

 1

EPC Tag Data Standard (TDS)

defines the Electronic Product Code™ and specifies the
memory contents of Gen 2 RFID Tags

Release 2.2, Ratified, Feb 2025

 2

 3

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 2 of 315

Document Summary 4

Document Item Current Value

Document Name EPC Tag Data Standard (TDS)

Document Date Feb 2025

Document Version 2.2

Document Issue

Document Status Ratified

Document Description defines the Electronic Product Code™ and specifies the memory
contents of Gen 2 RFID Tags

Contributors 5

Name Organisation

Jaewook Byun Auto-ID Labs at KAIST

Jin Mitsugi Auto-ID Labs at Keio University

HJ Cha Avery Dennison RFID

Jeanne Duckett Avery Dennison RFID

John Gallant Avery Dennison RFID

Akane Mitsui Avery Dennison RFID

Kevin Berisso BAIT Consulting

Shi Yu Beijing REN JU ZHI HUI Technology Co. Ltd.

Tony Ceder Charming RFID

Josef Preishuber-Pflügl CISC Semiconductor GmbH

François-Régis Dousset DANONE SPA

Olivier Joyez DECATHLON

Michael Isabell CCL eAgile

Jim Springer EM Microelectronic

Odarci Maia Junior EMPRESA BRASILEIRA DE CORREIOS E TELEGRAFOS

Julie McGill FoodLogiQ

Guilda Javaheri Golden State Foods

Aruna Ravikumar GS1 Australia

Sue Schmid GS1 Australia

Jeroen van Weperen GS1 Australia

Ethan Ward GS1 Australia

Eugen Sehorz GS1 Austria

Luiz Costa GS1 Brasil

Roberto Matsubayashi GS1 Brasil

Huipeng Deng GS1 China

Zhimin Li GS1 China

Gao Peng GS1 China

Yi Wang GS1 China

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 3 of 315

Name Organisation

Ruoyun Yan GS1 China

Marisa Lu GS1 Chinese Taipei

Sandra Hohenecker GS1 Germany

Roman Winter GS1 Germany

Steven Keddie GS1 Global Office

Timothy Marsh GS1 Global Office

Craig Alan Repec (editor) GS1 Global Office

Greg Rowe GS1 Global Office

John Ryu GS1 Global Office

Claude Tetelin GS1 Global Office

Elena Tomanovich GS1 Global Office

Mohit Tomar GS1 Global Office

Wayne Luk GS1 Hong Kong, China

K K Suen GS1 Hong Kong, China

Judit Egri GS1 Hungary

Linda Vezzani GS1 Italy

Koji Asano GS1 Japan

Kazuna Kimura GS1 Japan

Noriyuki Mama GS1 Japan

Mayu Sasase GS1 Japan

Yuki Sato GS1 Japan

Sergio Pastrana GS1 Mexico

Sarina Pielaat GS1 Netherlands

Gary Hartley GS1 New Zealand

Alice Mukaru GS1 Sweden

Heinz Graf GS1 Switzerland

Shawn Chen GS1 US

Norma Crockett GS1 US

Jonathan Gregory GS1 US

Andrew Meyer GS1 US

Gena Morgan GS1 US

Amber Walls GS1 US

Megan Brewster Impinj, Inc

Shinichi Ike Johnson & Johnson

Blair Korman Johnson & Johnson

Fabian Moritz Schenk Lambda ID GmbH

Don Ferguson Lyngsoe Systems Ltd.

Mark Harrison (editor) Milecastle Media Limited

Danny Haak Nedap

Chris Brown Printronix Auto ID

Jeffrey Chen Printronix Auto ID

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 4 of 315

Name Organisation

Marisa Campos PROAGRIND, Lda.

Akshay Koshti Robert Bosch GmbH

Holly Mitchell Seagull Scientific

Mo Ramzan SML

Jerome Torro SNCF Rolling Stock Department

Albertus Pretorius Tonnjes ISI Patent Holding GmbH

Masatoshi Oka TOPPAN

Taira Wakamiya TOPPAN

Elizabeth Waldorf TraceLink

Log of Changes 6

Release Date of Change Changed By Summary of Change

1.9.1 8 July 2015 D. Buckley New GS1 branding applied

1.10 Mar 2017 Craig Alan Repec Listed in full in the Abstract below

1.11 Sep 2017 Craig Alan Repec Listed in full in the Abstract below

1.12 April 2019 Craig Alan Repec and
Mark Harrison

WR 19-076
Added EPC URI for UPUI, to support EU
2018/574, as well as EPC URI for PGLN – GLN of
Party AI (417) – in accordance with GS1 General
Specifications 19.1;
Added normative specificatons around handling of
GCP length for individually assigned GS1 Keys;
Corrected ITIP pure identity pattern syntax;
Introduced "Fixed Width Integer" encoding and
decoding sections in support of ITIP binary
encoding.

1.13 September 2019 Craig Alan Repec WR 19-262 Added IMOVN EPC for IMO Vessel
Number;
WR 19-264 corrected GSIN syntax erratum in
section 6.3.12;
corrected UPUI example erratum in section 7.16.

2.0 Aug 2022 Mark Harrison and Craig
Alan Repec

Major release; see comprehensive summary of
changes in the "Differences from EPC Tag Data
Standard (TDS) Version 1.13" section,
immediately proceeding section 1.
Note that TDS will be updated as necessary to
harmonise with GS1's Gen2 v3 Air Interface
Protocol, once that standard has been published.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 5 of 315

Release Date of Change Changed By Summary of Change

2.1 Feb 2024 Mark Harrison and Craig
Alan Repec

Update to correct minor errors and errata in
version 2.0.
Updated URI grammar in sections 12 and 13.
Clarified use of ISO/IEC 20248 DigSig, using GS1
AI (8030), in section 17.
Updated section 9.2, including Figure 9-1 and
Table 9-2, to reflect encoding of ISO/IEC 20248
DigSig in User Memory.
Updated section 9.3, Figure 9-2 and Table 9-3 to
reflect the Read User Memory (RUM) indicator
specified in Gen2v3.
Updated Table 9-4 to reflect Gen2v3 assignments
to bits 214h-217h of XPC.
Updated section 16 to reflect mandatory
serialisation of TID specified in Gen2v3.
Also added support for AIs (7241), (7242),
(8030), (4330), (4331), (4332), (4333) and
(7011).
Additionally, the Packed Objects ID Table for Data
Format 9 in Section F.2 has been supplemented
with an external, normative artefact in CSV
format.

2.2 Feb 2025 Mark Harrison and
Craig Alan Repec

Updates to align with TDT 2.2.
Changed encoding method names and
descriptions on section 14.5, to allow for leading
zeros:
■ "Fixed-Bit-Length Integer" is changed to

"Fixed-Bit-Length Numeric String"
■ "Variable-length integer" is changed to

"Variable Length Numeric string"
■ "Variable-length integer without encoding

indicator" is changed to "Variable-Length
Numeric String without encoding indicator"

Added "Optional minus sign in 1 bit" encoding
method
Added "Sequence indicator" encoding method
Added the following AIs to Packed objects ID
Tables in sections F.1 and F.2 as well as TDS /
TDT Table F (used for encoding additional AIDC
after the EPC binary string within EPC/UII
memory, for new EPC schemes introduced in TDS
2.0 only):

• 7002
• 7041
• 716
• 7250
• 7251
• 7252
• 7253
• 7254
• 7255
• 7256
• 7257
• 7258
• 7259

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 6 of 315

Disclaimer 7

GS1 seeks to minimise barriers to the adoption of its standards and guidelines by making the intellectual property required 8
to implement them available, to the greatest extent possible, on a royalty-free basis, or when necessary, under a RAND 9
licence. Such royalty-free and RAND licences are provided pursuant to the GS1 IP Policy (available 10
here: https://www.gs1.org/standards/ip), which governs the work of work group participants who contribute to drafting 11
standards and guidelines, including this document. In addition to licences, the GS1 IP Policy provides various benefits and 12
obligations that apply to all implementers of GS1 standards and guidelines, and all implementations of GS1 standards are 13
subject to those terms. 14

Nevertheless, please note the possibility that an implementation of one or more features of this standard or guideline may 15
be the subject of a patent or other intellectual property right that is not covered by the licences granted pursuant to the IP 16
Policy. In addition, the licences granted under the IP Policy do not include the IP rights or claims of third parties who were 17
not participants in the corresponding standard development work group. 18

Accordingly, GS1 recommends that any person or organisation developing an implementation of this standard or guideline 19
should determine whether any patents or other intellectual property may encompass such implementation, and whether a 20
licence under a patent or other IP right is needed. The implementer should determine the potential need for licensing in 21
view of the details of the specific implementation being designed in consultation with that party's patent counsel. 22

The official versions of all GS1 standards and guidelines are provided as PDF files on GS1's online reference directory 23
(https://ref.gs1.org) (the "GS1 Reference"). Any other representations of standards or guidelines in any other format (e.g., 24
web pages) are provided for convenience and descriptive purposes only, and in the event of a conflict, the GS1 Reference 25
document shall govern. 26

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY 27
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR PARTICULAR PURPOSE, ACCURACY OR 28
COMPLETENESS, OR ANY WARRANTY OTHERWISE ARISING OUT OF THIS DOCUMENT. GS1 disclaims all liability for any 29
damages arising from any use or misuse of this document, whether special, indirect, consequential, or compensatory 30
damages, and including liability for infringement of any intellectual property rights, relating to use of information in or 31
reliance upon this document. 32

GS1 makes no commitment to update the information contained herein, and retains the right to make changes to this 33
document at any time, without notice. GS1® and the GS1 logo are registered trademarks of GS1 AISBL. 34

https://www.gs1.org/standards/ip
https://ref.gs1.org/

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 7 of 315

Table of Contents 35

Foreword ... 18 36

1 Introduction ... 26 37

2 Terminology and typographical conventions ... 27 38

3 Overview of TDS ... 27 39

4 The Electronic Product Code: A universal identifier for physical objects 30 40
4.1 The need for a universal identifier: an example ... 31 41
4.2 Use of identifiers in a Business Data Context .. 31 42
4.3 Relationship between EPCs and GS1 keys ... 33 43
4.4 Use of the EPC in the GS1 System Architecture ... 36 44

5 Common grammar elements ... 38 45

6 EPC URI .. 39 46
6.1 Use of the EPC URI .. 40 47
6.2 Assignment of EPCs to physical objects .. 40 48
6.3 EPC URI syntax ... 41 49

6.3.1 Serialised Global Trade Item Number (SGTIN) .. 43 50
6.3.2 Serial Shipping Container Code (SSCC) ... 43 51
6.3.3 Global Location Number With or Without Extension (SGLN) .. 44 52
6.3.4 Global Returnable Asset Identifier (GRAI) .. 44 53
6.3.5 Global Individual Asset Identifier (GIAI) .. 45 54
6.3.6 Global Service Relation Number – Recipient (GSRN) .. 46 55
6.3.7 Global Service Relation Number – Provider (GSRNP) ... 46 56
6.3.8 Global Document Type Identifier (GDTI) .. 46 57
6.3.9 Component / Part Identifier (CPI) ... 47 58
6.3.10 Serialised Global Coupon Number (SGCN) .. 48 59
6.3.11 Global Identification Number for Consignment (GINC) ... 48 60
6.3.12 Global Shipment Identification Number (GSIN) ... 49 61
6.3.13 Individual Trade Item Piece (ITIP) .. 49 62
6.3.14 Unit Pack Identifier (UPUI) ... 50 63
6.3.15 Global Location Number of Party (PGLN) .. 50 64
6.3.16 General Identifier (GID) ... 51 65
6.3.17 US Department of Defense Identifier (DOD) ... 51 66
6.3.18 Aerospace and Defense Identifier (ADI) ... 52 67
6.3.19 BIC Container Code (BIC) .. 53 68
6.3.20 IMO Vessel Number (IMOVN) ... 54 69

6.4 EPC Class URI Syntax .. 55 70
6.4.1 GTIN + Batch/Lot (LGTIN) ... 55 71

7 Correspondence between EPCs and GS1 Keys ... 56 72
7.1 The GS1 Company Prefix (GCP) in EPC encodings ... 56 73
7.2 Determining length of the EPC CompanyPrefix component for individually assigned GS1 Keys 56 74

7.2.1 Individually assigned GTINs ... 56 75

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 8 of 315

7.2.2 Individually assigned GLNs ... 57 76
7.2.3 Other individually assigned GS1 Keys .. 57 77

7.3 Serialised Global Trade Item Number (SGTIN) .. 57 78
7.3.1 GTIN-12 and GTIN-13 ... 59 79
7.3.2 GTIN-8 .. 59 80
7.3.3 RCN-8 ... 59 81
7.3.4 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007) 60 82
7.3.5 Restricted Circulation (GS1 Prefixes 02 and 20 – 29) ... 60 83
7.3.6 Coupon Code Identification for Restricted Distribution (GS1 Prefixes 981-984 and 99)... 60 84
7.3.7 Refund Receipt (GS1 Prefix 980) ... 60 85
7.3.8 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) .. 60 86

7.4 Serial Shipping Container Code (SSCC) .. 61 87
7.5 Global Location Number With or Without Extension (SGLN) .. 62 88
7.6 Global Returnable Asset Identifier (GRAI) ... 64 89
7.7 Global Individual Asset Identifier (GIAI) ... 65 90
7.8 Global Service Relation Number – Recipient (GSRN) .. 66 91
7.9 Global Service Relation Number – Provider (GSRNP) .. 67 92
7.10 Global Document Type Identifier (GDTI) .. 68 93
7.11 Component and Part Identifier (CPI) .. 69 94
7.12 Serialised Global Coupon Number (SGCN) .. 71 95
7.13 Global Identification Number for Consignment (GINC) ... 72 96
7.14 Global Shipment Identification Number (GSIN) ... 73 97
7.15 Individual Trade Item Piece (ITIP) ... 73 98
7.16 Unit Pack Identifier (UPUI) ... 75 99
7.17 Global Location Number of Party (PGLN) .. 76 100
7.18 GTIN + batch/lot (LGTIN) .. 77 101

8 URIs for EPC Pure identity patterns .. 78 102
8.1 Syntax ... 79 103
8.2 Semantics .. 81 104

9 Memory Organisation of Gen 2 RFID tags ... 82 105
9.1 Types of Tag Data ... 82 106
9.2 Gen 2 Tag Memory Map ... 83 107
9.3 PC bits ... 87 108
9.4 XPC bits ... 89 109

10 Filter Value .. 90 110
10.1 Use of "Reserved" and "All Others" Filter Values .. 91 111
10.2 Filter Values for SGTIN and DSGTIN+ EPC Tags .. 91 112
10.3 Filter Values for SSCC EPC Tags .. 91 113
10.4 Filter Values for SGLN EPC Tags .. 92 114
10.5 Filter Values for GRAI EPC Tags .. 92 115
10.6 Filter Values for GIAI EPC Tags ... 92 116
10.7 Filter Values for GSRN and GSRNP EPC Tags ... 93 117
10.8 Filter Values for GDTI EPC Tags .. 93 118
10.9 Filter Values for CPI EPC Tags ... 93 119
10.10 Filter Values for SGCN EPC Tags ... 94 120
10.11 Filter Values for ITIP EPC Tags .. 94 121

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 9 of 315

10.12 Filter Values for GID EPC Tags .. 94 122
10.13 Filter Values for DOD EPC Tags ... 94 123
10.14 Filter Values for ADI EPC Tags .. 94 124

11 Attribute bits (refer to 9.3 and 9.4) ... 96 125

12 EPC Tag URI and EPC Raw URI .. 96 126
12.1 Structure of the EPC Tag URI and EPC Raw URI .. 96 127
12.2 Control Information ... 97 128

12.2.1 Filter Values ... 98 129
12.2.2 Other control information fields .. 98 130

12.3 EPC Tag URI and EPC Pure Identity URI ... 99 131
12.3.1 EPC Binary Coding Schemes ... 99 132
12.3.2 EPC Pure Identity URI to EPC Tag URI .. 102 133
12.3.3 EPC Tag URI to EPC Pure Identity URI .. 103 134

