAG_ENCODING or PURE_IDENTITY
formats to any of BARE_IDENTIFIER,
ELEMENT_STRING or GS1_DIGITAL_LINK,
if the value of the field matches the value
specified by valueIfNull, the field is
considered null and SHALL NOT contribute
to the output string.
If translating from any of
BARE_IDENTIFIER, ELEMENT_STRING or
GS1_DIGITAL_LINK formats to any of
BINARY, TAG_ENCODING or
PURE_IDENTITY, if the value of the field is
null, the value specified by valueIfNull
("0") SHALL be encoded within the output
string to indicate that the input string
contained a null value for this
optional/conditional component.

"0"

 1566

5.5.1 Rule object 1567

Datatype Properties (Inline XML Attributes) 1568

Name Description Example Values

type Indicates at which stage of the process
the definition should be evaluated

'EXTRACT', 'FORMAT'

inputFormat Indicates whether the input parameter to
the definition is in binary format or
formatted as a string of characters

'STRING', 'BINARY'

seq A sequence number to indicate the
running order for rule functions sharing
the same value of type. The rule
functions should be run in order of
ascending 'seq' value

1,2,3,4,5…

newFieldName A name for the new field or variable
whose value is determined by evaluating
the function.

Any string consisting of alphanumeric
characters and underscore

function An expression indicating how the new
field can be determined from a function of
already-known fields

e.g. SUBSTR(itemref,0,1)

decimalMinimum For numeric fields, the minimum value
allowed for this field in base 10

e.g. "0"

decimalMaximum For numeric fields, the maximum value
allowed for this field in base 10

e.g. "9999999"

length Required length of this field in string
characters.

7

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 72 of 108

Name Description Example Values

padChar Character to be used to pad to required
value of fieldlength. Omitted if no padding
is required. Present if padding is
required.

'0', ' '

padDir Direction to insert pad characters 'LEFT', 'RIGHT'

bitLength Required length of this field in bits.
Omitted for all levels except for the
BINARY encoding level

e.g. 24

bitPadDir Direction to insert ‘0’ to the binary value 'LEFT', 'RIGHT'

characterSet Allowed character set for this field,
expressed in regular expression character
range notation.
The range is usually expressed using the
same square-bracket notation as for
character ranges within regular
expressions, although for the URN
formats and GS1 Digital Link URI formats,
the pattern and characterSet now use
non-capturing groups with explicit
indication of percent-encoded sequences
for symbol characters that must be
'escaped' in URN or URI format; this
approach ensures that each valid symbol
character is counted once even when it is
percent-encoded as a 3-character
sequence %hh where h is a placeholder
for hexadecimal characters 0-9 and A-F.
Further details about percent-encoding of
symbol characters in URNs and Web URIs
/ URLs can be found in section 3.16 that
explains the new rule functions
URNENCODE, URNDECODE, URLENCODE
and URLDECODE.

[0-9],[01]

 1569

5.6 encodedAI object 1570

Datatype Properties (Inline XML Attributes) 1571

Name Description Example Values

seq A sequence number to indicate the order
in which GS1 Application Identifiers
should be encoded in binary, using details
provided in Table F. The binary values of
the corresponding GS1 Application
Identifiers should appear in order of
ascending 'seq' value

1,2 …

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 73 of 108

Name Description Example Values

name The name of the internal variable (or
field). When encoding to a binary string,
the named variable contains the value
that is to be encoded in binary. When
decoding a binary string, the sequence of
bits read for the corresponding GS1
Application Identifier should be stored in
the named variable, so that it can be used
to prepare the output in the desired
output format.

gtin, serial, …

ai The 2/3/4-digit key of a GS1 Application
Identifier (AI), also including GS1 AIs
(such as (21)) that are used in the
construction of instance-level compound
keys, where appropriate.

'00', '01', '21' etc.

 1572

6 Translation Process 1573

The execution of the rules in the TDT process takes place at two distinct processing stages, denoted 1574
'FORMAT' and 'EXTRACT', as explained in the table below: 1575

 1576

Table 6-1 The two stages for processing rules in Tag Data Translation 1577

Stage Description

EXTRACT Operates on fields after parsing of the input value

FORMAT Operates on fields in order to prepare additional fields required by the grammar
for formatting the output value.