12.4 Grammar .. 103 135

13 URIs for EPC Tag Encoding patterns .. 104 136
13.1 Syntax .. 105 137
13.2 Semantics ... 107 138

14 EPC Binary Encoding ... 107 139
14.1 Overview of Binary Encoding ... 108 140
14.2 EPC Binary Headers .. 108 141
14.3 Encoding procedure .. 111 142

14.3.1 "Integer" Encoding Method ... 111 143
14.3.2 "String" Encoding method ... 112 144
14.3.3 "Partition Table" Encoding method ... 112 145
14.3.4 "Unpadded Partition Table" Encoding method .. 113 146
14.3.5 "String Partition Table" Encoding method .. 114 147
14.3.6 "Numeric String" Encoding method .. 115 148
14.3.7 "6-bit CAGE/DODAAC" Encoding method ... 116 149
14.3.8 "6-Bit Variable String" Encoding method ... 116 150
14.3.9 "6-Bit Variable String Partition Table" Encoding method .. 117 151
14.3.10 "Fixed Width Integer" Encoding Method .. 118 152

14.4 Decoding procedure.. 118 153
14.4.1 "Integer" Decoding method ... 119 154
14.4.2 "String" Decoding method ... 119 155
14.4.3 "Partition Table" Decoding method ... 120 156
14.4.4 "Unpadded Partition Table" Decoding method .. 121 157
14.4.5 "String Partition Table" Decoding method ... 121 158
14.4.6 "Numeric String" Decoding method .. 122 159
14.4.7 "6-Bit CAGE/DoDAAC" Decoding method ... 123 160
14.4.8 "6-Bit Variable String" Decoding method ... 123 161
14.4.9 "6-Bit Variable String Partition Table" Decoding method ... 124 162
14.4.10 "Fixed Width Integer" Decoding method ... 125 163

14.5 Encoding/Decoding methods introduced in TDS 2.0 .. 125 164
14.5.1 "+AIDC Data Toggle Bit" ... 127 165
14.5.2 "Fixed-Bit-Length Numeric String" ... 128 166

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 10 of 315

14.5.3 "Prioritised Date" ... 129 167
14.5.4 "Fixed-Length Numeric" .. 131 168
14.5.5 "Delimited/Terminated Numeric".. 132 169
14.5.6 "Variable-length alphanumeric" ... 134 170
14.5.7 "Single data bit" .. 148 171
14.5.8 "6-digit date YYMMDD" ... 149 172
14.5.9 "10-digit date+time YYMMDDhhmm" .. 150 173
14.5.10 "Variable-format date / date range" ... 152 174
14.5.11 "Variable-precision date+time" .. 154 175
14.5.12 "Country code (ISO 3166-1 alpha-2)" ... 157 176
14.5.13 "Variable-length numeric string without encoding indicator" 159 177
14.5.14 "Optional minus sign in 1 bit" .. 160 178
14.5.15 "Sequence indicator" .. 161 179

14.6 EPC Binary coding tables ... 162 180
14.6.1 Serialised Global Trade Item Number (SGTIN) ... 163 181
14.6.2 Serial Shipping Container Code (SSCC) .. 166 182
14.6.3 Global Location Number with or without Extension (SGLN) .. 168 183
14.6.4 Global Returnable Asset Identifier (GRAI) ... 170 184
14.6.5 Global Individual Asset Identifier (GIAI) ... 173 185
14.6.6 Global Service Relation Number - Recipient (GSRN) ... 175 186
14.6.7 Global Service Relation Number - Provider (GSRNP) ... 177 187
14.6.8 Global Document Type Identifier (GDTI) ... 179 188
14.6.9 CPI Identifier (CPI) .. 182 189
14.6.10 Global Coupon Number (SGCN) ... 185 190
14.6.11 Individual Trade Item Piece (ITIP) ... 187 191
14.6.12 General Identifier (GID) .. 190 192
14.6.13 DoD Identifier ... 191 193
14.6.14 ADI Identifier (ADI) ... 191 194

15 EPC Memory Bank contents ... 192 195
15.1 Encoding procedures .. 192 196

15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank ... 192 197
15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank ... 193 198

15.2 Decoding procedures .. 194 199
15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI ... 194 200
15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI ... 194 201
15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI .. 195 202
15.2.4 Decoding of control information ... 195 203

15.3 '+AIDC data' following new EPC schemes in the EPC/UII memory bank 195 204

16 Tag Identification (TID) Memory Bank Contents 220 205
16.1 Short Tag Identification (TID) .. 220 206
16.2 Extended Tag identification (XTID) ... 221 207

16.2.1 XTID Header ... 222 208
16.2.2 XTID Serialisation .. 223 209
16.2.3 Optional Command Support segment ... 223 210
16.2.4 BlockWrite and BlockErase segment ... 224 211
16.2.5 User Memory and BlockPermaLock segment .. 225 212
16.2.6 Optional Lock Bit segment .. 226 213

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 11 of 315

16.3 Serialised Tag Identification (STID) .. 226 214
16.3.1 STID URI grammar .. 226 215
16.3.2 Decoding procedure: TID Bank Contents to STID URI ... 227 216

17 User Memory Bank Contents ... 227 217

18 Conformance ... 229 218
18.1 Conformance of RFID Tag Data .. 229 219

18.1.1 Conformance of Reserved Memory Bank (Bank 00) .. 229 220
18.1.2 Conformance of EPC Memory Bank (Bank 01).. 229 221
18.1.3 Conformance of TID Memory Bank (Bank 10) .. 230 222
18.1.4 Conformance of User Memory Bank (Bank 11) ... 230 223

18.2 Conformance of Hardware and Software Components ... 230 224
18.2.1 Conformance of hardware and software Components That Produce or Consume Gen 2 225
Memory Bank Contents .. 230 226
18.2.2 Conformance of hardware and software Components that Produce or Consume URI Forms 227
of the EPC ... 231 228
18.2.3 Conformance of hardware and software components that translate between EPC Forms232 229

18.3 Conformance of Human Readable Forms of the EPC and of EPC Memory Bank contents 233 230

A Character Set for Alphanumeric Serial Numbers 234 231

B Glossary (non-normative)... 236 232

C References .. 239 233

D Extensible Bit Vectors ... 240 234

E (non-normative) Examples: EPC encoding and decoding 241 235
E.1 Encoding a Serialised Global Trade Item Number (SGTIN) to SGTIN-96 241 236
E.2 Decoding an SGTIN-96 to a Serialised Global Trade Item Number (SGTIN) 243 237
E.3 Summary Examples of All EPC schemes .. 245 238

F Packed objects ID Table for Data Format 9 ... 251 239
F.1 Tabular Format (non-normative) .. 251 240
F.2 Comma-Separated-Value (CSV) format ... 266 241

G 6-Bit Alphanumeric Character Set ... 274 242

H (Intentionally Omitted) .. 275 243

I Packed Objects structure .. 276 244
I.1 Overview .. 276 245
I.2 Overview of Packed Objects documentation ... 276 246
I.3 High-Level Packed Objects format design .. 276 247
I.4 Format Flags section... 278 248
I.5 Object Info section ... 280 249
I.6 Secondary ID Bits section ... 286 250
I.7 Aux Format section .. 286 251
I.8 Data section .. 288 252
I.9 ID Map and Directory encoding options ... 291 253

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 12 of 315

J Packed Objects ID tables .. 296 254
J.1 Packed Objects data format registration file structure ... 296 255
J.2 Mandatory and optional ID table columns .. 298 256
J.3 Syntax of OIDs, IDstring, and FormatString Columns ... 300 257
J.4 OID input/output representation .. 302 258

K Packed Objects encoding tables.. 304 259

L Encoding Packed Objects (non-normative) ... 309 260

M Decoding Packed Objects (non-normative) ... 312 261
M.1 Overview .. 312 262
M.2 Decoding alphanumeric data .. 313 263

 264

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 13 of 315

Index of figures 265

 266
Figure 3-1 Organisation of the EPC Tag Data Standard (TDS) .. 29 267

Figure 4-1 Example Visibility Data Stream .. 31 268

Figure 4-2 Illustration of GRAI Identifier Namespace .. 32 269

Figure 4-3 Illustration of EPC Identifier Namespace.. 33 270

Figure 4-4 Illustration of Relationship of GS1 key and EPC Identifier Namespaces 34 271

Figure 4-5 EPC Structures used within the GS1 System Architecture .. 38 272

Figure 6-1 EPC Schemes and Where the Pure Identity Form is Defined ... 41 273

Figure 7-1 Correspondence between SGTIN EPC URI and GS1 element string.. 58 274

Figure 7-2 Correspondence between SSCC EPC URI and GS1 element string ... 61 275

Figure 7-3 Correspondence between SGLN EPC URI without extension and GS1 element string 62 276

Figure 7-4 Correspondence between SGLN EPC URI with extension and GS1 element string 63 277

Figure 7-5 Correspondence between GRAI EPC URI and GS1 element string ... 64 278

Figure 7-6 Correspondence between GIAI EPC URI and GS1 element string .. 65 279

Figure 7-7 Correspondence between GSRN EPC URI and GS1 element string .. 66 280

Figure 7-8 Correspondence between GSRNP EPC URI and GS1 element string ... 67 281

Figure 7-9 Correspondence between GDTI EPC URI and GS1 element string ... 68 282

Figure 7-10 Correspondence between CPI EPC URI and GS1 element string .. 70 283

Figure 7-11 Correspondence between SGCN EPC URI and GS1 element string .. 71 284

Figure 7-12 Correspondence between GINC EPC URI and GS1 element string ... 72 285

Figure 7-13 Correspondence between GSIN EPC URI and GS1 element string ... 73 286

Figure 7-14 Correspondence between ITIP EPC URI and GS1 element string ... 74 287

Figure 7-15 Correspondence between UPUI EPC URI and GS1 element string .. 75 288

Figure 7-16 Correspondence between PGLN EPC URI without extension and GS1 element string 76 289

Figure 7-17 Correspondence between LGTIN EPC Class URI and GS1 element string 77 290

Figure 9-1 Gen 2 Tag Memory Map .. 84 291

Figure 9-2 Gen 2 Protocol Control (PC) Bits Memory Map .. 86 292

Figure 12-1 Illustration of EPC Tag URI and EPC Raw URI ... 97 293

Figure 12-2 Illustration of Filter Value within EPC Tag URI .. 98 294

Figure 14-1 Example of the use of the +AIDC data toggle bit .. 127 295

Figure 14-2 Prioritised date format support for 6-digit date values ... 129 296

Figure 14-3 Example of numeric delimiter and terminator .. 132 297

Figure 14-4 Examples of "Variable-length alphanumeric" encoding method ... 134 298

Figure 14-5 Decision tree flowchart to select the most efficient encoding method based on the value being 299
encoded ... 135 300

Figure 14-6 Example value - alphanumeric, encoded as file-safe URI-safe base 64 140 301

Figure 14-7 Use of the "Variable-length URN Code 40" method to encode 6 characters 143 302

Figure 14-8 Example of alphanumeric encoded as 7-bit ASCII ... 147 303

Figure 14-9 Efficient encoding of YYMMDD date value using 16 bits ... 149 304

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 14 of 315

Figure 14-10 Encoding of YYMMDDhhmm date time value using 27 bits ... 150 305

Figure 14-11 Encoding of "Variable-format date / date range" .. 152 306

Figure 14-12 Encoding of "Variable-precision date+time" ... 155 307

Figure 14-13 ISO 3166-1 alpha-2 country code encoded as file-safe URI base 64 158 308

Figure 15-1 Example of '+AIDC data' in EPC/UII memory ... 196 309

Figure 15-2 Reading and interpreting additional bits after the 8-bit data header 198 310

Figure 15-3 Examples of encoding all-numeric and alphanumeric batch/lot number 216 311

Figure 15-4 Encoding more than one AIDC data value after the EPC .. 217 312

 313

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 15 of 315

Index of tables 314

 315
Table 4-1 EPC Schemes and Corresponding GS1 keys .. 35 316

Table 6-1 EPC Class Schemes and Where the Pure Identity Form is Defined .. 55 317

Table 9-1 Kinds of Data on a Gen 2 RFID Tag .. 82 318

Table 9-2 Gen 2 Memory Map .. 85 319

Table 9-3 Gen 2 Protocol Control (PC) Bits Memory Map ... 87 320

Table 10-1 SGTIN Filter Values .. 91 321

Table 10-2 SSCC Filter Values ... 91 322

Table 10-3 SGLN Filter Values ... 92 323

Table 10-4 GRAI Filter Values ... 92 324

Table 10-5 GIAI Filter Values .. 92 325

Table 10-6 GSRN and GSRNP Filter Values .. 93 326

Table 10-7 GDTI Filter Values ... 93 327

Table 10-8 CPI Filter Values .. 93 328

Table 10-9 SGCN Filter Values ... 94 329

Table 10-10 ITIP Filter Values ... 94 330

Table 10-11 ADI Filter Values ... 94 331

Table 12-1 Control information fields ... 98 332

Table 12-2 EPC Binary Coding Schemes and their limitations .. 100 333

Table 14-1 EPC Binary Header Values .. 109 334

Table 14-2 Summary of Encoding/Decoding methods introduced in TDS 2.0 ... 125 335

Table 14-3 "Fixed-Length Numeric" encoding table .. 131 336

Table 14-4 Encoding table for initial digits of "Delimited/Terminated Numeric" encoding method 132 337

Table 14-5 Mapping table for "Variable-length upper case hexadecimal" encoding method 138 338

Table 14-6 Mapping table for "Variable-length lower case hexadecimal" encoding method 139 339

Table 14-7 Mapping table for "Variable-length 6-bit file-safe URI-safe base 64" encoding method 141 340

Table 14-8 URN Code 40 character table .. 143 341

Table 14-9 Character table for "Variable-length 7-bit ASCII" encoding method 145 342

Table 14-10 Encoding table for "Country code (ISO 3166-1 alpha-2)" .. 158 343

Table 14-11 SGTIN Partition Table ... 163 344

Table 14-12 SGTIN-96 coding table ... 163 345

Table 14-13 SGTIN-198 coding table ... 164 346

Table 14-14 GRAI Partition Table ... 170 347

Table 14-15 GRAI-170 coding table ... 171 348

Table 14-16 GRAI+ coding table ... 172 349

Table 14-17 GIAI-96 Partition Table... 173 350

Table 14-18 GIAI-96 coding table .. 173 351

Table 14-19 CPI-96 coding table ... 183 352

Table 14-20 CPI-var coding table .. 184 353

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 16 of 315

Table 14-21 CPI+ coding table .. 184 354

Table 14-22 GID-96 coding table ... 190 355

Table 14-23 ADI-var coding table .. 191 356

Table 15-1 Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI ... 192 357

Table 15-2 Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI... 193 358

Table 16-1 Short TID format ... 221 359

Table 16-2 Non-Normative example: Extended Tag Identification (XTID) format for the TID memory bank360
... 222 361

Table 16-3 The XTID header ... 222 362

Table 16-4 Optional Command Support XTID Word .. 223 363

Table 16-5 XTID Block Write and Block Erase Information .. 224 364

Table 16-6 XTID Block PermaLock and User Memory Information .. 226 365

 366

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 17 of 315

Index of special encoding tables new to TDS 2.0 367

 368

Table Description TDS section

E Table E lists the permitted values for encoding indicator together
with the encoding methods and the character ranges supported by
each method.

14.5.6

K Table K is derived from GS1 Gen Specs Figure 7.8.1-2, adding an
additional column to indicate how many additional bits need to be
read beyond the initial eight bits of the data header.

15.3

F After determining the GS1 Application Identifier key (whether 2,3 or
4 digits), a lookup in column a of Table F explains how the
corresponding value is to be encoded.

B Table B calculates the number of bits required to encode the
value of a string of length L depending on the encoding
method selected. This table may be used to avoid the need for
floating-point arithmetic calculations.

 369

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 18 of 315

Foreword 370

Abstract 371

The EPC Tag Data Standard (TDS) defines the Electronic Product Code™, and also specifies the 372
memory contents of Gen 2 RFID Tags. In more detail, TDS covers two broad areas: 373

■ The specification of the Electronic Product Code (EPC), including its representation at various 374
levels of the GS1 System Architecture and its correspondence to GS1 keys and other existing 375
codes. 376

■ The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" 377
data, control information, and tag manufacture information. 378

Audience for this document 379

The target audience for this specification includes: 380

■ EPC Middleware vendors 381

■ RFID Tag users and encoders 382

■ Reader vendors 383

■ Application developers 384

■ System integrators 385

Differences from EPC Tag Data Standard Version 1.6 386

The EPC Tag Data Standard Version 1.7 is fully backward-compatible with EPC Tag Data Standard 387
Version 1.6. 388

The EPC Tag Data Standard Version 1.7 includes these new or enhanced features: 389

■ A new EPC Scheme, the Component and Part Identifier (CPI) scheme, has been added ; 390

■ Various typographical errors have been corrected. 391

Differences from EPC Tag Data Standard Version 1.7 392

The EPC Tag Data Standard Version 1.8 is fully backward-compatible with EPC Tag Data Standard 393
Version 1.7. 394

The EPC Tag Data Standard Version 1.8 includes the following enhacements: 395

■ The GIAI EPC Scheme has been allocated an additional Filter Value, "Rail Vehicle". 396

Differences from EPC Tag Data Standard Version 1.8 397

The EPC Tag Data Standard Version 1.9 is fully backward-compatible with EPC Tag Data Standard 398
Version 1.8. 399

The EPC Tag Data Standard Version 1.9 includes the following enhancements: 400

■ A new EPC Class URI to represent the combination of a GTIN plus a Batch/Lot (LGTIN) has been added. 401

■ A new EPC Scheme the SerialisedGlobal Coupon Number (SGCN), has been added along with the SGCN-402
96 binary encoding. 403

■ A new EPC Scheme, the Global Service Relation Number – Provider" (GSRNP), has been added along with 404
the GSRNP-96 binary encoding. This corresponds to the addition of AI (8017) to [GS1GS14.0]; 405

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 19 of 315

■ The existing GSRN EPC Scheme is retitled Global Service Relation Number – Recipient to harmonise with 406
[GS1GS14.0] update to AI (8018). The EPC Scheme name and URI is unchanged, however, to preserve 407
backward compatibility with TDS 1.8 and earlier. 408

■ New AIs are added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with 409
[GS1GS14.0], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers: 410

□ Packaging Component Number: AI (243) 411

□ Global Coupon Number: AI (255) 412

□ Country Subdivision of Origin: AI (427) 413

□ National Healthcare Reimbursement Number (NHRN) – Germany PZN: AI (710) 414

□ National Healthcare Reimbursement Number (NHRN) – France CIP: AI (711) 415

□ National Healthcare Reimbursement Number (NHRN) – Spain CN: AI (712) 416

□ National Healthcare Reimbursement Number (NHRN) – Brazil DRN: AI (713) 417

□ Component Part Identifier (8010) 418

□ Component / Part Identifier Serial Number (8011) 419

□ Global Service Relation Number – Provider: AI (8017) 420

□ Service Relation Instance Number (SRIN): AI (8019) 421

□ Extended Packaging URL: AI (8200) 422

■ DEPRECATED "Secondary data for specific health industry products" AI (22) in the Packed Objects ID 423
Table for EPC User Memory, to harmonise TDS with the GS1 General Specifications; 424

■ A new EPC binary encoding for the Global Document Type Identifier, GDTI-174, is to accommodate all 425
values of the GDTI serial number permitted by [GS1GS14.0] (1 – 17 alphanumeric characters, compared 426
to 1 – 17 numeric characters permitted in earlier versions of the GS1 General Specifications). 427

■ DEPRECATED the GDTI-113 EPC Binary Encoding; the GDTI-174 Binary Encoding should be used instead 428

■ Updated all [GS1GS14.0] version and section references; 429

■ Marked Attribute Bits information as pertaining only to Gen2 v 1.x tags; 430

■ Changed "ItemReference" to "ItemRefAndIndicator" in SGTIN general syntax; 431

■ Corrected provision on number of characters in "String" Encoding method’s validity test from "less than 432
b/7" to "less than or equal to b/7"; 433

■ Corrected various errata. 434

Differences from EPC Tag Data Standard Version 1.9 435

The EPC Tag Data Standard Version 1.10 is fully backward-compatible with EPC Tag Data Standard 436
Version 1.9. 437

The EPC Tag Data Standard Version 1.10 includes the following enhancements: 438

■ New EPC URIs have been added to represent the following identifiers: 439

□ GINC 440

□ GSIN 441

□ BIC container code 442

■ Clarification has been added regarding SGTIN Filter Values "Full Case for Transport" and "Unit Load"; 443

■ GDTI EPC Scheme has been allocated an additional Filter Value, "Travel Document"; 444

■ ADI EPC Scheme has been allocated a number of additional Filter Values, to harmonise with the 2015 445
release of ATA’s Spec 2000; 446

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 20 of 315

■ New AIs have been added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with 447
[GS1GS17.0], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers: 448

□ Sell by date: AI (16) 449

□ Percentage discount of a coupon: AI (394n) 450

□ Catch area: AI (7005) 451

□ First freeze date: AI (7006) 452

□ Harvest date: AI (7007) 453

□ Species for fishery purposes: AI (7008) 454

□ Fishing gear type: AI (7009) 455

□ Production method: AI (7010) 456

□ Software version: AI (8012) 457

□ Loyalty points of a coupon: AI (8111) 458

■ "GS1-128 Coupon Extended Code - NSC" AI (8102) has been marked as DEPRECATED; 459

■ Format string for "International Bank Account Number (IBAN)" AI (8007) has been corrected; 460

■ SGCN coding table has been corrected to include the SGCN header; 461

■ Short Tag Identifcation within the TID Memory Bank has been updated to align with [UHFC1G2v2.0]; 462

■ Correspondence between EPCs and GS1 Keys has been updated to accommodate 4- and 5-digit GCPs, to 463
align with [GS1GS17.0]; 464

■ Abstract, Audience and overview of Differences have been moved to a new "Foreword" section added 465
after the Table of Contents. 466

Differences from EPC Tag Data Standard (TDS) Version 1.10 467

TDS v 1.11 is fully backward-compatible with TDS v 1.10. 468

TDS v 1.11 includes the following enhancements: 469

■ A new EPC Scheme, the Individual Trade Item Piece (ITIP), has been added along with the ITIP-110 and 470
ITIP-212 binary encodings. 471

■ The following new AIs have been added to the Packed Objects ID Table for EPC User Memory, to 472
harmonise TDS with [GS1GS17.1], thereby ensuring that all AIs can be encoded in both barcode and 473
RFID data carriers: 474

□ GLN of the production or service location: AI (416) 475

□ Refurbishment lot ID: AI (7020) 476

□ Functional status: AI (7021) 477

□ Revision status: AI (7022) 478

□ Global Individual Asset Identifier (GIAI) of an Assembly: AI (7023) 479

■ Format string for AIs 91-99 has been revised to allow for up to 90 characters (previously up to 30), in 480
order to harmonise TDS with [GS1GS17.0]; 481

 Note: To harmonise with [GS1GS17.0], which have extended the length AIs 91-99 to 90 482
(previously 30) alphanumeric characters, TDS v 1.11 has extended the string format of AIs 483
91-99 (encoded by means of Packed Objects in User Memory) from 1*30an (alphanumeric, 484
length 1 to 30) to 1*an (alphanumeric, no upper bound). 485

This revision to tables F.1 and Fs.2 of TDS is fully backward compatible, allowing a tag written 486
per TDS 1.10 to decode properly per TDS 1.11. It is also mostly forward compatible, allowing 487
a tag written per TDS 1.11 to decode properly per TDS 1.10, as long as the length of AI 488

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 21 of 315

91,…,99 is 30 or fewer. A tag written per TDS 1.10 with a longer value for one of these AIs 489
may signal an error indicating that the value is too long, but other AIs will decode properly. 490
Another minor issue is that the encoding algorithm will no longer enforce an upper limit on 491
the length of an encoded value, so it will be possible to encode an AI 91-99 character value 492
that is too long per [GS1GS] (e.g. 100 character). Therefore, to ensure compliance with 493
the GenSpecs and rest of the GS1 System, AI 91-99 character values encoded in 494
User Memory should not exceed 90 characters in length. 495

■ Marked all EPC binary headers previously reserved for 64-bit encodings as now "Reserved for Future Use" 496
(RFU), reflecting the July 2009 sunsetting of the 64-bit encodings. 497

Differences from EPC Tag Data Standard (TDS) Version 1.11 498

TDS v 1.12 is fully backward-compatible with TDS v 1.11. 499

TDS v 1.12 includes the following enhancements: 500

■ The following EPC Schemes have been been added: 501

o UPUI 502

o PGLN 503

■ Guidance has been added (to section 7) to determine the length of the EPC CompanyPrefix component for 504
individually assigned GS1 Keys 505

■ "Fixed Width Integer" encoding and decoding methods have been added (to section 14) in support of 506
ITIP, 507

■ Coding method for the Piece and Total components of the ITIP has been corrected from "String" to "Fixed 508
Width Integer" 509

■ The following new AIs have been added to the Packed Objects ID Table for EPC User Memory, to 510
harmonise TDS with [GS1GS19.1], thereby ensuring that all AIs can be encoded in both barcode and 511
RFID data carriers: 512

□ Consumer product variant: AI (22) 513

□ Third party controlled, serialised extension of GTIN (TPX): AI (235) 514

□ Global Location Number of Party: AI (417) 515

□ National Healthcare Reimbursement Number (NHRN) – Portugal AIM: AI (714) 516

□ GS1 UIC with Extension 1 and Importer index (per EU 2018/574): AI (7040) 517

□ Global Model Number: AI (8013) 518

□ Identification of pieces of a trade item (ITIP) contained in a logistics unit: AI (8026) 519

□ Paperless coupon code identification for use in North America: AI (8112) 520

Differences from EPC Tag Data Standard (TDS) Version 1.12 521

TDS v 1.13 includes the following enhancement: 522

■ Added IMOVN EPC URIO, to encode the IMO Vessel Number. 523

■ Added Protocol ID: AI (7240) to the Packed Objects ID Table for EPC User Memory, to harmonise TDS 524
with [GS1GS19.1], ensuring support for all GS1 AIs in User Memory. 525

■ Corrected minor errata 526

TDS v 1.13 is fully backward-compatible with TDS v 1.12. 527

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 22 of 315

Differences from EPC Tag Data Standard (TDS) Version 1.13 528

TDS version 2.0 introduces twelve new EPC schemes and simplified binary encoding to promote 529
greater interoperability with barcodes. Existing EPC schemes already defined in TDS 1.13 remain 530
valid and are not deprecated. The new EPC schemes do not use partition tables and the length of 531
the GS1 Company Prefix is neither significant nor does it need to be known for the new binary 532
encodings. Each of the new EPC schemes may also be appended with additional AIDC data after the 533
EPC. Where appropriate, the new schemes make use of encoding indicators and length indicators to 534
support efficient binary encodings when encoding fewer characters than the maximum permitted or 535
when using a more restricted character set (e.g. only using digits where alphanumeric characters 536
are allowed). 537

In order to continue support for filtering and selection over the air interface based on the GS1 538
Company Prefix or the primary GS1 identifier (such as GTIN, SSCC etc.) the primary identifier is 539
encoded using 4 bits per digit in most of the new EPC schemes; the exceptions to this statement are 540
the new GIAI+ and CPI+ schemes because the GIAI and CPI permit alphanumeric characters to 541
follow immediately after the GS1 Company Prefix, so for GIAI+ and CPI+, it is only the initial 542
numeric digits of the GIAI and CPI that are encoded using 4 bits per digit. This can include any 543
initial all-numeric digits of the Individual Asset Identifier or the Component/Part Reference. These 544
are aligned on nibble boundaries and ensure that in each of the new schemes the primary identifier 545
and GS1 Company Prefix component appears at well-defined bit positions relative to the start of the 546
EPC/UII memory bank irrespective of the value of any indicator digit or extension digit that may be 547
present. No URN syntax is defined for the new EPC schemes but mappings to element strings and 548
GS1 Digital Link URIs are indicated. Because EPCIS/CBV 2.0 accepts a constrained subset of GS1 549
Digital Link URIs (specifically at instance-level granularity and without additional data attributes) as 550
a valid alternative to pure identity EPC URNs, there is no major need to define URN syntax for the 551
new EPC schemes introduced in TDS 2.0. 552

The filter values already defined for EPC schemes prior to TDS 2.0 remain valid and unaltered and 553
are carried forward into the corresponding new EPC schemes. For example, the new schemes 554
SGTIN+ and DSGTIN+ share the same set of filter values already defined for SGTIN-96 and SGTIN-555
198. 556

TDS 2.0 also introduces a new EPC binary encoding, DSGTIN+, a date-prioritised serialised GTIN in 557
which a critical date value appears before the GTIN within the binary encoding. This is expected to 558
be particularly useful for perishable goods, stock rotation and management of goods with limited 559
remaining shelf life. This enables an RFID reader to select products from any brand owner or 560
manufacturer where the critical date matches a specified value such as products whose use-by date 561
or sell-by date is today, so that they can be removed from the sales area or discounted for quick 562
sale. 563

TDS 2.0 now mentions GS1 Digital Link and recognises that a constrained subset of GS1 Digital Link 564
URIs may be used in EPCIS/CBV v2.0 event data, as a valid alternative to pure identity EPC URNs. 565

TDS v 2.0 includes the following enhancements and changes with respect to TDS v 1.13: 566

■ Sensor data (as encoded in the XPC bits) is included in "Business Data" carried by tags (section 9.1). 567

■ Encodings new to TDS 2.0 are described counting bits from left to right. 568

■ Clarification that the Length bits (10h-14h) in the PC Bits represent the number of 16-bit words 569
comprising the EPC field (beginning with bit 20h), including any optional "AIDC data" appended to the 570
EPC itself. 571

■ Description of the UMI bit (15h) has been aligned with § 6.3.2.1.2.2 of the Gen2v2 standard [UHFC1G2]. 572

■ Description of the XPC W1 indicator (16h) has been aligned with § 6.3.2.1.2.5 of [UHFC1G2]. 573

■ Description of the Attribute bits moved from section 11 to sections 9.3 and 9.4. 574

■ Description of XPC bits added as new section 9.4, aligned with § 6.3.2.1.2.5 of [UHFC1G2]. 575

■ Most EPC encoding examples have been updated to use sample GCP 9521141; the SGTIN examples in 576
section E use GTIN 09506000134352 to illustrate a resolvable GS1 Digital Link URI. 577

■ Twelve (12) new EPC Binary Headers in the F0-FB range have been added to section 14.2 for the new 578
"EPC+" encoding schemes. 579

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 23 of 315

■ EPC Binary Header FE has been reserved as an 'Unspecified' / 'Pad' Header for use with optimised Select 580
functionality tentatively planned for Gen2v3. 581

■ The "Integer" Encoding Method (section 14.3.1) now provides and explicit reminder that "leading zeros 582
are not permitted". 583

■ Section 14.5 specifies new Encoding/Decoding methods introduced in TDS 2.0, specifically: 584

□ "+AIDC Data Toggle Bit" 585

□ "Fixed-Bit-Length Numeric String" 586

□ "Prioritised Date" 587

□ "Fixed-Length Numeric" 588

□ "Delimited/Terminated Numeric" 589

□ "Variable-length alphanumeric" (section 14.5.6), including a decision tree to help 590
implementations determine the most efficient of the following encoding methods to use 591
(based on characters actually present in the value to be encoded): 592