The rules for each scheme are within the context of a particular format. The first sequence of rules, 1578
'EXTRACT' is tied to the input format level. The last sequence of rules, 'FORMAT' is tied to the 1579
output format level. Each sequence may consist of zero or more rule elements. The rules within 1580
each sequence are executed in a strict order, as specified by an ascending integer-based sequence 1581
number, indicated by the attribute 'seq' of the rule element. 1582

The translation process is described by the following steps: 1583

1. Setup 1584

Read the input value and the supplied extra parameters. 1585

Populate an associative array of key-value pairs with the supplied extra parameters. 1586

During the translation process, this associative array will be populated with additional values of 1587
extracted fields or fields obtained through the application of rules of type 'EXTRACT' or 'FORMAT' 1588

Note the desired output format level. 1589
 1590

2. Determine the EPC scheme and input format level. 1591

To find the scheme and level that matches the input value, consider all schemes and the 1592
prefixMatch attribute of each level element within each scheme. 1593

If the prefixMatch string matches the input value at the beginning, the scheme and level should 1594
be considered as a candidate for the input format. If the scheme element specifies a tagLength 1595
attribute, then if the value of this attribute does not match the value of the tagLength key in the 1596

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 74 of 108

associative array, then this scheme and level should no longer be considered as a candidate for the 1597
input format. 1598

 1599

3. Determine the option that matches the input value 1600

To find the option that matches the input value, consider any scheme+level candidates from the 1601
previous step. For each of these schemes, if the optionKey attribute is specified within the 1602
scheme element in terms of the name of a supplied parameter (e.g. gs1companyprefixlength), 1603
check the associative array of supplied parameters to see if a corresponding value is defined and if 1604
so, select the option element for which the optionKey attribute of the option element has the 1605
corresponding value. 1606

e.g. if a candidate scheme has a scheme attribute optionKey="gs1companyprefixlength" and 1607
the associative array of supplied extra parameters has a key=value pair 1608
gs1companyprefixlength=7, then only the option element having attribute optionKey="7" 1609
should be considered. 1610

If the optionKey attribute is not specified within the scheme element or if the corresponding value 1611
is not present in the associative array of supplied extra parameters, then consider each option 1612
element within each scheme+level candidate and check whether the pattern attribute of the 1613
option element matches the input value. 1614

When a match is found, this option should be considered further and the corresponding value of the 1615
optionKey attribute of the option element should be noted for use in step 6. 1616

 1617

4. Parse the input value to extract values for each field within the option 1618

Having found a scheme, level and option matching the input value, consider the field elements 1619
nested within the option element. 1620

Matching of the input value against the regular expression provided in the pattern attribute of the 1621
option element should result in a number of capture groups being extracted. These should be 1622
considered as the values for the field elements, where the seq attribute of the field element 1623
indicates the sequence in which the fields are extracted as capture groups, from the start of the 1624
input value, e.g. the value from the first capture group should be considered as the value of the 1625
field element with seq="1", the value of the second capture group is the value of the field 1626
element with seq="2". 1627

For each field element, if a characterSet attribute is specified, check that the value of the field 1628
falls entirely within the specified character set. 1629

 1630

For each field element, if the compaction attribute is null, treat the field as a big integer. If the 1631
type attribute of the input level was "BINARY", treat the string of 0 and 1 characters matched by 1632
the regular expression capture group as a binary string and translate it to a base 10 big integer. 1633

If the decimalMinimum attribute is specified, check that the value is not less than the base 10 1634
minimum value specified. 1635

If the decimalMaximum attribute is specified, check that the value is not greater than the base 10 1636
maximum value specified. 1637

If the input format was binary, perform any necessary stripping, translation of binary to big integer 1638
or string, padding, referring to the procedure described in the flowchart Figure 3-6. 1639

 1640

5. Perform any rules of type EXTRACT within the input format option in order to calculate 1641
additional derived fields 1642

Now run the rules that have attribute type="EXTRACT" in sequence, to determine any additional 1643
derived fields that must be calculated after parsing of the input value. 1644

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 75 of 108

Store the resulting key-value pairs in the associative array after checking that the value falls 1645
entirely within the permitted characterSet (if specified) or within the permitted numeric range (if 1646
decimalMinimum or decimalMaximum are specified) and performing any necessary padding or 1647
stripping of characters. 1648

 1649

6. Find the corresponding option in the output format 1650

To find the corresponding option in the output format within the same scheme, select the level 1651
element having the desired output format and within that, select the option element that has the 1652
same value of the optionKey attribute that was noted at the end of step 3 1653

 1654

7. Perform any rules of type FORMAT within the output format in order to calculate 1655
additional derived fields 1656

Run any rules with attribute type="FORMAT" in sequence, to determine any additional derived 1657
fields that must be calculated in order to prepare the output format. 1658

Store the resulting key-value pairs in the associative array after checking that the value falls 1659
entirely within the permitted characterSet (if specified) or within the permitted numeric range (if 1660
decimalMinimum or decimalMaximum are specified) and performing any necessary padding or 1661
stripping of characters. 1662

 1663

8. Use the grammar string and substitutions from the associative array to build the output 1664
value 1665

Consider the grammar string for that option as a sequence of fixed literal strings (the characters 1666
between the single quotes) interspersed with a number of variable elements, whose key names are 1667
indicated by alphanumeric strings without any enclosing single quotation marks. 1668

Perform lookups of each key name in the associative array to substitute the value of each variable 1669
element, substituting the corresponding value in place of the key name. 1670