- Variable-length numeric string 593

- Variable-length upper case hexadecimal 594

- Variable-length lower case hexadecimal 595

- Variable-length 6-bit file-safe URI-safe base 64 596

- Variable-length URN Code 40 597

- Variable-length 7-bit ASCII 598

□ "Single data bit" 599

□ "6-digit date YYMMDD" 600

□ "10-digit date+time YYMMDDhhmm" 601

□ "Variable-format date / date range" 602

□ "Variable-precision date+time" 603

□ "Country code (ISO 3166-1 alpha-2)" 604

■ EPC Memory Bank Decoding procedures now specify (section 15.2.4) one text string (rather than two text 605
strings in TDS 1.13) to include XPC_W1 and XPC_W2, when only the former or both of these exist, 606

■ Section 15.3 details encoding and decoding of the new "'+AIDC data' following new EPC schemes in the 607
EPC/UII memory bank" 608

■ Within the XTID Header (section 16.2.1), an indicator (bit 9 in XTID) has been added to specify that the 609
XTID includes the Lock Bit Segment; for the Serialisation bits of the XTID Header, clarification has been 610
provided to state that bit 15 is MSB abd bit 13 is LSB. 611

■ The Optional Lock Bit Segment (section 16.2.6) has been added to XTID, to indicate the current lock bit 612
settings for the memory banks on the tag, 613

■ The STID URI (section 16.3) has been corrected to reflect the X, S and F indicators and 9-bit MDID 614
introduced by Gen2 v2. 615

■ User Memory Bank Contents (section 17) have been updated to reflect support for ISO/IEC 20248 Digital 616
Signatures, and to refer to section 9.3 for an explanation of the UMI, 617

■ Section E includes updated examples for all EPC (TDS 1.13) and EPC+ (TDS 2.0) schemes. 618

■ Section F adds the following new GS1 Application Identifiers (AIs) for use in conjunction with Packed 619
Objects: 620

□ 395(***) 621

□ 4300 622

□ 4301 623

□ 4302 624

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 24 of 315

□ 4303 625

□ 4304 626

□ 4305 627

□ 4306 628

□ 4307 629

□ 4308 630

□ 4309 631

□ 4310 632

□ 4311 633

□ 4312 634

□ 4313 635

□ 4314 636

□ 4315 637

□ 4316 638

□ 4317 639

□ 4318 640

□ 4319 641

□ 4320 642

□ 4321 643

□ 4322 644

□ 4323 645

□ 4324 646

□ 4325 647

□ 4326 648

□ 715 649

□ 723s 650

□ 723s 651

□ 723s 652

□ 723s 653

□ 723s 654

□ 723s 655

□ 723s 656

□ 723s 657

□ 723s 658

□ 723s 659

Differences from EPC Tag Data Standard Version 2.0 660

TDS v 2.1 is fully backward-compatible with TDS v 2.0. 661

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 25 of 315

TDS v 2.0 includes the following changes with respect to TDS v 1.13: 662

■ Added index of figures 663

■ Added index of tables 664

■ Added text to Sections 6.3.16 and 14.6.12, General Identifier (GID), to indicate that General Manager 665
Number issuance has been discontinued, effective June 2023. 666

■ Added index of encoding Tables E, F, K and B, introduced to TDS 2.0/2.1 in sections 14.5.6 and 15.3. 667

■ Restored encoding Table B, which had been unintentionally omitted from the published version of TDS 668
2.0, to section 15.3. Table B calculates the number of bits required to encode the value of a string of 669
length L depending on the encoding method selected. This may be used to avoid the need for floating-670
point arithmetic calculations. 671

■ Restored missing rows to Table K, which had been unintentionally shortened in the published version of 672
TDS 2.0. Table K now includes all rows, including those where the AI key is 2 digits, so that those are 673
explicit; this means that any 2-digit string not present in the full Table K is currently also missing from 674
the corresponding table in GenSpecs and does not correspond to a currently defined AI key of 2, 3 or 4 675
digits. 676

■ Corrected Table E to resolve contradiction between Table E and the encoding indicators mentioned in 677
sections 14.5.6.2 and 14.5.6.3. 678

■ Section 17 (Packed Objects) now references new GS1 AI (8030) and clarifies the role of the Party GLN 679
(PGLN) as Domain Authority ID (DAID) when a [ISO20248] digital signature is associated with a GS1 680
element string. 681

■ Section F adds the following new GS1 Application Identifiers (AIs) for use in conjunction with Packed 682
Objects: 683

□ AIDC media type: AI (7241) 684

□ Version Control Number (VCN): AI (7242) 685

□ Digital Signature (DigSig): AI (8030) 686

□ Test by date: AI 7011 687

□ Maximum temperature in Fahrenheit: AI (4330) 688

□ Maximum temperature in Celsius: AI (4331) 689

□ Minimum temperature in Fahrenheit: AI (4332) 690

□ Minimum temperature in Celsius: AI (4333) 691

■ Typographical errors have been corrected in the Packed Objects ID Table for Data Format 9, in Sections 692
F.1 (non-normative tabular format) and F.2 (normative CSV format). 693

■ The Packed Objects ID Table for Data Format 9 in Section F.2 has been supplemented with an 694
external, normative artefact in CSV format. 695

TDS v 2.1 also corrects minor errors in non-normative examples and other errata discovered after 696
the publication of TDS v 2.0. 697

 698

Differences from EPC Tag Data Standard Version 2.1 699

TDS v 2.2 is fully backward-compatible with TDS v 2.1. 700

TDS v 2.2 includes the following changes with respect to TDS v 2.1: 701
■ Various adjustments to align with TDT 2.2. 702
■ Changed encoding method names and descriptions on section 14.5, to allow for leading zeros: 703

o "Fixed-Bit-Length Integer" (section 14.5.2) is changed to "Fixed-Bit-Length Numeric String" 704
o "Variable-length integer" (section 14.5.6.1) is changed to "Variable Length Numeric string" 705

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 26 of 315

o "Variable-length integer without encoding indicator" (section 14.5.13) is changed to "Variable-Length 706
Numeric String without encoding indicator" 707

■ Added "Optional minus sign in 1 bit" encoding method (section 14.5.14) 708
■ Added "Sequence indicator" encoding method (section 14.5.15) 709

■ Section F adds the following new GS1 Application Identifiers (AIs) for use in conjunction with Packed 710
Objects: 711

□ UN/CEFACT freight unit type: AI (7041) 712

□ National Healthcare Reimbursement Number (NHRN) – Italy AIC: AI (716) 713

□ Date of birth: AI (7250) 714

□ Date and time of birth: AI (7251) 715

□ Biological sex: AI (7252) 716

□ Family name of person: AI (7253) 717

□ Given name of person: AI (7254) 718

□ Name suffix of person: AI (7255) 719

□ Full name of person: AI (7256) 720

□ Address of person: AI (7257) 721

□ Baby birth sequence indicator: AI (7258) 722

□ Baby of family name: AI (7259) 723

■ A typographical error has been corrected in the Packed Objects ID Table for Data Format 9, in Section F.2 724
(normative CSV format). 725

TDS v 2.2 also corrects minor errors in non-normative examples and other errata discovered after 726
the publication of TDS v 2.1. 727

 728

1 Introduction 729

The EPC Tag Data Standard defines the Electronic Product Code™ (EPC), and specifies the memory 730
contents of Gen 2 RFID Tags. In more detail, TDS covers two broad areas: 731

■ The specification of the Electronic Product Code, including its representation at various levels of the GS1 732
Architecture and its correspondence to GS1 keys and other existing codes. 733

■ The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" data, 734
control information, and tag manufacture information. 735

The Electronic Product Code (EPC) is a universal identifier for any physical object. It is used in 736
information systems that need to track or otherwise refer to physical objects. A very large subset of 737
applications that use the EPC also rely upon RFID Tags as a data carrier. For this reason, a large 738
part of TDS is concerned with the encoding of EPCs onto RFID tags, along with defining the 739
standards for other data apart from the EPC that may be stored on a Gen 2 RFID tag. 740

Therefore, the two broad areas covered by TDS (the EPC and RFID) overlap in the parts where the 741
encoding of the EPC onto RFID tags is discussed. Nevertheless, it should always be remembered 742
that the EPC and RFID are not at all synonymous: EPC is an identifier, and RFID is a data carrier. 743
RFID tags contain other data besides EPC identifiers (and in some applications may not carry an EPC 744
identifier at all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts 745
including the URI form used within information systems, printed human-readable EPC URIs, and EPC 746
identifiers derived from barcode data following the procedures in this standard). 747

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 27 of 315

2 Terminology and typographical conventions 748

Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, 749
CAN, and CANNOT are to be interpreted as specified in Annex G of the ISO/IEC Directives, Part 2, 750
2001, 4th edition [ISODir2]. When used in this way, these terms will always be shown in ALL CAPS; 751
when these words appear in ordinary typeface they are intended to have their ordinary English 752
meaning. 753

All sections of this document, with the exception of Section Introduction are normative, except 754
where explicitly noted as non-normative. 755

The following typographical conventions are used throughout the document: 756

■ ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 757

■ Monospace type is used for illustrations of identifiers and other character strings that exist within 758
information systems. 759

The term "Gen 2 RFID Tag" (or just "Gen 2 Tag") as used in this specification refers to any RFID tag 760
that conforms to the EPCglobal UHF Class 1 Generation 2 Air Interface, Version 1.2.0 or later 761
[UHFC1G2], as well as any RFID tag that conforms to another air interface standard that shares the 762
same memory map. Bitwise addresses within Gen 2 Tag memory banks are indicated using 763
hexadecimal numerals ending with a subscript "h"; for example, 20h denotes bit address 764
20 hexadecimal (32 decimal). 765

3 Overview of TDS 766

This section provides an overview of TDS and how the parts fit together. 767

TDS covers two broad areas: 768

■ The specification of the EPC, including its representation at various levels of the GS1 System Architecture 769
and its correspondence to GS1 keys and other existing codes. 770

■ The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" data, 771
control information, and tag manufacture information. 772

The EPC is a universal identifier for any physical object, although EPC URI formats are also defined 773
for locations and organisations. It is used in information systems that need to track or otherwise 774
refer to physical objects. Within computer systems, including electronic documents, databases, and 775
electronic messages, the EPC takes the form of an Internet Uniform Resource Identifier (URI). This 776
is true regardless of whether the EPC was originally read from an RFID tag or some other kind of 777
data carrier. This URI is called the "Pure Identity EPC URI." The following is an example of a Pure 778
Identity EPC URI: 779

urn:epc:id:sgtin:9521141.012345.4711 780

This same identifier can also be encoded as a canonical GS1 Digital Link URI [GS1DL] as follows: 781

https://id.gs1.org/01/09521141123454/21/4711 782

or as a non-canonical GS1 Digital link URI such as: 783

https://example.com/01/09521141123454/21/4711 784
or even (with some additional URI path information): 785

https://example.com/some/path/info/01/09521141123454/21/4711 786

Note that these example GS1 Digital Link URIs are not currently configured to redirect to a 787
demonstration Web page. 788

A very large subset of applications that use EPCs also rely upon RFID tags as a data carrier. RFID is 789
often a very appropriate data carrier technology to use for applications involving visibility of physical 790
objects, because RFID permits data to be physically attached to an object such that reading the 791
data is minimally invasive to material handling processes. For this reason, a large part of TDS is 792
concerned with the encoding of EPCs onto RFID tags, along with defining the standards for other 793
data apart from the EPC that may be stored on a Gen 2 RFID tag. Owing to memory limitations of 794
RFID tags, the EPC is not stored in URI form on the tag, but is instead encoded into a compact 795

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 28 of 315

binary representation. This is called the "EPC Binary Encoding" and refers to on-tag encoding of the 796
EPC, regardless of the choice of which specific EPC scheme is used. 797

Therefore, the two broad areas covered by TDS (the EPC and RFID) overlap in the parts where the 798
encoding of the EPC onto RFID tags is discussed. Nevertheless, it should always be remembered 799
that the EPC and RFID are not at all synonymous: EPC is an identifier, and RFID is a data carrier. 800
RFID tags contain other data besides EPC identifiers (and in some applications may not carry an EPC 801
identifier at all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts 802
currently including the URI form used within information systems, printed human-readable EPC 803
URIs, and EPC identifiers derived from barcode data following the procedures in this standard). 804

The term "Electronic Product Code" (or "EPC") is used when referring to the EPC regardless of the 805
concrete form used to represent it. The term "Pure Identity EPC URI" is used to refer specifically to 806
the text form the EPC takes within computer systems, including electronic documents, databases, 807
and electronic messages. The term "EPC Binary Encoding" is used specifically to refer to the form 808
the EPC takes within the memory of RFID tags. 809

The following figure illustrates the parts of TDS and how they fit together. (The colours in the figure 810
refer to the types of data that may be stored on RFID tags, explained further in Section 9.1.). 811

Note that filter values are included within the EPC Binary Encoding of many EPC schemes but are 812
specific to RFID tags and (with the exception of Application Level Events (ALE)), are not included at 813
any other layer of the GS1 System Architecture, nor are they present in element strings, pure 814
identity EPC URIs nor GS1 Digital Link URIs. They are intended primarily for low-level applications 815
rather than information exchange and do not reliably express logistic level (e.g. item, case, pallet), 816
nor should they be confused with the indicator digit of a GTIN-14 or the extension digit of an SSCC. 817
There are risks of relying on the filter value if this is not harmonised across the stakeholders who 818
use it. 819

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 29 of 315

Figure 3-1 Organisation of the EPC Tag Data Standard (TDS) 820

 821
The first few sections define those aspects of the Electronic Product Code that are independent from 822
RFID. 823

Section 4 provides an overview of the Electronic Product Code (EPC) and how it relates to other GS1 824
standards and the GS1 General Specifications. 825

Section 6 specifies the Pure Identity EPC URI form of the EPC. This is a textual form of the EPC, and 826
is recommended for use in business applications and business documents as a universal identifier 827
for any physical object for which visibility information is kept. In particular, this form is what is used 828
as the "what" dimension of visibility data in the EPCIS specification, and is also available as an 829
output from the Application Level Events (ALE) interface. 830

Section 7 specifies the correspondence between Pure Identity EPC URIs as defined in Section 6 and 831
barcode element strings as defined in the GS1 General Specifications. 832

Section 7.11 specifies the Pure Identity Pattern URI, which is a syntax for representing sets of 833
related EPCs, such as all EPCs for a given trade item regardless of serial number. 834

The remaining sections address topics that are specific to RFID, including RFID-specific forms of the 835
EPC as well as other data apart from the EPC that may be stored on Gen 2 RFID tags. 836

Section 9 provides general information about the memory structure of Gen 2 RFID Tags. 837

Sections 10 and 11 specify "control" information that is stored in the EPC memory bank of Gen 2 838
tags along with a binary-encoded form of the EPC (EPC Binary Encoding). Control information is 839
used by RFID data capture applications to guide the data capture process by providing hints about 840

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 30 of 315

what kind of object the tag is affixed to. Control information is not part of the EPC, and does not 841
comprise any part of the unique identity of a tagged object. There are two kinds of control 842
information specified: the "filter value" (Section 10) that makes it easier to read desired tags in an 843
environment where there may be other tags present, such as reading a pallet tag in the presence of 844
a large number of item-level tags, and "Attribute bits" (Sections 9.3 and 9.4) that provide additional 845
special attribute information such as alerting to the presence of hazardous material. The same 846
"Attribute bits" are available regardless of what kind of EPC is used, whereas the available "filter 847
values" are different depending on the type of EPC (and with certain types of EPCs, no filter value is 848
available at all). 849

Section 12 specifies the "tag" Uniform Resource Identifiers, which is a compact string representation 850
for the entire data content of the EPC memory bank of Gen 2 RFID Tags. This data content includes 851
the EPC together with "control" information as defined in Section 9.1. In the "tag" URI, the EPC 852
content of the EPC memory bank is represented in a form similar to the Pure Identity EPC URI. 853
Unlike the Pure Identity EPC URI, however, the "tag" URI also includes the control information 854
content of the EPC memory bank. The "tag" URI form is recommended for use in capture 855
applications that need to read control information in order to capture data correctly, or that need to 856
write the full contents of the EPC memory bank. "Tag" URIs are used in the Application Level Events 857
(ALE) interface, both as an input (when writing tags) and as an output (when reading tags). 858

Section 13 specifies the EPC Tag Pattern URI, which is a syntax for representing sets of related RFID 859
tags based on their EPC content, such as all tags containing EPCs for a given range of serial 860
numbers for a given trade item. 861

Sections 14 and 9.2 specify the contents of the EPC memory bank of a Gen 2 RFID tag at the bit 862
level. Section 14 specifies how to translate between the "tag" URI and the EPC Binary Encoding. The 863
binary encoding is a bit-level representation of what is actually stored on the tag, and is also what is 864
carried via the Low Level Reader Protocol (LLRP) interface. Section 9.2 specifies how this binary 865
encoding is combined with Attribute bits and other control information in the EPC memory bank. 866

Section 16 specifies the binary encoding of the TID memory bank of Gen 2 RFID Tags. 867

Section 17 specifies the binary encoding of the User memory bank of Gen 2 RFID Tags. 868

4 The Electronic Product Code: A universal identifier for 869

physical objects 870

The Electronic Product Code is designed to facilitate business processes and applications that need 871
to manipulate visibility data – data about observations of physical objects. The EPC is a universal 872
identifier that provides a unique identity for any physical object. The EPC is designed to be unique 873
across all physical objects in the world, over all time, and across all categories of physical objects. It 874
is expressly intended for use by business applications that need to track all categories of physical 875
objects, whatever they may be. 876

By contrast, GS1 identification keys defined in the GS1 General Specifications [GS1GS] can identify 877
categories of objects (GTIN), unique objects (SSCC, GLN, GIAI, GSRN, CPID), or a hybrid (GRAI, 878
GDTI, GCN) that may identify either categories or unique objects depending on the absence or 879
presence of a serial number. (Two other keys, GINC and GSIN, identify logical groupings, not 880
physical objects.) The GTIN, as the only category identification key, requires a separate serial 881
number to uniquely identify an object but that serial number is not considered part of the 882
identification key. 883

There is a well-defined correspondence between EPCs and GS1 keys. This allows any physical object 884
that is already identified by a GS1 key (or GS1 key + serial number combination) to be used in an 885
EPC context where any category of physical object may be observed. Likewise, it allows EPC data 886
captured in a broad visibility context to be correlated with other business data that is specific to the 887
category of object involved and which uses GS1 keys. 888

The remainder of this section elaborates on these points. 889

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 31 of 315

4.1 The need for a universal identifier: an example 890

The following example illustrates how visibility data arises, and the role the EPC plays as a unique 891
identifier for any physical object. In this example, there is a storage room in a hospital that holds 892
radioactive samples, among other things. The hospital safety officer needs to track what things have 893
been in the storage room and for how long, in order to ensure that exposure is kept within 894
acceptable limits. Each physical object that might enter the storage room is given a unique 895
Electronic Product Code, which is encoded onto an RFID Tag affixed to the object. An RFID reader 896
positioned at the storage room door generates visibility data as objects enter and exit the room, as 897
illustrated below. 898

Figure 4-1 Example Visibility Data Stream 899

 900
As the illustration shows, the data stream of interest to the safety officer is a series of events, each 901
identifying a specific physical object and when it entered or exited the room. The unique EPC for 902
each object is an identifier that may be used to drive the business process. In this example, the EPC 903
(in Pure Identity EPC URI form) would be a primary key of a database that tracks the accumulated 904
exposure for each physical object; each entry/exit event pair for a given object would be used to 905
update the accumulated exposure database. 906

This example illustrates how the EPC is a single, universal identifier for any physical object. The 907
items being tracked here include all kinds of things: trade items, reusable transports, fixed assets, 908
service relations, documents, among others that might occur. By using the EPC, the application can 909
use a single identifier to refer to any physical object, and it is not necessary to make a special case 910
for each category of thing. 911

4.2 Use of identifiers in a Business Data Context 912

Generally speaking, an identifier is a member of set (or "namespace") of strings (names), such that 913
each identifier is associated with a specific thing or concept in the real world. Identifiers are used 914
within information systems to refer to the real world thing or concept in question. An identifier may 915
occur in an electronic record or file, in a database, in an electronic message, or any other data 916
context. In any given context, the producer and consumer must agree on which namespace of 917

Visibility Data Stream at Storage Room Entrance
Time In /

Out
EPC Comment

8:23am In urn:epc:id:sgtin:9521141.012345.62852 10cc Syringe #62852
(trade item)

8:52am In urn:epc:id:grai:9521141.54321.2528 Pharma Tote #2528
(reusable transport)

8:59am In urn:epc:id:sgtin:9521141.012345.1542 10cc Syringe #1542
(trade item)

9:02am Out urn:epc:id:giai:9521141.17320508 Infusion Pump #52 (fixed
asset)

9:32am In urn:epc:id:gsrn:9521141.0000010253 Nurse Jones (service
relation)

9:42am Out urn:epc:id:gsrn:9521141.0000010253 Nurse Jones (service
relation)

9:52am In urn:epc:id:gdti:9521141.00001.1618034 Patient Smith’s chart
(document)

RFID Reader

Hospital
Storage Room

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 32 of 315

identifiers is to be used; within that context, any identifier belonging to that namespace may be 918
used. 919

The keys defined in the GS1 General Specifications [GS1GS1] are each a namespace of identifiers 920
for a particular category of real-world entity. For example, the Global Returnable Asset Identifier 921
(GRAI) is a key that is used to identify returnable assets, such as plastic totes and pallet skids. The 922
set of GRAI codes can be thought of as identifiers for the members of the set "all returnable assets." 923
A GRAI code may be used in a context where only returnable assets are expected; e.g., in a rental 924
agreement from a moving services company that rents returnable plastic crates to customers to 925
pack during a move. This is illustrated below. 926

Figure 4-2 Illustration of GRAI Identifier Namespace 927

 928
The upper part of the figure illustrates the GRAI identifier namespace. The lower part of the figure 929
shows how a GRAI might be used in the context of a rental agreement, where only a GRAI is 930
expected. 931

GRAI = 09521141123454400 (100 liter tote #AB23)

GRAI = 09521141123455500(500 liter tote #XY67)

GRAI = 09521141123454500 (100 liter tote #AB24)

GRAIs: All returnable
assets

<RentalRecord>
 <Items>
 <grai>09521141123454400</grai>
 <grai>09521141123454500</grai>
 …

Establishes the context as returnable assets

Therefore, any GRAI could go here
(and nothing else)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 33 of 315

Figure 4-3 Illustration of EPC Identifier Namespace 932

 933
In contrast, the EPC namespace is a space of identifiers for any physical object, physical location or 934
organisation. The set of EPCs can be thought of as identifiers for the members of the set "all 935
physical objects, physical locations or organisations." EPCs are used in contexts where any type of 936
physical object may appear, such as in the set of observations arising in the hospital storage room 937
example above. Note that the EPC URI as illustrated in Figure 4-3 includes strings such as sgtin, 938
grai, and so on as part of the EPC URI identifier. This is in contrast to GS1 Keys, where no such 939
indication is part of the key itself; instead, this is indicated outside of the key, such as in the XML 940
element name <grai> in the example in Figure 4-2 in the Application Identifier (AI) that 941
accompanies a GS1 key in a GS1 element string. 942

4.3 Relationship between EPCs and GS1 keys 943

There is a well-defined relationship between EPCs and GS1 keys. For each GS1 key that denotes an 944
individual physical object, there is a corresponding EPC, including both an EPC URI and a binary 945
encoding for use in RFID tags. In addition, each GS1 key that denotes a class or grouping of 946
physical objects has a corresponding URI form. These correspondences are formally defined by 947
conversion rules specified in Section 7, which define how to map a GS1 key to the corresponding 948
EPC value and vice versa. The well-defined correspondence between GS1 keys and EPCs allows for 949
seamless migration of data between GS1 key and EPC contexts as necessary. 950

EPCs:
All physical objects

(N.B. EPCs can also
identify physical

locations and
organisations)

EPC = urn:epc:id:sgtin:9521141.012345.62852
(10cc Syringe #62852 – trade item)

EPC = urn:epc:id:grai:9521141.54321.2528
(Pharma Tote #2528 – reusable asset)

<EPCISDocument>
 <ObjectEvent>
 <epcList>

 <epc>urn:epc:id:sgtin:9521141.012345.62852</epc>
 <epc>urn:epc:id:grai:9521141.54321.2528</epc>
 …

Establishes the context as all EPCs
(physical objects, locations, organisations)

Therefore, any EPC could go here

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 34 of 315

Figure 4-4 Illustration of Relationship of GS1 key and EPC Identifier Namespaces 951

 952
Not every GS1 key corresponds to an EPC, nor vice versa. Specifically: 953

■ A Global Trade Item Number (GTIN) by itself does not correspond to an EPC, because a GTIN identifies a 954
class of trade items, not an individual trade item. The combination of a GTIN and a unique serial number, 955
however, does correspond to an EPC. This combination is called a Serialised Global Trade Item Number, 956
or SGTIN. The GS1 General Specifications do not define the SGTIN as a GS1 key. 957

GIAIs: All fixed assets

SSCCs: All logistics loads

EPCs: all physical objects (N.B.
EPCs can also identify physical

locations and organisations)

GTINs: All trade item
classes (not individuals)

+ all serial numbers

GRAIs: All reusable
asset classes and

individuals

+ all serial numbers

(Not shown: SGLN, GDTI, GSRN, GID, and
USDoD identifiers)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 35 of 315

■ In the GS1 General Specifications, the Global Returnable Asset Identifier (GRAI) can be used to identify 958
either a class of returnable assets, or an individual returnable asset, depending on whether the optional 959
serial number is included. Only the form that includes a serial number, and thus identifies an individual, 960
has a corresponding EPC. The same is true for the Global Document Type Identifier (GDTI) and the Global 961
Coupon Number (GCN) – hereafter, in this context, "Serialised Global Coupon Number (SGCN)". 962

■ There is an EPC corresponding to each Global Location Number (GLN), and there is also an EPC 963
corresponding to each combination of a GLN with an extension component. Collectively, these EPCs are 964
referred to as SGLNs.1 965

■ EPCs include identifiers for which there is no corresponding GS1 key. These include the General Identifier 966
and the US Department of Defense identifier and the Aerospace and Defense Identifier. 967

The following table summarises the EPC schemes defined in this specification and their 968
correspondence to GS1 keys. 969

Table 4-1 EPC Schemes and Corresponding GS1 keys 970

EPC Scheme Tag Encodings Corresponding GS1 key Typical use

sgtin sgtin-96
sgtin-198

sgtin+

dsgtin+

GTIN key (plus added serial
number)

Trade item

sscc sscc-96

sscc+

SSCC Pallet load or other logistics unit
load

sgln sgln-96
sgln-195

sgln+

GLN of physical location
(with or without additional
extension)

Location

grai grai-96
grai-170

grai+

GRAI (serial number
mandatory)

Returnable/reusable asset

giai giai-96
giai-202

giai+

GIAI Fixed asset

gsrn gsrn-96

gsrn+

GSRN – Recipient Hospital admission or club
membership

gsrnp gsrnp-96

gsrnp+

GSRN for service provider Medical caregiver or loyalty club

gdti gdti-96
gdti-113
(DEPRECATED)
gdti-174

gdti+

GDTI (serial number
mandatory)

Document

cpi cpi-96
cpi-var

cpi+

[none] Technical industries (e.g.
automotive) - components and
parts

sgcn sgcn-96

sgcn+

GCN (serial number
mandatory)

Coupon

1 Note that in this context, the letter "S" does not stand for "serialized" as it does in SGTIN. See Section 6.3.3
for an explanation.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 36 of 315

EPC Scheme Tag Encodings Corresponding GS1 key Typical use

ginc [none] GINC Logical grouping of goods
intended for transport as a
whole, assigned by a freight
forwarder

gsin [none] GSIN Logical grouping of logistic units
travelling under one despatch
advice and/or bill of lading

itip itip-110

itip-212

itip+

(8006) + (21) One of multiple pieces
comprising, and subordinate to, a
whole (which is, in turn,
identified by an SGTIN or the
combination of AIs 01 + 21).

upui [none] GTIN + TPX Pack identification to combat
illicit trade

pgln [none] Party GLN Identification of economic
operator; identification of owning
party or possessing party in the
Chain of Custody (CoC) / Chain
of Ownership (CoO)

gid gid-96 [none] Unspecified

usdod usdod-96 [none] US Dept of Defense supply chain

adi adi-var [none] Aerospace and defense – aircraft
and other parts and items

bic [none] [none] Intermodal shipping containers

imovn [none] [none] Vessel identificaton

4.4 Use of the EPC in the GS1 System Architecture 971

The GS1 System Architecture [GS1Arch] is a collection of hardware, software, and data standards, 972
together with shared network services, all in service of a common goal of enhancing business flows 973
and computer applications. The GS1 System Architecture includes software standards at various 974
levels of abstraction, from low-level interfaces to RFID reader devices all the way up to the business 975
application level. 976

The EPC and related structures specified herein are intended for use at different levels within the 977
GS1 System Architecture. Specifically: 978

■ Pure Identity EPC URI: A representation of an EPC is as an Internet Uniform Resource Identifier (URI) 979
called the Pure Identity EPC URI. Before TDS 2.0, the Pure Identity EPC URI was the preferred way to 980
denote a specific physical object within business applications. The Pure Identity URI may also be used at 981
the data capture level when the EPC is to be read from an RFID tag or other data carrier, in a situation 982
where the additional "control" information present on an RFID tag is not needed. 983

■ GS1 Digital Link URI (as an alternative to Pure Identity EPC URIs): Starting in TDS 2.0 and EPCIS 984
2.0 / CBV 2.0, there is now recognition that a GS1 Digital Link URI (or a constrained subset of these, 985
specifically at instance-level granularity and without additional data attributes) can provide an equivalent 986
way to denote a specific physical object within business applications and traceability data. Furthermore, a 987
GS1 Digital Link URI expresses GS1 Application Identifiers in a less convoluted syntax and can behave 988
like a URL, linking to multiple kinds of online information and services, making use of resolver 989
infrastructure for GS1 Digital Link and multiple link types defined in the GS1 Web vocabulary. GS1 Digital 990
Link URIs can also be used as Linked Data identifiers to express factual claims (e.g. using terms defined 991
in schema.org and the GS1 Web Vocabulary). 992

■ EPC Tag URI: The EPC memory bank of a Gen 2 RFID Tag contains the EPC plus additional "control 993
information" that is used to guide the process of data capture from RFID tags. The EPC Tag URI is a URI 994

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 37 of 315

string that denotes a specific EPC together with specific settings for the control information found in the 995
EPC memory bank. In other words, the EPC Tag URI is a text equivalent of the entire EPC memory bank 996
contents. The EPC Tag URI is typically used at the data capture level when reading from an RFID tag in a 997
situation where the control information is of interest to the capturing application. It is also used when 998
writing the EPC memory bank of an RFID tag, in order to fully specify the contents to be written. 999

■ Binary Encoding: The EPC memory bank of a Gen 2 RFID Tag actually contains a compressed encoding 1000
of the EPC and additional "control information" in a compact binary form. For the EPC schemes defined 1001
before TDS 2.0, there is a 1-to-1 translation between EPC Tag URIs and the binary contents of a Gen 2 1002
RFID Tag. For the new EPC schemes and binary encodings introduced in TDS 2.0, no new EPC Tag URI 1003
syntax is defined and encoding/decoding is between the binary representation and the corresponding GS1 1004
element strings or GS1 Digital Link URIs, as discussed in section 14.5. Normally, the binary encoding is 1005
only encountered at a very low level of software or hardware, and is translated to the EPC Tag URI or 1006
Pure Identity EPC URI form (for EPC schemes for which these are defined) before being presented to 1007
application logic. The binary encoding of the new EPC schemes introduced in TDS 2.0 would be more 1008
usually translated to GS1 element strings or GS1 Digital Link URIs. Starting in TDS 2.0 and EPCIS 2.0 / 1009
CBV 2.0, there is now recognition that a GS1 Digital Link URI (or a constrained subset of these, 1010
specifically at instance-level granularity and without additional data attributes) can provide an equivalent 1011
way to denote a specific physical object within business applications and traceability data. 1012