Note that if the output format is binary, it is necessary to translate values from base 10 big integer 1671
or string to binary, performing any necessary stripping or padding, following the method described 1672
in the flowchart in Figure 3-5. 1673

Concatenate the fixed literal strings and values of variable together in the sequence indicated by the 1674
grammar string and consider this as the output value. 1675

7 Tag Data Translation Software - Reference 1676

Implementation 1677

A reference implementation may be a package / object class or subroutine, which may be used at 1678
any part of the GS1 System Architecture [GS1Arch] and integrated with existing software. 1679
Additionally, for educational and testing purposes, it will be useful to make a Tag Data Translation 1680
capability available as a standalone service, with interaction either via a web page form for a human 1681
operator or via a web service interface for automated use, enabling efficient batch translations. 1682

8 Application Programming Interface 1683

There are essentially two interfaces to consider for Tag Data Translation software, namely a client-1684
side interface, which provides translation methods for users and a maintenance interface, which 1685
ensures that the translation software is kept up-to-date with the latest encoding/decoding 1686
definitions data. 1687

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 76 of 108

8.1 Client API 1688

public String translate(String epcIdentifier, String parameterList, String 1689
outputFormat) 1690

Translates epcIdentifier from one format into another within the same EPC scheme. 1691

Parameters: 1692

epcIdentifier – The epcIdentifier to be translated. This should be expressed as a string, in 1693
accordance with one of the grammars or patterns in the TDT definition files, i.e. a binary string 1694
consisting of characters '0' and '1', a URI (either tag-encoding or pure-identity formats), or a 1695
serialized identifier expressed as in Table 3-1. 1696

parameterList – This is a parameter string containing key value pairs, using the semicolon [';'] 1697
as delimiter between key=value pairs. For example, to translate a GTIN code the parameter string 1698
might look like the following: 1699

filter=3;companyprefixlength=7;tagLength=96 1700

outputFormat – The output format into which the epcIdentifier SHALL be translated. The following 1701
are the formats supported: 1702

1. BINARY 1703

2. TAG_ENCODING 1704

3. PURE_IDENTITY 1705

4. ELEMENT_STRING 1706

5. GS1_DIGITAL_LINK 1707

6. BARE_IDENTIFIER 1708

7. TEI 1709

 1710

Returns: 1711

The translated value into one of the above formats as String. 1712

 1713

Throws: 1714

TDTTranslationException – Throws exceptions due to the following reason: 1715

1. TDTFileNotFound – Reports if the software could not locate the configured TDT definition file 1716
or TDT table. 1717

2. TDTFieldBelowMinimum - Reports a (numeric) Field that fell below the permitted 1718
decimalMinimum value specified by the TDT definition files. 1719

3. TDTFieldAboveMaximum - Reports a (numeric) Field that exceeded the permitted 1720
decimalMaximum value specified by the TDT definition files 1721

4. TDTFieldOutsideCharacterSet - Reports a Field containing characters outside the 1722
permitted characterSet range specified by the TDT definition files 1723

5. TDTUndefinedField - Reports a Field required for the output or an intermediate rule, whose 1724
value is undefined 1725

6. TDTSchemeNotFound - Reported if no matching Scheme can be found via prefixMatch 1726

7. TDTLevelNotFound - Reported if no matching Level can be found via prefixMatch 1727

8. TDTOptionNotFound - Reported if no matching Option can be found via the optionKey or 1728
via matching the pattern 1729

9. TDTLookupFailed - Reported if lookup in an external table failed to provide a value – reports 1730
table URI and path expression. 1731

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 77 of 108

10. TDTNumericOverflow – Reported when a numeric overflow occurs when handling numeric 1732
values such as serial number. 1733

8.2 Maintenance API 1734

public void refreshTranslations() 1735

Checks each subscription for any update, reloading new rules where necessary and forces the 1736
software to reload or recompile its internal format of the encoding/decoding rules based on the 1737
current remaining subscriptions. 1738

9 TDT Schema, TDT Definition Files and TDT Tables 1739

See https://ref.gs1.org/standards/tdt/artefacts for the latest version of the TDT tables and schema 1740
and TDT definition files for each EPC scheme. Older versions of TDT and its artefacts can be found 1741
at https://ref.gs1.org/standards/tdt/archive. 1742

10 Glossary (non-normative) 1743

This section provides a non-normative summary of terms used within this specification. Please refer 1744
to the www.gs1.org/glossary for the latest version. For normative definitions of these terms, please 1745
consult the relevant sections of the document. 1746

Term Defined / specified
in

Meaning

(EPC) (Tag Data)
Translation Software

 A piece of software that performs translations between different
formats of the EPC within any given EPC scheme. The translation
software may be a library module or object which may be accessed by
/ embedded within any technology component in the GS1 System
Architecture. It may also be implemented as a standalone service,
such as an interactive web page form or a web service for automated
batch-processing of translations.