Note that both the Pure Identity EPC URI and the GS1 Digital Link URI are independent of choice of 1013
data carrier (e.g. EPC/RFID or barcodes), while the EPC Tag URI and the Binary Encoding are 1014
specific to Gen 2 RFID Tags because they include RFID-specific "control information" in addition to 1015
the unique EPC identifier. 1016

The figure below illustrates where these structures normally occur in relation to the layers of the 1017
GS1 System Archtecture. 1018

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 38 of 315

Figure 4-5 EPC Structures used within the GS1 System Architecture 1019

 1020

5 Common grammar elements 1021

The syntax of various URI forms defined herein is specified via ABNF grammar defined in [RFC5234] 1022
and [RFC7405]. The following grammar elements are used throughout this specification. 1023

ZeroComponent = "0" 1024

NonZeroDigit = "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" 1025

Digit = "0" / NonZeroDigit 1026

NonZeroComponent = NonZeroDigit 0*Digit 1027

 1028

NumericComponent = ZeroComponent / NonZeroComponent 1029

PaddedNumericComponent = 1*Digit 1030

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 39 of 315

PaddedNumericComponentOrEmpty = 0*Digit 1031

 1032

UpperAlpha = %x41-5A ; A-Z 1033

LowerAlpha = %x61-7A ; a-z 1034

OtherChar = "!" / "'" / "(" / ")" / "*" / "+" / "," / "-" / "." / ":" / ";" / "=" / 1035
"_" 1036

UpperHexChar = Digit / "A" / "B" / "C" / "D" / "E" / "F" 1037

HexChar = UpperHexChar / "a" / "b" / "c" / "d" / "e" / "f" 1038

HexComponent = 1*UpperHexChar 1039

HexComponentOrEmpty = 0*UpperHexChar 1040

Escape = "%" HexChar HexChar 1041

 1042

GS3A3Char = Digit / UpperAlpha / LowerAlpha / OtherChar / Escape 1043

GS3A3Component = 1*GS3A3Char 1044

 1045

CPRefChar = Digit / UpperAlpha / "-" / "%2F" / "%23" 1046

CPRefComponent = 1*CPRefChar 1047

The syntactic construct GS3A3Component is used to represent fields of GS1 codes that permit 1048
alphanumeric and other characters as specified in Figure 7.12-1 of the GS1 General Specifications 1049
(see Annex A.) Owing to restrictions on URN syntax as defined by [RFC2141], not all characters 1050
permitted in the GS1 General Specifications may be represented directly in a URN. Specifically, the 1051
characters " (double quote), % (percent), & (ampersand), / (forward slash), < (less than), > 1052
(greater than), and ? (question mark) are permitted in the GS1 General Specifications but may not 1053
be included directly in a URN. To represent one of these characters in a URN, escape notation must 1054
be used in which the character is represented by a percent sign, followed by two hexadecimal digits 1055
that give the ASCII character code for the character. 1056

The syntactic construct CPRefComponent is used to represent fields that permit upper-case 1057
alphanumeric and the characters hyphen, forward slash, and pound / number sign. Owing to 1058
restrictions on URN syntax as defined by [RFC2141], not all of these characters may be represented 1059
directly in a URN. Specifically, the characters # (pound / number sign) and / (forward slash) may 1060
not be included directly in a URN. To represent one of these characters in a URN, escape notation 1061
must be used in which the character is represented by a percent sign, followed by two hexadecimal 1062
digits that give the ASCII character code for the character. 1063

6 EPC URI 1064

This section specifies the "pure identity URI" form of the EPC, or simply the "EPC URI." Before TDS 1065
2.0, the EPC URI was the preferred way within an information system to denote a specific physical 1066
object. Starting in TDS 2.0 and EPCIS 2.0 / CBV 2.0, there is now recognition that a GS1 Digital 1067
Link URI (or a constrained subset of these, specifically at instance-level granularity and without 1068
additional data attributes) is an equivalent way to denote a specific physical object within business 1069
applications and traceability data, as discussed in further detail in section 4.4. 1070

The EPC URI is a string having the following form: 1071

urn:epc:id:scheme:component1.component2.… 1072

where scheme names an EPC scheme, and component1, component2, and following parts are the 1073
remainder of the EPC whose precise form depends on which EPC scheme is used. The available EPC 1074
schemes are specified below in Figure 6-1 in Section 6.3. 1075

An example of a specific EPC URI is the following, where the scheme is sgtin: 1076

urn:epc:id:sgtin:9521141.012345.4711 1077

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 40 of 315

Each EPC scheme provides a namespace of identifiers that can be used to identify physical objects 1078
of a particular type. Collectively, the EPC URIs from all schemes are unique identifiers for any type 1079
of physical object. 1080

6.1 Use of the EPC URI 1081

The structure of the EPC URI guarantees worldwide uniqueness of the EPC across all types of 1082
physical objects and applications. In order to preserve worldwide uniqueness, each EPC URI must be 1083
used in its entirety when a unique identifier is called for, and not broken into constituent parts nor 1084
the urn:epc:id: prefix abbreviated or dropped. 1085

When asking the question "do these two data structures refer to the same physical object?", where 1086
each data structure uses an EPC URI to refer to a physical object, the question may be answered 1087
simply by comparing the full EPC URI strings as specified in [RFC3986], Section 6.2. In most cases, 1088
the "simple string comparison" method suffices, though if a URI contains percent-encoding triplets 1089
the hexadecimal digits may require case normalisation as described in [RFC3986], Section 6.2.2.1. 1090
The construction of the EPC URI guarantees uniqueness across all categories of objects, provided 1091
that the URI is used in its entirety. 1092

In other situations, applications may wish to exploit the internal structure of an EPC URI for 1093
purposes of filtering, selection, or distribution. For example, an application may wish to query a 1094
database for all records pertaining to instances of a specific product identified by a GTIN. This 1095
amounts to querying for all EPCs whose GS1 Company Prefix and item reference components match 1096
a given value, disregarding the serial number component. Another example is found in the Object 1097
Name Service (ONS) [ONS], which uses the first component of an EPC to delegate a query to a 1098
"local ONS" operated by an individual company. This allows the ONS system to scale in a way that 1099
would be quite difficult if all ONS records were stored in a flat database maintained by a single 1100
organisation. Note that although GS1's ONS standard has not yet been deprecated or withdrawn, it 1101
is no longer maintained and the infrastructure for ONS is no longer supported by GS1 Global Office. 1102
The GS1 Digital Link standard [GS1DL] specifies not only a Web URI syntax for GS1 identifiers but 1103
also a resolver / resolution capability for linking a GS1 Digital Link URI to one or more sources of 1104
relevant information and services, as a modern successor to ONS. 1105

While the internal structure of the EPC may be exploited for filtering, selection, and distribution as 1106
illustrated above, it is essential that the EPC URI be used in its entirety when used as a unique 1107
identifier. 1108

6.2 Assignment of EPCs to physical objects 1109

The act of allocating a new EPC and associating it with a specific physical object is called 1110
"commissioning." It is the responsibility of applications and business processes that commission 1111
EPCs to ensure that the same EPC is never assigned to two different physical objects; that is, to 1112
ensure that commissioned EPCs are unique. Typically, commissioning applications will make use of 1113
databases that record which EPCs have already been commissioned and which are still available. For 1114
example, in an application that commissions SGTINs by assigning serial numbers sequentially, such 1115
a database might record the last serial number used for each base GTIN. 1116

Because visibility data and other business data that refers to EPCs may continue to exist long after a 1117
physical object ceases to exist, an EPC is ideally never reused to refer to a different physical object, 1118
even if the reuse takes place after the original object ceases to exist. There are certain situations, 1119
however, in which this is not possible; some of these are noted below. Therefore, applications that 1120
process historical data using EPCs should be prepared for the possibility that an EPC may be reused 1121
over time to refer to different physical objects, unless the application is known to operate in an 1122
environment where such reuse is prevented. 1123

Seven of the EPC schemes specified herein correspond to GS1 keys, and so EPCs from those 1124
schemes are used to identify physical objects that have a corresponding GS1 key. When assigning 1125
these types of EPCs to physical objects, all relevant GS1 rules must be followed in addition to the 1126
rules specified herein. This includes the GS1 General Specifications [GS1GS], the GTIN Management 1127
Standard, and so on. In particular, an EPC of this kind may only be commissioned by the licensee of 1128
the GS1 Company Prefix that is part of the EPC, or has been delegated the authority to do so by the 1129
GS1 Company Prefix licensee. 1130

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 41 of 315

6.3 EPC URI syntax 1131

This section specifies the syntax of an EPC URI. 1132

The formal grammar for the EPC URI is as follows: 1133

EPC-URI = 1134

 SGTIN-URI / 1135

 SSCC-URI / 1136

 SGLN-URI / 1137

 GRAI-URI / 1138

 GIAI-URI / 1139

 GSRN-URI / 1140

 GDTI-URI / 1141

 CPI-URI / 1142

 SGCN-URI / 1143

 GINC-URI / 1144

 GSIN-URI / 1145

 ITIP-URI / 1146

 UPUI-URI / 1147

 PGLN-URI / 1148

 GID-URI / 1149

 DOD-URI / 1150

 ADI-URI / 1151

 BIC-URI / 1152

 IMOVN-URI 1153

where the various alternatives on the right hand side are specified in the sections that follow. 1154

Each EPC URI scheme is specified in one of the following subsections, as follows: 1155

Figure 6-1 EPC Schemes and Where the Pure Identity Form is Defined 1156

EPC Scheme Specified In Corresponding GS1 key Typical use

sgtin Section 6.3.1 GTIN (with added serial
number)

Trade item

sscc Section 6.3.2 SSCC Logistics unit

sgln Section 6.3.3 GLN (with or without
additional extension)

Location2

grai Section 6.3.4 GRAI (serial number
mandatory)

Returnable asset

giai Section 6.3.5 GIAI Fixed asset

gsrn Section 6.3.6 GSRN – Recipient Hospital admission or
club membership

2 While GLNs may be used to identify both locations and parties, the SGLN corresponds only to AI 414, which
[GS1GS] specifies is to be used to identify locations, and not parties.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 42 of 315

EPC Scheme Specified In Corresponding GS1 key Typical use

gsrnp Section 6.3.7 GSRN – Provider Medical caregiver or
loyalty club

gdti Section 6.3.8 GDTI (serial number
mandatory)

Document

cpi Section 6.3.9 [none] Technical industries
(e.g. automotive sector)
for unique identification
of parts and
components

sgcn Section 6.3.10 GCN (serial number
mandatory)

Coupon

ginc Section 6.3.11 GINC Logical grouping of
goods intended for
transport as a whole,
assigned by a freight
forwarder

gsin Section 6.3.12 GSIN Logical grouping of
logistic units travelling
under one despatch
advice and/or bill of
lading

itip Section 6.3.13 AI (8006) combined with AI
(21)

One of multiple pieces
comprising, and
subordinate to, a whole
(which is, in turn,
identified by an SGTIN or
the combination of AIs 01
+ 21).

upui Section 6.3.14 GTIN and TPX Pack identification to
combat illicit trade

pgln Section 6.3.15 Party GLN – AI (417) Identification of economic
operator; identification of
owning party or possessing
party in the Chain of
Custody (CoC) / Chain of
Ownership (CoO)

gid Section 6.3.16 [none] Unspecified

usdod Section 6.3.17 [none] US Dept of Defense
supply chain

adi Section 6.3.18 [none] Aerospace and Defense
sector for unique
identification of aircraft
and other parts and
items

bic Section 6.3.19 [none] Intermodal shipping
containers

imovn Section 6.3.20 [none] Vessel identificaton

Note that no new Pure Identity EPC URI formats are defined for the new EPC schemes and binary 1157
encodings introduced in TDS 2.0. 1158

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 43 of 315

6.3.1 Serialised Global Trade Item Number (SGTIN) 1159

The Serialised Global Trade Item Number EPC scheme is used to assign a unique identity to an 1160
instance of a trade item, such as a specific instance of a product or SKU. 1161

General syntax: 1162

urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber 1163

Example: 1164

urn:epc:id:sgtin:9521141.012345.4711 1165

Grammar: 1166

SGTIN-URI = %s"urn:epc:id:sgtin:" SGTINURIBody 1167

SGTINURIBody = 2(PaddedNumericComponent ".") GS3A3Component 1168

The number of characters in the two PaddedNumericComponent fields must total 13 (not including 1169
any of the dot characters). 1170

The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, which permits the 1171
representation of all characters permitted in the Application Identifier 21 Serial Number according to 1172
the GS1 General Specifications. SGTIN-URIs that are derived from 96-bit tag encodings, however, 1173
will have Serial Numbers that consist only of digits and which have no leading zeros (unless the 1174
entire serial number consists of a single zero digit). These limitations are described in the encoding 1175
procedures, and in Section 12.3.1. 1176

The SGTIN consists of the following elements: 1177

■ The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as 1178
the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.3.2 for the case of a GTIN-8. 1179

■ The Item Reference, assigned by the managing entity to a particular object class. The Item Reference 1180
as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or 1181
a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item 1182
Reference digits, and treating the result as a single numeric string. See Section 7.3.2 for the case of a 1183
GTIN-8. 1184

■ The Serial Number, assigned by the managing entity to an individual object. The serial number is not 1185
part of the GTIN, but is formally a part of the SGTIN. 1186

6.3.2 Serial Shipping Container Code (SSCC) 1187

The Serial Shipping Container Code EPC scheme is used to assign a unique identity to a logistics 1188
handling unit, such as the aggregate contents of a shipping container or a pallet load. 1189

General syntax: 1190

urn:epc:id:sscc:CompanyPrefix.SerialReference 1191

Example: 1192

urn:epc:id:sscc:9521141.1234567890 1193

Grammar: 1194

SSCC-URI = %s"urn:epc:id:sscc:" SSCCURIBody 1195

SSCCURIBody = PaddedNumericComponent "." PaddedNumericComponent 1196

The number of characters in the two PaddedNumericComponent fields must total 17 (not including 1197
any of the dot characters). 1198

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 44 of 315

The SSCC consists of the following elements: 1199

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1200
Prefix digits within a GS1 SSCC key. 1201

■ The Serial Reference, assigned by the managing entity to a particular logistics handling unit. The Serial 1202
Reference as it appears in the EPC URI is derived from the SSCC by concatenating the Extension Digit of 1203
the SSCC and the Serial Reference digits, and treating the result as a single numeric string. 1204

6.3.3 Global Location Number With or Without Extension (SGLN) 1205

The SGLN EPC scheme is used to assign a unique identity to a physical location, such as a specific 1206
building or a specific unit of shelving within a warehouse. 1207

General syntax: 1208

urn:epc:id:sgln:CompanyPrefix.LocationReference.Extension 1209

Example: 1210

urn:epc:id:sgln:9521141.12345.400 1211

Grammar: 1212

SGLN-URI = %s"urn:epc:id:sgln:" SGLNURIBody 1213

SGLNURIBody = PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 1214
GS3A3Component 1215

The number of characters in the two PaddedNumericComponent fields must total 12 (not including 1216
any of the dot characters). 1217

The Extension field of the SGLN-URI is expressed as a GS3A3Component, which permits the 1218
representation of all characters permitted in the Application Identifier 254 Extension according to 1219
the GS1 General Specifications. SGLN-URIs that are derived from 96-bit tag encodings, however, 1220
will have Extensions that consist only of digits and which have no leading zeros (unless the entire 1221
extension consists of a single zero digit). These limitations are described in the encoding 1222
procedures, and in Section 12.3.1. 1223

The SGLN consists of the following elements: 1224

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1225
Prefix digits within a GS1 GLN key. 1226

■ The Location Reference, assigned uniquely by the managing entity to a specific physical location. 1227

■ The GLN Extension, assigned by the managing entity to an individual unique location. If the entire GLN 1228
Extension is just a single zero digit, it indicates that the SGLN stands for a GLN, without an extension. 1229