(Identification) Scheme A well-defined method of assigning an identification code to an object
/ shipment / location / transaction

ABNF Grammar

[ABNF] Augmented Backus-Naur Form.
Notation indicating how the result can be expressed through a
concatenation of fixed literal values and values of variable fields,
whose values are previously determined.

ADI [TDS] Aerospace and Defense Identifier. The ADI is designed for use by the
aerospace and defense sector for the unique identification of parts or
items.

Application Identifier
(AI)

[GS1GS] The field of two or more digits at the beginning of an element string
that uniquely defines its format and meaning.

Binary A sequence of binary digits or bits, consisting of only the digits '0' or
'1'

Built-In Functions

 Functions that should be supported by all implementations of the tag
data translation software, irrespective of the programming language
in which the software was actually written. See Table 3-3.

https://ref.gs1.org/standards/tdt/artefacts
https://ref.gs1.org/standards/tdt/archive
http://www.gs1.org/glossary

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 78 of 108

Term Defined / specified
in

Meaning

Checksum
/ Check Digit

[GS1GS] § 7.9.1
[GCheckD]

A number that is computed algorithmically from other digits in a
numerical code in order to perform a very basic check of the integrity
of the number; if the check digit supplied does not correspond to the
check digit calculated from the other digits, then the number may
have been corrupted. The check digit is in a way analogous to a hash
value of a data packet or software package – except that hash values
tend to be more robust since they consist of strings of several
characters and hence many more possible permutations than a single
check digit 0-9, with the result that there is a much smaller
probability that a corrupted number or data packet will product the
same hash value than that it will fortuitously produce a valid check
digit.

Decoding

 A translation process away from the binary format, i.e in the
direction:
Binary  Tag-encoding URN  Pure-identity URN
 GS1 Digital Link URI or Element String or Bare Identifier or TEI

Encoding

 A translation process towards the binary format, i.e in the direction:
GS1 Digital Link URI or Element String or Bare Identifier or TEI
 Pure-identity URN  Tag-encoding URN  Binary

EPC Pure Identity URN or
EPC Pure Identity URI

[TDS] A concrete representation of an Electronic Product Code. The Pure
Identity EPC URI is an Internet Uniform Resource Identifier that
contains an Electronic Product Code and no other information.

EPC Tag Data Validation
Software

 Software which need not perform any translation but may
nevertheless make use of the Tag Data Translation definition files in
order to validate that an EPC in any of its formats conforms to a valid
format.

EPC Tag URN
or EPC Tag URI

 A representation of the complete contents of the EPC Memory Bank of
a Gen 2 RFID Tag, in the form of an Internet Uniform Resource
Identifier that includes a decoded representation of EPC data fields,
usable when the EPC Memory Bank contains a valid EPC Binary
Encoding. In contrast to the Pure Identity EPC URI, the EPC Tag URI
can represent the complete contents of the EPC Memory Bank,
including control information in addition to the EPC.

Field

 The variable elements of the EPC in any of its formats – each partition
or field has a logical role, such as identifying the responsible company
(e.g. the manufacturer of a trade item) or the object class or SKU.
Tag Data Translation software uses the regular expression pattern to
extract values for each field. These may be temporarily stored in
variables or an associative array (key-value lookup table) until they
are later required for substitution into the output format.

Filter Value

 A 3-bit field of control information that is stored in the EPC Memory
Bank of a Gen 2 RFID Tag when the tag contains certain types of
EPCs. The filter value makes it easier to read desired RFID Tags in an
environment where there may be other tags present, such as reading
a pallet tag in the presence of a large number of item-level tags.

GID

[TDS] General Identifier – original hierarchical structure proposed for EPC by
Auto-ID Centre. GID is a generic scheme, not specifically aligned with
any particular GS1 identifier key or other existing identifier scheme.

Global Coupon Number
(GCN)

[GS1GS] The GS1 identification key used to identify a coupon. The key
comprises a GS1 Company Prefix, coupon reference, check digit and
an optional serial number.

Global Document Type
Identifier (GDTI)

[GS1GS] The GS1 identification key used to identify a document type. The key
comprises a GS1 Company Prefix, document type, check digit and
optional serial number.

Global Individual Asset
Identifier (GIAI)

[GS1GS] The GS1 identification key used to identify an individual asset. The
key comprises a GS1 Company Prefix and individual asset reference.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 79 of 108

Term Defined / specified
in

Meaning

Global Location Number
(GLN)

[GS1GS] The GS1 identification key used to identify physical locations or
parties. The key comprises a GS1 Company Prefix, location reference
and check digit.

Global Returnable Asset
Identifier (GRAI)

[GS1GS] The GS1 identification key used to identify returnable assets. The key
comprises a GS1 Company Prefix, asset type, check digit and optional
serial number.

Global Service Relation
Number (GSRN)

[GS1GS] The GS1 identification key used to identify the relationship between
an organisation offering services and the recipient or provider of
services. The key comprises a GS1 Company Prefix, service reference,
and check digit.