 Non-Normative: Explanation (non-normative): Note that the letter "S" in the term "SGLN" 1230
does not stand for "serialised" as it does in SGTIN. This is because a GLN without an 1231
extension also identifies a unique location, as opposed to a class of locations, and so both 1232
GLN and GLN with extension may be considered as "serialised" identifiers. The term SGLN 1233
merely distinguishes the EPC form, which can be used either for a GLN by itself or GLN with 1234
extension, from the term GLN which always refers to the unextended GLN identifier. The 1235
letter "S" does not stand for anything. 1236

6.3.4 Global Returnable Asset Identifier (GRAI) 1237

The Global Returnable Asset Identifier EPC scheme is used to assign a unique identity to a specific 1238
returnable asset, such as a reusable shipping container or a pallet skid. 1239

General syntax: 1240

urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber 1241

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 45 of 315

Example: 1242

urn:epc:id:grai:9521141.12345.400 1243

Grammar: 1244

GRAI-URI = %s"urn:epc:id:grai:" GRAIURIBody 1245

GRAIURIBody = PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 1246
GS3A3Component 1247

The number of characters in the two PaddedNumericComponent fields must total 12 (not including 1248
any of the dot characters). 1249

The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which permits the 1250
representation of all characters permitted in the Serial Number according to the GS1 General 1251
Specifications. GRAI-URIs that are derived from 96-bit tag encodings, however, will have Serial 1252
Numbers that consist only of digits and which have no leading zeros (unless the entire serial number 1253
consists of a single zero digit). These limitations are described in the encoding procedures, and in 1254
Section 12.3.1. 1255

The GRAI consists of the following elements: 1256

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1257
Prefix digits within a GS1 GRAI key. 1258

■ The Asset Type, assigned by the managing entity to a particular class of asset. 1259

■ The Serial Number, assigned by the managing entity to an individual object. Because an EPC always 1260
refers to a specific physical object rather than an asset class, the serial number is mandatory in the GRAI-1261
EPC. 1262

6.3.5 Global Individual Asset Identifier (GIAI) 1263

The Global Individual Asset Identifier EPC scheme is used to assign a unique identity to a specific 1264
asset, such as a forklift or a computer. 1265

General syntax: 1266

urn:epc:id:giai:CompanyPrefix.IndividualAssetReference 1267

Example: 1268

urn:epc:id:giai:9521141.12345400 1269

Grammar: 1270

GIAI-URI = %s"urn:epc:id:giai:" GIAIURIBody 1271

GIAIURIBody = PaddedNumericComponent "." GS3A3Component 1272

The Individual Asset Reference field of the GIAI-URI is expressed as a GS3A3Component, which 1273
permits the representation of all characters permitted in the Serial Number according to the GS1 1274
General Specifications. GIAI-URIs that are derived from 96-bit tag encodings, however, will have 1275
Serial Numbers that consist only of digits and which have no leading zeros (unless the entire serial 1276
number consists of a single zero digit). These limitations are described in the encoding procedures, 1277
and in Section 12.3.1. 1278

The GIAI consists of the following elements: 1279

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the same as 1280
the GS1 Company Prefix digits within a GS1 GIAI key. 1281

■ The Individual Asset Reference, assigned uniquely by the managing entity to a specific asset. 1282

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 46 of 315

6.3.6 Global Service Relation Number – Recipient (GSRN) 1283

The Global Service Relation Number EPC scheme is used to assign a unique identity to a service 1284
recipient. 1285

General syntax: 1286

urn:epc:id:gsrn:CompanyPrefix.ServiceReference 1287

Example: 1288

urn:epc:id:gsrn:9521141.1234567890 1289

Grammar: 1290

GSRN-URI = %s"urn:epc:id:gsrn:" GSRNURIBody 1291

GSRNURIBody = PaddedNumericComponent "." PaddedNumericComponent 1292

The number of characters in the two PaddedNumericComponent fields must total 17 (not including 1293

any of the dot characters). 1294

The GSRN consists of the following elements: 1295

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1296
Prefix digits within a GS1 GSRN key. 1297

■ The Service Reference, assigned by the managing entity to a particular service recipient. 1298

6.3.7 Global Service Relation Number – Provider (GSRNP) 1299

The Global Service Relation Number – Provider (GSRNP) EPC scheme is used to assign a unique 1300
identity to a service provider. 1301

General syntax: 1302

urn:epc:id:gsrnp:CompanyPrefix.ServiceReference 1303

Example: 1304

urn:epc:id:gsrnp:9521141.1234567890 1305

Grammar: 1306

GSRNP-URI = %s"urn:epc:id:gsrnp:" GSRNURIBody 1307

GSRNPURIBody = PaddedNumericComponent "." PaddedNumericComponent 1308

The number of characters in the two PaddedNumericComponent fields must total 17 (not including 1309
any of the dot characters). 1310

The GSRNP consists of the following elements: 1311

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1312
Prefix digits within a GS1 GSRN key. 1313

■ The Service Reference, assigned by the managing entity to a particular service provider. 1314

6.3.8 Global Document Type Identifier (GDTI) 1315

The Global Document Type Identifier EPC scheme is used to assign a unique identity to a specific 1316
document, such as land registration papers, an insurance policy, and others. 1317

General syntax: 1318

urn:epc:id:gdti:CompanyPrefix.DocumentType.SerialNumber 1319

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 47 of 315

Example: 1320

urn:epc:id:gdti:9521141.12345.400 1321

Grammar: 1322

GDTI-URI = %s"urn:epc:id:gdti:" GDTIURIBody 1323

GDTIURIBody = PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 1324
GS3A3Component 1325

The number of characters in the first PaddedNumericComponent field and the 1326
PaddedNumericComponentOrEmpty field must total 12 (not including any of the dot characters). 1327

The Serial Number field of the GDTI-URI is expressed as a GS3A3Component, which permits the 1328
representation of all characters permitted in the Serial Number according to the GS1 General 1329
Specifications. GDTI-URIs that are derived from 96-bit tag encodings, however, will have Serial 1330
Numbers that have no leading zeros (unless the entire serial number consists of a single zero digit). 1331
These limitations are described in the encoding procedures, and in Section 12.3.1. 1332

The GDTI consists of the following elements: 1333

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1334
Prefix digits within a GS1 GDTI key. 1335

■ The Document Type, assigned by the managing entity to a particular class of document. 1336

■ The Serial Number, assigned by the managing entity to an individual document. Because an EPC always 1337
refers to a specific document rather than a document class, the serial number is mandatory in the GDTI-1338
EPC. 1339

6.3.9 Component / Part Identifier (CPI) 1340

The Component / Part EPC identifier is designed for use by the technical industries (including the 1341
automotive sector) for the unique identification of parts or components. 1342

The CPI EPC construct provides a mechanism to directly encode unique identifiers in RFID tags and 1343
to use the URI representations at other layers of the GS1 System Architecture. 1344

General syntax: 1345

urn:epc:id:cpi:CompanyPrefix.ComponentPartReference.Serial 1346

Example: 1347

urn:epc:id:cpi:9521141.123ABC.123456789 1348

urn:epc:id:cpi:9521141.123456.123456789 1349

Grammar: 1350

CPI-URI = %s"urn:epc:id:cpi:" CPIURIBody 1351

CPIURIBody = PaddedNumericComponent "." CPRefComponent "." NumericComponent 1352

The Component / Part Reference field of the CPI-URI is expressed as a CPRefComponent, which 1353
permits the representation of all characters permitted in the Component / Part Reference according 1354
to the GS1 General Specifications. CPI-URIs that are derived from 96-bit tag encodings, however, 1355
will have Component / Part References that consist only of digits, with no leading zeros, and whose 1356
length is less than or equal to 15 minus the length of the GS1 Company Prefix. These limitations are 1357
described in the encoding procedures, and in Section 12.3.1. 1358

The CPI consists of the following elements: 1359

■ The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. 1360

■ The Component/Part Reference, assigned by the managing entity to a particular object class. 1361

■ The Serial Number, assigned by the managing entity to an individual object. 1362

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 48 of 315

The managing entity or its delegates ensure that each CPI is issued to no more than one physical 1363
component or part. Typically this is achieved by assigning a component/part reference to designate 1364
a collection of instances of a part that share the same form, fit or function and then issuing serial 1365
number values uniquely within each value of component/part reference in order to distinguish 1366
between such instances. 1367

6.3.10 Serialised Global Coupon Number (SGCN) 1368

The Global Coupon Number EPC scheme is used to assign a unique identity to a coupon. 1369

General syntax: 1370

urn:epc:id:sgcn:CompanyPrefix.CouponReference.SerialComponent 1371

Example: 1372

urn:epc:id:sgcn:4012345.67890.04711 1373

Grammar: 1374

SGCN-URI = %s"urn:epc:id:sgcn:" SGCNURIBody 1375

SGCNURIBody = PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 1376
PaddedNumericComponent 1377

The number of characters in the first PaddedNumericComponent field and the 1378
PaddedNumericComponentOrEmpty field must total 12 (not including any of the dot characters). 1379

The Serial Component field of the SGCN-URI is expressed as a PaddedNumericComponent, which 1380
may contain up to 12 digits, including leading zeros, as per the GS1 General Specifications. The 1381
SGCN consists of the following elements: 1382

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1383
Prefix digits within a GS1 GCN key. 1384

■ The Coupon Reference, assigned by the managing entity for the coupon. 1385

■ The Serial Component, assigned by the managing entity to a unique instance of the coupon. Because an 1386
EPC always refers to a specific coupon rather than a coupon class, the serial number is mandatory in the 1387
SGCN-EPC. 1388

6.3.11 Global Identification Number for Consignment (GINC) 1389

The Global Identification Number for Consignment EPC scheme is used to assign a unique identity to 1390
a logical grouping of goods (one or more physical entities) that has been consigned to a freight 1391
forwarder and is intended to be transported as a whole. 1392

General syntax: 1393

urn:epc:id:ginc:CompanyPrefix.ConsignmentReference 1394

Example: 1395

urn:epc:id:ginc:9521141.xyz3311cba 1396

Grammar: 1397

GINC-URI = %s"urn:epc:id:ginc:" GINCURIBody 1398

GINCURIBody = PaddedNumericComponent "." GS3A3Component 1399

The Consignment Reference field of the GINC-URI is expressed as a GS3A3Component, which 1400
permits the representation of all characters permitted in the Serial Number according to the GS1 1401
General Specifications. 1402

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 49 of 315

The GINC consists of the following elements: 1403

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the same as 1404
the GS1 Company Prefix digits within a GS1 GINC key. 1405

■ The Consignment Reference, assigned uniquely by the freight forwarder. 1406

6.3.12 Global Shipment Identification Number (GSIN) 1407

The Global Shipment Identification Number EPC scheme is used to assign a unique identity to a 1408
logical grouping of logistic units for the purpose of a transport shipment from that consignor (seller) 1409
to the consignee (buyer). 1410

General syntax: 1411

urn:epc:id:gsin:CompanyPrefix.ShipperReference 1412

Example: 1413

urn:epc:id:gsin:9521141.123456789 1414

Grammar: 1415

GSIN-URI = %s"urn:epc:id:gsin:" GSINURIBody 1416

GSINURIBody = PaddedNumericComponent "." PaddedNumericComponent 1417

The number of characters in the two PaddedNumericComponent fields must total 16 (not including 1418
the dot character). 1419

The GSIN consists of the following elements: 1420

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1421
Prefix digits within a GS1 GSIN key. 1422

■ The Shipper Reference, assigned by the consignor (seller) of goods. 1423

6.3.13 Individual Trade Item Piece (ITIP) 1424

The Individual Trade Item Piece EPC scheme is used to assign a unique identity to a subordinate 1425
element of a trade item (e.g., left and right shoes, suit trousers and jacket, DIY trade item consisting 1426
of several physical units), the latter of which comprises multiple pieces. 1427

General syntax: 1428

urn:epc:id:itip:CompanyPrefix.ItemRefAndIndicator.Piece.Total.SerialNumber 1429

Example: 1430

urn:epc:id:itip:9521141.012345.01.02.987 1431

Grammar: 1432

ITIP-URI = %s"urn:epc:id:itip:" ITIPURIBody 1433

ITIPURIBody = 4(PaddedNumericComponent ".") GS3A3Component 1434

The number of characters in the first two PaddedNumericComponent fields must total 13 (not 1435
including any of the dot characters). 1436

The number of characters in each of the last two PaddedNumericComponent fields must be exactly 1437
2 (not including any of the dot characters). 1438

The combined number of characters in the four PaddedNumericComponent fields must total 17 1439
(not including any of the dot characters). 1440

The Serial Number field of the ITIP-URI is expressed as a GS3A3Component, which permits the 1441
representation of all characters permitted in the Application Identifier 21 Serial Number according to 1442

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 50 of 315

the GS1 General Specifications. ITIP-URIs that are derived from 110-bit tag encodings, however, 1443
will have Serial Numbers that consist only of digits and which have no leading zeros (unless the 1444
entire serial number consists of a single zero digit). These limitations are described in the encoding 1445
procedures, and in Section 12.3.1. 1446

The ITIP consists of the following elements: 1447

■ The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as 1448
the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.3.2 for the case of a GTIN-8. 1449

■ The Item Reference, assigned by the managing entity to a particular object class. The Item Reference 1450
as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or 1451
a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item 1452
Reference digits, and treating the result as a single numeric string. See Section 7.3.2 for the case of a 1453
GTIN-8. 1454

■ The Piece Number 1455

■ The Total Quantity of Pieces subordinate to the GTIN 1456

■ The Serial Number, assigned by the managing entity to an individual object. The serial number is not 1457
part of the GTIN, but is formally a part of both the SGTIN and the ITIP. 1458

6.3.14 Unit Pack Identifier (UPUI) 1459

The Unit Pack Identifier EPC scheme is used to uniquely identify an individual item for tobacco 1460
traceability in accordance with EU 2018/574. 1461

General syntax: 1462

urn:epc:id:upui:CompanyPrefix.ItemRefAndIndicator.TPX 1463

Example: 1464

urn:epc:id:upui:9521141.089456.51qIgY)%3C%26Jp3*j7'SDB 1465

Grammar: 1466

UPUI-URI = %s"urn:epc:id:upui:" UPUI-URIBody 1467

UPUI-URIBody = 2(PaddedNumericComponent ".") GS3A3Component 1468

The number of characters in the first two PaddedNumericComponent fields must total 13 (not 1469
including any of the dot characters). 1470

The TPX field of the UPUI-URI is expressed as a GS3A3Component, which permits the 1471
representation of all characters permitted in Application Identifier (235), Third Party Controlled, 1472
Serialised Extension of GTIN, according to the GS1 General Specifications. 1473

The UPUI consists of the following elements: 1474

■ The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as 1475
the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.3.2 for the case of a GTIN-8. 1476

■ The Item Reference, assigned by the managing entity to a particular object class. The Item Reference 1477
as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or 1478
a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item 1479
Reference digits, and treating the result as a single numeric string. See Section 7.3.2 for the case of a 1480
GTIN-8. 1481

■ The Third Party Controlled, Serialised Extension of GTIN, assigned by a third party managing entity 1482
to an individual object to uniquely identify an individual item for tobacco traceability in accordance with EU 1483
2018/574. 1484

6.3.15 Global Location Number of Party (PGLN) 1485

The PGLN EPC scheme is used to assign a unique identity to a party, such as a an economic 1486
operator or a cost center. 1487

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 51 of 315

General syntax: 1488

urn:epc:id:pgln:CompanyPrefix.PartyReference 1489

Example: 1490

urn:epc:id:pgln:9521141.89012 1491

Grammar: 1492

PGLN-URI = %s"urn:epc:id:pgln:" PGLNURIBody 1493

PGLNURIBody = PaddedNumericComponent "." PaddedNumericComponentOrEmpty 1494

The number of characters in the first PaddedNumericComponent field and the 1495
PaddedNumericComponentOrEmpty field must total 12 (not including any of the dot characters). 1496