Global Trade Item
Number (GTIN)

[GS1GS] The GS1 identification key used to identify trade items. The key
comprises a GS1 Company Prefix, an item reference and check digit.

GS1 Company Prefix
(GCP)

[GS1GS] A unique string of four to twelve digits used to issue GS1 identification
keys. The first digits are a valid GS1 Prefix and the length must be at
least one longer than the length of the GS1 Prefix. The GS1 Company
Prefix is issued by a GS1 Member Organisation. As the GS1 Company
Prefix varies in length, the issuance of a GS1 Company Prefix
excludes all longer strings that start with the same digits from being
issued as GS1 Company Prefixes.

GS1 Digital Link URI A standardised Web URI format for GS1 identification keys, to enable
linking/redirection to multiple types of information and services on the
Web as well as use within Linked Data

GS1 identification key

[GS1GS] A unique identifier for a class of objects (e.g., trade items) or an
instance of an object (e.g., logistic unit).
Examples include GTIN, SSCC, GLN, GRAI, GIAI, GDTI, GSRN. [TDS]
defines EPC formats for GS1 identi.

GS1 System Architecture [GS1Arch] Defines and describes the architecture of the GS1 system of
standards. The GS1 system is the collection of standards, guidelines,
solutions, and services created by the GS1 community.

GSRNP [GS1GS] The Global Service Relation Number (GSRN) may be used to identify
the provider of services in the context of a service relationship

Header

[TDS] A binary EPC prefix which indicates the EPC scheme and may also
indicate the tag length. 8 bit EPC headers are defined in the GS1 EPC
Tag Data Standard for all EPC schemes for which a binary encoding is
defined.

Identification of Trade
Item Pieces (ITIP)

[GS1GS]
[TDS]

The GTIN that is included in this element string is the GTIN for the
complete trade item. The piece number identifies a piece of the trade
item. The total count provides the total number of pieces of the trade
item.
The binary encoding of ITIP for RFID includes a mandatory Serial
Number.

Identifier Format The way in which the identifier is represented. Examples of different
types of format include sequences of binary digits (bits), sequences of
numeric or alphanumeric characters, as well as Uniform Resource
Identifiers (URIs). Specifically, within the TDT definition files,
BINARY, TAG_ENCODING, PURE_IDENTITY,
ELEMENT_STRING, BARE_IDENTIFIER and
GS1_DIGITAL_LINK formats.

Information Level[s]

 Higher-level formats that say nothing about the physical tag length,
nor include explicit information about the packaging/classification
level. Information levels include PURE_IDENTITY,
ELEMENT_STRING, BARE_IDENTIFIER and
GS1_DIGITAL_LINK formats.

Input format The format in which the identifier is supplied to the translation
software.
This may often be auto-detected from the input value.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 80 of 108

Term Defined / specified
in

Meaning

Input value The identifier to be translated. The format in which it is expressed is
the input format.

optionKey

 The optionKey is used to identify the appropriate option to use where
multiple variations are specified to deal with partitions of variable
length. A default strategy may be to simply iterate through all the
possible options and find only one where the format string matches
the input string. However, this approach fails when multiple options
match the input value. In this case, the translation software can use
the enumerated value of the optionKey to select the appropriate
option to use. Each option entry is numbered – and each level
specifies (via the name of a field) the appropriate option to choose.
For example for the GS1 codes, the level element always specifies
that the optionKey="companyprefixlength" , so for a GS1 Company
Prefix of '0037000', then field "companyprefixlength" would be
specified as 7 via the supplied parameters and therefore Option #7
would be chosen for both the input and output levels.

Options

 Variations to handle variable-length data partitions, such as those
resulting from the variable-length GS1 Company Prefix in the GS1
family of EPC schemes. Where multiple options are specified, the
same number of options should be specified for each format and
translation should always translate from the matching option within
the input format level to the corresponding option within the output
format level.

Output format The format in which the output from the translation software should
be expressed. This must be specified by the client.

Physical Level[s]

 Formats where the encoding conveys information about the physical
tag length (number of bits) and/or the packaging/classification level
of the object. Specifically, the BINARY, TAG_ENCODING formats.

prefixMatch

 The prefixMatch is a substring which is used to determine the scheme
of the input string. This is merely a method of optimizing the
performance of translation software by limiting the number of
pattern-match tests that are required, since the translation software
only attempts full pattern matching and processing for the options of
those schemes/levels whose prefixMatch matches at the start of the
input value.

Regular Expression
Pattern

 Regular expression patterns are used for comparing string values with
a defined pattern for the purposes of validation, as well as extraction
of substrings that match patterns specified within capturing groups
within the regular expression.

Rules

 There are already a number of requirements to perform various string
rearrangements and other calculations in order to comply with the
current TDS specification. Neither the regular expression patterns nor
the ABNF grammar contain any embedded inline functions. Instead,
additional fields are embedded and a separate list of rules are
provided, in order to define how their values should be derived from
fields whose values are already known. The rules also indicate the
context and running order in which they should be executed, namely
by specifying the scheme, level and stage of execution (EXTRACT or
FORMAT) and the running order as an integer index, with functions
executed in ascending order of the sequence number indicated by the
seq attribute

Serial Shipping Container
Code (SSCC)

[GS1GS] The GS1 identification key used to identify logistics units. The key
comprises an extension digit, GS1 Company Prefix, serial reference
and check digit.

Serialised Provides a unique serial number for each unique object referenced
using that EPC scheme

SGCN [TDS] Serialised Global Coupon Number (see GCN), including a mandatory
serial number.

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 81 of 108

Term Defined / specified
in

Meaning

SGCN [TDS] Serialised Global Coupon Number (see GCN), supplemented by a
mandatory serial number.

SGTIN [TDS] Serialised Global Trade Item Number. The SGTIN is used to assign a
unique identity to a specific instance of a trade item.

Supplied parameters

 Parameters that shall be supplied in addition to the input value,
mainly because the input value itself lacks specific information
required for constructing the output.

TDT Definition files

Provided in both
XML and JSON
formats at
https://ref.gs1.or
g/standards/tdt/a
rtefacts

A set of machine-readable data files that represent the patterns,
grammar, rules, and field constraints for each identifier EPC scheme.
Tag data translation software may periodically check for updated TDT
definition files and TDT tables, which it can then use to update its own
internal set of rules for performing the translations, whether this is
done at run-time or compile-time.

URI [RFC3986]

Uniform Resource Identifier, a compact sequence of characters that
identifies an abstract or physical resource. URIs include both URNs,
URLs and Web URIs.
A Web URI is resolvable, whereas resolution of a URN is generally not
well supported in a straightforward and uniform manner.

URN

[RFC8141] Uniform Resource Name, a Uniform Resource Identifier (URI) that is
assigned under the "urn" URI scheme and a particular URN
namespace. Unlike a URL (Uniform Resource Locator) or Web URI,
which may change when a web page moves from one website to
another, a URN is intended to be a persistent reference, even if the
underlying binding to a particular website address changes. A Web
URI is resolvable, whereas resolution of a URN is generally not well
supported in a straightforward and uniform manner.

USDOD [TDS] US Department of Defense identifier. The USDOD may be used to
encode 96-bit Class 1 tags for shipping goods to the United States
Department of Defense by a supplier who has already been assigned
a CAGE (Commercial and Government Entity) code.

11 References 1747

[ABNF] D. Crocker, "Augmented BNF for Syntax Specifications: ABNF", RFC5234, January 2008, 1748
https://www.rfc-editor.org/info/rfc5234 1749

[GS1Arch] "The GS1 System Architecture", GS1 technical document, 1750
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf 1751

[GCheckD] GS1 check digit calculator, GS1 online tool, https://www.gs1.org/services/check-digit-1752
calculator 1753

[GS1DL] GS1 Digital Link Standard: URI Syntax, https://www.gs1.org/standards/gs1-digital-link 1754

[GS1GS] "GS1 General Specifications", GS1, https://www.gs1.org/standards/barcodes-epcrfid-id-1755
keys/gs1-general-specifications 1756

[ISO15962] ISO/IEC 15962, “Information technology – Radio frequency identification (RFID) for 1757
item management – Data protocol: data encoding rules and logical memory functions”. 1758

[PCRE] "PCRE – PERL-Compliant Regular Expressions", Philip Hazel, 2015, http://www.pcre.org 1759

[RFC3986] T. Berners-Lee, "Uniform Resource Identifier (URI): Generic Syntax", RFC3986, January 1760
2005, https://www.ietf.org/rfc/rfc3986 1761

[RFC8141] P. Saint-Andre, "Uniform Resource Names (URNs)", RFC8141, April 2017, 1762
https://www.ietf.org/rfc/rfc8141 1763

[TDS] GS1, "GS1 EPC Tag Data Standard" (TDS), GS1 standard, https://ref.gs1.org/standards/tds/ 1764

[UHFG2V2] EPCglobal, “EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID 1765
Protocol for Communications at 860 MHz – 960 MHz, Release 2.1,” GS1 Standard, July 2018, 1766

https://ref.gs1.org/standards/tdt/artefacts
https://ref.gs1.org/standards/tdt/artefacts
https://ref.gs1.org/standards/tdt/artefacts
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf
https://www.gs1.org/services/check-digit-calculator
https://www.gs1.org/services/check-digit-calculator
https://gs1go365-my.sharepoint.com/Users/craigalanrepec/Documents/00%20Standards/01%20TDS/TDS%202.0/%20Syntax,%20https:/www.gs1.org/standards/gs1-dig
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
http://www.pcre.org/
https://www.ietf.org/rfc/rfc3986
https://www.ietf.org/rfc/rfc8141
https://ref.gs1.org/standards/tds/

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 82 of 108

https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-1767
04.pdf 1768

[UML] "UML – Unified Modelling Language", Object Management Group, Inc., 2022, 1769
http://www.uml.org/ 1770

[USDOD] "United States Department of Defense Suppliers’ Passive RFID Information Guide", 1771

https://www.acq.osd.mil/log/LOG/.AIT.html/DoD_Suppliers_Passive_RFID_Info_Guide_v15update.p1772
df 1773

https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-airinterface_i21_r_2018-09-04.pdf
http://www.uml.org/
https://www.acq.osd.mil/log/LOG/.AIT.html/DoD_Suppliers_Passive_RFID_Info_Guide_v15update.pdf
https://www.acq.osd.mil/log/LOG/.AIT.html/DoD_Suppliers_Passive_RFID_Info_Guide_v15update.pdf

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 83 of 108

12 Flowcharts to assist encoding and decoding GS1 Application Identifiers 1774

(within new EPC schemes and for additional AIDC data) 1775

This chapter uses flowcharts to formally define the logic for encoding and decoding GS1 Application Identifiers, either within the new EPC 1776
schemes introduced in TDS 2.0 or for encoding/decoding additional AIDC data encoded after the EPC in such new EPC schemes. 1777

Much of the logic is shared in both approaches. The main difference is that within the new EPC schemes introduced in TDS 2.0, the TDT 1778
definition file expresses (via encodedAI) which GS1 Application Identifiers should appear after the binary encoding of the filter value (and 1779
after the prioritised date field in the case of DSGTIN+), so in this situation,only the values of the GS1 Application Identifiers are encoded 1780
within the EPC and the corresponding GS1 Application Identifier keys are not encoded within the binary data. For example, in the SGTIN+ 1781
EPC scheme, the binary header value (11110111) effectively signals that the scheme is SGTIN+ and therefore the value of GTIN (01) and 1782
the value of Serial Number (21) will be encoded after the filter value, so there is no need to encode '01' or '21' within the binary string. 1783

In contrast, for additional AIDC data encoded after the EPC identifier, the EPC scheme itself does not imply which GS1 Application Identifiers 1784
might be encoded afterwards, although care should be taken to respect the rules expressed within section 4.13.1 of the GS1 General 1785
Specifications regarding invalid pairings. For example, it would not be valid to encode (37) after an SGTIN+ EPC identifier because SGTIN+ 1786
expresses the values of (01) and (21) and section 4.13.1 of the GS1 General Specifications states that (01) and (37) is an invalid pairing, 1787
since (37) should be used in combination with SSCC (00) and contained GTIN (02) – so it would be acceptable for (37) and (02) to be 1788
encoded after the SSCC+ scheme, but not after SGTIN+, DSGTIN+ nor ITIP+. 1789

TDS Table F defines the binary format for encoding GS1 Application Identifiers in the new EPC schemes and in AIDC data. It is provided in 1790
machine-readable format in TDT Table F. Most GS1 Application Identifiers are encoded in binary as a single component but there are a 1791
small number that are expressed using two components – typically a fixed-length first component (often numeric-only), followed by a 1792
second component that may be variable-length and possibly alphanumeric. This reflects how GS1 Application Identifiers are structured 1793
within the GS1 General Specifications, taking into account opportunities for more efficient encoding of fixed-length numeric components. 1794

Section 12.1 provides flowcharts for the encoding process, while section 12.2 provides flowcharts for the decoding process. 1795

Both sections begin with a high-level flowchart showing the potential paths through the sequence of flowcharts, depending on whether the 1796
starting point was the encoding / decoding of additional AIDC data after the EPC identifier or whether the starting point was the encoding / 1797
decoding of GS1 Application Identifiers that are part of the EPC identifier. 1798

Section 3.17 provides worked examples for encoding/decoding the values for GTIN (01) and for Serial Number (21) within the SGTIN+ EPC 1799
scheme. Chapter 4 provides worked examples for encoding/decodiing additional AIDC data after the binary encoding of any of the new EPC 1800
identifiers introduced in TDS 2.0. 1801

 1802

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 84 of 108

12.1 Encoding GS1 Application Identifiers 1803

Figure 12-1 provides a high-level overview of the sequence of flowcharts for the encoding process. 1804

 1805
Figure 12-1 Encoding each additional piece of AIDC data 1806

 1807

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 85 of 108

Figure 12-2 E0 - Encoding +AIDC data after an EPC 1808

 1809
 1810

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 86 of 108

Figure 12-3 E1 - Decoding one or more elements of encodedAI in new EPC schemes 1811

 1812

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 87 of 108

Figure 12-4 E2- Decoding each element of encodedAI in new EPC schemes 1813

 1814

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 88 of 108

Figure 12-5 E3 - Encoding the first component 1815

 1816

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 89 of 108

Figure 12-6 E4 - Encoding the encoding indicator for the first component 1817

 1818

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 90 of 108

Figure 12-7 E5 - Encoding the length indicator for the first component 1819

 1820

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 91 of 108

Figure 12-8 E6 - Encoding the value for the first component 1821

 1822

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 92 of 108

Figure 12-9 E7 - Encoding the second component 1823

 1824

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 93 of 108

Figure 12-10 E8 - Encoding the encoding indicator for the second component 1825

 1826

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 94 of 108

Figure 12-11 E9 - Encoding the length indicator for the second component 1827

 1828

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 95 of 108

Figure 12-12 E10 - Encoding the value for the second component 1829

 1830
 1831

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 96 of 108

12.2 Decoding GS1 Application Identifiers 1832

Figure 12-13 provides a high-level overview of the sequence of flowcharts for the decoding process. 1833
 1834

Figure 12-13 Decoding each additional piece of AIDC data 1835

 1836

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 97 of 108

Figure 12-14 D0 - Decoding +AIDC data after an EPC 1837

 1838

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 98 of 108

Figure 12-15 D1 - Use Table K to determine the length of an AI key 1839

 1840

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 99 of 108

Figure 12-16 D2 - Decoding one or more elements of encodedAI in new EPC schemes 1841

 1842

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 100 of 108

Figure 12-17 D3 - Decoding each element of encodedAI in new EPC schemes 1843

 1844
 1845

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 101 of 108

Figure 12-18 D4 - Decoding the first component 1846

 1847
 1848

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 102 of 108

Figure 12-19 D5 - Decoding the encoding indicator for the first component 1849

 1850

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 103 of 108

Figure 12-20 D6 - Decoding the length indicator for the first component 1851

 1852

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 104 of 108

Figure 12-21 D7 - Decoding the value for the first component 1853

 1854

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 105 of 108

Figure 12-22 D8 - Decoding the second component 1855

 1856

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 106 of 108

Figure 12-23 D9 - Decoding the encoding indicator for the second component 1857

 1858

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 107 of 108

Figure 12-24 D10 - Decoding the length indicator for the second component 1859

 1860

EPC Tag Data Translation Standard (TDT)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 108 of 108

Figure 12-25 D11 - Decoding the value for the second component 1861

 1862

	0 Changes relative to previous versions
	1 Introduction
	1.1 What is an EPC?
	1.2 Where is an EPC defined? – in the GS1 EPC Tag Data Standard
	1.3 What is GS1 EPC Tag Data Translation?

	2 Translation between various formats
	3 Structure of TDT definition files
	3.1 Patterns (Regular Expressions)
	3.2 Grammar (Augmented Backus-Naur Form [ABNF])
	3.3 Rules for obtaining additional fields
	3.4 Using the information in TDT definition files within a translation process
	3.4.1 Pre-processing of input and post-processing of output
	3.4.1.1 Pre-processing of input
	3.4.1.2 Post-processing of output

	3.5 Definition of formats via Regular Expression Patterns and ABNF Grammar
	3.6 Determination of the input format
	3.7 Specification of the output format
	3.8 Specifying supplied parameter values
	3.9 Validation of values for fields and fields derived via rules
	3.10 Restricting and checking ranges for values of numeric fields in base 10
	3.11 Restricting and checking character ranges for values of fields
	3.12 Padding of fields
	3.12.1 Changes since TDT v1.0
	3.12.2 padChar and padDir
	3.12.3 bitPadDir and bitLength
	3.12.4 Summary of padding rules

	3.13 Compaction and Compression of values of fields
	3.14 Values of the name property of field objects within TDT definition files
	3.15 Rules and Derived Fields
	3.15.1 Decoding the GTIN (i.e. translating from pure-identity URN into an element string or Application Identifier format)
	3.15.2 Encoding the GTIN (i.e. translating from element string or Application Identifier format into pure-identity URN)

	3.16 Core Functions
	3.17 Encoded GS1 Application Identifiers in new EPC schemes introduced in TDS 2.0

	4 Encoding/Decoding of additional AIDC data after the EPC
	4.1 Encoding additional AIDC data after the EPC
	4.2 Decoding additional AIDC data after the EPC

	5 TDT Definition Files – formal definition
	5.1 Root object
	5.1.1 Datatype Properties (inline XML attributes)
	5.1.2 Object Properties (nested XML elements)

	5.2 Scheme object
	5.2.1 Datatype Properties (inline XML attributes)
	5.2.2 Object Properties (nested XML Elements)

	5.3 Level object
	5.4 Option object
	5.5 Field object
	5.5.1 Rule object

	5.6 encodedAI object

	6 Translation Process
	7 Tag Data Translation Software - Reference Implementation
	8 Application Programming Interface
	8.1 Client API
	8.2 Maintenance API

	9 TDT Schema, TDT Definition Files and TDT Tables
	10 Glossary (non-normative)
	11 References
	12 Flowcharts to assist encoding and decoding GS1 Application Identifiers (within new EPC schemes and for additional AIDC data)
	12.1 Encoding GS1 Application Identifiers
	12.2 Decoding GS1 Application Identifiers