The PGLN consists of the following elements: 1497

■ The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company 1498
Prefix digits within a GS1 GLN key. 1499

■ The Party Reference, assigned uniquely by the managing entity to a specific party. 1500

6.3.16 General Identifier (GID) 1501

The General Identifier EPC scheme is independent of any specifications or identity scheme outside 1502
TDS. 1503

General syntax: 1504

urn:epc:id:gid:ManagerNumber.ObjectClass.SerialNumber 1505

Example: 1506

urn:epc:id:gid:95100000.12345.400 1507

Grammar: 1508

GID-URI = %s"urn:epc:id:gid:" GIDURIBody 1509

GIDURIBody = 2(NumericComponent ".") NumericComponent 1510

The GID consists of the following elements: 1511

■ The General Manager Number identifies an organisational entity (essentially a company, manager or 1512
other organisation) that is responsible for maintaining the numbers in subsequent fields – Object Class 1513
and Serial Number. Note that a General Manager Number is not a GS1 Company Prefix. A General 1514
Manager Number may only be used in GID EPCs. NOTE that General Manager Number issuance has 1515
been discontinued, effective June 2023. 1516

■ The Object Class is used by an EPC managing entity to identify a class or "type" of thing. These object 1517
class numbers, of course, must be unique within each General Manager Number domain. 1518

■ Finally, the Serial Number code, or serial number, is unique within each object class. In other words, the 1519
managing entity is responsible for assigning unique, non-repeating serial numbers for every instance 1520
within each object class. 1521

6.3.17 US Department of Defense Identifier (DOD) 1522

The US Department of Defense identifier is defined by the United States Department of Defense. 1523
This tag data construct may be used to encode 96-bit Class 1 tags for shipping goods to the United 1524
States Department of Defense by a supplier who has already been assigned a CAGE (Commercial 1525
and Government Entity) code. 1526

At the time of this writing, the details of what information to encode into these fields is explained in 1527
a document titled "United States Department of Defense Suppliers' Passive RFID Information Guide" 1528
[USDOD]. 1529

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 52 of 315

Note that the DoD Guide explicitly recognises the value of cross-branch, globally applicable 1530
standards, advising that "suppliers that are EPCglobal subscribers and possess a unique [GS1] 1531
Company Prefix may use any of the identity types and encoding instructions described in the EPC™ 1532
Tag Data Standards document to encode tags." 1533

General syntax: 1534

urn:epc:id:usdod:CAGECodeOrDODAAC.SerialNumber 1535

Example: 1536

urn:epc:id:usdod:2S194.12345678901 1537

Grammar: 1538

DOD-URI = %s"urn:epc:id:usdod:" DODURIBody 1539

DODURIBody = CAGECodeOrDODAAC "." DoDSerialNumber 1540

CAGECodeOrDODAAC = CAGECode / DODAAC 1541

CAGECode = 5(CAGECodeOrDODAACChar) 1542

DODAAC = 6(CAGECodeOrDODAACChar) 1543

DoDSerialNumber = NumericComponent 1544

CAGECodeOrDODAACChar = Digit / %x41-48 / %x4A-4E / %x50-5A ; 0-9 A-H J-N P-Z 1545

6.3.18 Aerospace and Defense Identifier (ADI) 1546

The variable-length Aerospace and Defense EPC identifier is designed for use by the aerospace and 1547
defense sector for the unique identification of parts or items. The existing unique identifier 1548
constructs are defined in the Air Transport Association (ATA) Spec 2000 standard [SPEC2000], and 1549
the US Department of Defense Guide to Uniquely Identifying items [UID]. The ADI EPC construct 1550
provides a mechanism to directly encode such unique identifiers in RFID tags and to use the URI 1551
representations in EPCIS and ALE. 1552

Within the Aerospace & Defense sector identification constructs supported by the ADI EPC, 1553
companies are uniquely identified by their Commercial And Government Entity (CAGE) code or by 1554
their Department of Defense Activity Address Code (DODAAC). The NATO CAGE (NCAGE) code is 1555
issued by NATO / Allied Committee 135 and is structurally equivalent to a CAGE code (five character 1556
uppercase alphanumeric excluding capital letters I and O) and is non-colliding with CAGE codes 1557
issued by the US Defense Logistics Information Service (DLIS). Note that in the remainder of this 1558
section, all references to CAGE apply equally to NCAGE. 1559

ATA Spec 2000 defines that a unique identifier may be constructed through the combination of the 1560
CAGE code or DODAAC together with either: 1561

■ A serial number (SER) that is assigned uniquely within the CAGE code or DODAAC; or 1562

■ An original part number (PNO) that is unique within the CAGE code or DODAAC and a sequential serial 1563
number (SEQ) that is uniquely assigned within that original part number. 1564

The US DoD Guide to Uniquely Identifying Items defines a number of acceptable methods for 1565
constructing unique item identifiers (UIIs). The UIIs that can be represented using the Aerospace 1566
and Defense EPC identifier are those that are constructed through the combination of a CAGE code 1567
or DODAAC together with either: 1568

■ a serial number that is unique within the enterprise identifier. (UII Construct #1) 1569

■ an original part number and a serial number that is unique within the original part number (a subset of 1570
UII Construct #2) 1571

Note that the US DoD UID guidelines recognise a number of unique identifiers based on GS1 1572
identifier keys as being valid UIDs. In particular, the SGTIN (GTIN + Serial Number), GIAI, and 1573
GRAI with full serialisation are recognised as valid UIDs. These may be represented in EPC form 1574
using the SGTIN, GIAI, and GRAI EPC schemes as specified in Sections 6.3.1, 6.3.5, and 6.3.4, 1575
respectively; the ADI EPC scheme is not used for this purpose. Conversely, the US DoD UID 1576

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 53 of 315

guidelines also recognise a wide range of enterprise identifiers issued by various issuing agencies 1577
other than those described above; such UIDs do not have a corresponding EPC representation. 1578

For purposes of identification via RFID of those aircraft parts that are traditionally not serialised or 1579
not required to be serialised for other purposes, the ADI EPC scheme may be used for assigning a 1580
unique identifier to a part. In this situation, the first character of the serial number component of 1581
the ADI EPC SHALL be a single '#' character. This is used to indicate that the serial number does not 1582
correspond to the serial number of a traditionally serialised part because the '#' character is not 1583
permitted to appear within the values associated with either the SER or SEQ text element identifiers 1584
in ATA Spec 2000 standard. 1585

For parts that are traditionally serialised / required to be serialised for purposes other than having a 1586
unique RFID identifier, and for all usage within US DoD UID guidelines, the '#' character SHALL NOT 1587
appear within the serial number element. 1588

The ATA Spec 2000 standard recommends that companies serialise uniquely within their CAGE code. 1589
For companies who do serialise uniquely within their CAGE code or DODAAC, a zero-length string 1590
SHALL be used in place of the Original Part Number element when constructing an EPC. 1591

General syntax: 1592

urn:epc:id:adi:CAGECodeOrDODAAC.OriginalPartNumber.Serial 1593

Examples: 1594

urn:epc:id:adi:2S194..12345678901 1595

urn:epc:id:adi:W81X9C.3KL984PX1.2WMA52 1596

Grammar: 1597

ADI-URI = %s"urn:epc:id:adi:" ADIURIBody 1598

ADIURIBody = CAGECodeOrDODAAC "." ADIComponent "." ADIExtendedComponent 1599

ADIComponent = 0*ADIChar 1600

ADIExtendedComponent = 0*1"%23" 1*ADIChar 1601

ADIChar = UpperAlpha / Digit / OtherADIChar 1602

OtherADIChar = "-" / "%2F" 1603

CAGECodeOrDODAAC is defined in Section 6.3.17. 1604

6.3.19 BIC Container Code (BIC) 1605

ISO 6346 is an international standard covering the coding, identification and marking of intermodal 1606
(shipping) containers used within containerized intermodal freight transport. The standard 1607
establishes a visual identification system for every container that includes a unique serial number 1608
(with check digit), the owner, a country code, a size, type and equipment category as well as any 1609
operational marks. The standard is managed by the International Container Bureau (BIC). 1610

(source: https://en.wikipedia.org/wiki/ISO_6346#Identification_System) 1611

The BIC consists of the following elements: 1612

■ The owner code consists of three capital letters of the Latin alphabet to indicate the owner or principal 1613
operator of the container. Such code needs to be registered at the Bureau International des Conteneurs in 1614
Paris to ensure uniqueness worldwide. 1615

■ The equipment category identifier consists of one of the following capital letters of the Latin alphabet: 1616

□ U for all freight containers 1617

□ J for detachable freight container-related equipment 1618

□ Z for trailers and chassis 1619

https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/Intermodal_container
https://en.wikipedia.org/wiki/Intermodal_container
https://en.wikipedia.org/wiki/Containerization
https://en.wikipedia.org/wiki/Intermodal_freight_transport
https://en.wikipedia.org/wiki/Check_digit
https://en.wikipedia.org/wiki/International_Container_Bureau
https://en.wikipedia.org/wiki/ISO_6346#Identification_System
https://en.wikipedia.org/wiki/International_Container_Bureau

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 54 of 315

■ The serial number consists of 6 numeric digits, assigned by the owner or operator, uniquely identifying 1620
the container within that owner/operator's fleet. 1621

■ The check digit consists of one numeric digit providing a means of validating the recording and 1622
transmission accuracies of the owner code and serial number. 1623

The individual elements of the BIC are not separated by dots (".") in the EPC URI syntax. 1624

General syntax: 1625

urn:epc:id:bic:BICContainerCode 1626

Example: 1627

urn:epc:id:bic:CSQU3054383 1628

Grammar: 1629

BIC-URI = %s"urn:epc:id:bic:" BICURIBody 1630

BICURIBody = OwnerCode EquipCatId SerialNumber CheckDigit 1631

OwnerCode = 3(OwnerCodeChar) 1632

EquipCatId = CatIdChar 1633

SerialNumber = 6(Digit) 1634

CheckDigit = Digit 1635

OwnerCodeChar = %x41-48 / %x4A-4E / %x50-5A ; A-H J-N P-Z 1636

CatIdChar = "J" / "U" / "Z" 1637

6.3.20 IMO Vessel Number (IMOVN) 1638

The IMO (International Maritime Organization) ship identification number scheme was introduced in 1639
1987 through adoption of resolution A.600(15), as a measure aimed at enhancing "maritime safety, 1640
and pollution prevention and to facilitate the prevention of maritime fraud". It aimed at assigning a 1641
permanent number to each ship for identification purposes. That number would remain unchanged 1642
upon transfer of the ship to other flag(s) and would be inserted in the ship's certificates. When 1643
made mandatory, through SOLAS regulation XI/3 (adopted in 1994), specific criteria of passenger 1644
ships of 100 gross tonnage and upwards and all cargo ships of 300 gross tonnage and upwards were 1645
agreed. 1646
 1647
SOLAS regulation XI-1/3 requires ships' identification numbers to be permanently marked in a 1648
visible place either on the ship's hull or superstructure. Passenger ships should carry the marking on 1649
a horizontal surface visible from the air. Ships should also be marked with their ID numbers 1650
internally. 1651

This number is assigned to the total portion of the hull enclosing the machinery space and is the 1652
determining factor, should additional sections be added. 1653

The IMO number is never reassigned to another ship and is shown on the ship’s certificates. 1654

(source: http://www.imo.org/en/OurWork/MSAS/Pages/IMO-identification-number-scheme.aspx) 1655

The IMOVN consists of the following element: 1656

■ a unique, seven-digit vessel number. 1657

General syntax: 1658

urn:epc:id:imovn:IMOvesselNumber 1659

Example: 1660

urn:epc:id:imovn:9176187 1661

http://www.imo.org/en/OurWork/MSAS/Pages/IMO-identification-number-scheme.aspx

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 55 of 315

Grammar: 1662

IMOVN-URI = %s"urn:epc:id:imovn:" IMOVNURIBody 1663

IMOVNURIBody = VesselNumber 1664

VesselNumber = 7(Digit) 1665

6.4 EPC Class URI Syntax 1666

This section specifies the syntax of an EPC Class URI. 1667

The formal grammar for the EPC class URI is as follows: 1668

EPCClass-URI = LGTIN-URI 1669

where the various alternatives on the right hand side are specified in the sections that follow. 1670

Each EPC Class URI scheme is specified in one of the following subsections, as follows: 1671

Table 6-1 EPC Class Schemes and Where the Pure Identity Form is Defined 1672

EPC Class
Scheme

Specified In Corresponding GS1 key Typical use

lgtin Section 6.4.1 GTIN + Batch or Lot Number Class of objects
belonging to a given
batch or lot

6.4.1 GTIN + Batch/Lot (LGTIN) 1673

The GTIN+ Batch/Lot scheme is used to denote a class of objects belonging to a given batch or lot 1674
of a given GTIN. 1675

General syntax: 1676

urn:epc:class:lgtin:CompanyPrefix.ItemRefAndIndicator.Lot 1677

Example: 1678

urn:epc:class:lgtin:4012345.012345.998877 1679

Grammar: 1680

LGTIN-URI = %s"urn:epc:class:lgtin:" LGTINURIBody 1681

LGTINURIBody = 2(PaddedNumericComponent ".") GS3A3Component 1682

The number of characters in the two PaddedNumericComponent fields must total 13 (not 1683
including any of the dot characters). 1684

The Lot field of the LGTIN-URI is expressed as a GS3A3Component, which permits the 1685
representation of all characters permitted in the Application Identifier (10) Batch or Lot Number 1686
according to the GS1 General Specifications. 1687

The LGTIN consists of the following elements: 1688

■ The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as 1689
the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.3.2 for the case of a GTIN-8. 1690

■ The Item Reference and Indicator, assigned by the managing entity to a particular object class. The 1691
Item Reference and Indicator as it appears in the EPC URI is derived from the GTIN by concatenating the 1692
Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or 1693
GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See 1694
Section 7.3.2 for the case of a GTIN-8. 1695

■ The Batch or Lot Number, assigned by the managing entity to an distinct batch or lot of a class of 1696
objects. The batch or lot number is not part of the GTIN, but is used to distinguish individual groupings of 1697
the same class of objects from each other. 1698

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 56 of 315

7 Correspondence between EPCs and GS1 Keys 1699

As discussed in Section 4.3, there is a well-defined relationship between Electronic Product Codes 1700
(EPCs) and seven keys (plus the component / part identifier) defined in the GS1 General 1701
Specifications [GS1GS]. This section specifies the correspondence between EPCs and GS1 keys. 1702

7.1 The GS1 Company Prefix (GCP) in EPC encodings 1703

The correspondence between EPCs and GS1 keys relies on identifying the portion of a GS1 key that 1704
is the GS1 Company Prefix. The GS1 Company Prefix (GCP) is a 4- to 12-digit number assigned by a 1705
GS1 Member Organisation to a managing entity, and the managing entity is free to create GS1 keys 1706
using that GCP. For purposes of the EPC Tag Data Standard, a 4- or 5-digit GCP is treated as a block 1707
of 100 6-digit GCPs or a block of 10 6-digit GCPs, respectively. In the EPC URI, the GCP is encoded 1708
in the CompanyPrefix component, which SHALL include the 4- or 5-digit GCP and the following 2 or 1709
1 digits of the GS1 key, as though it were a 6-digit GCP. This value is then encoded into the EPC 1710
binary encodings using Partition Value 6 (binary: 110). 1711

7.2 Determining length of the EPC CompanyPrefix component for individually 1712
assigned GS1 Keys 1713

In some instances, a GS1 Member Organisation assigns an individually assigned (AKA "single issue" 1714
or "one off") GS1 key, such as a complete GTIN, GLN, or other key, to a subscribing organisation. In 1715
such cases, a subscribing organisation SHALL NOT use the digits comprising a particular individually 1716
assigned key to construct any other kind of GS1 key. For example, if a subscribing organisation is 1717
issued an individually assigned GLN, it SHALL NOT create SSCCs using the 12 digits of the 1718
individually assigned GLN as though it were a 12-digit GS1 Company Prefix. 1719

Note that an individually assigned key will generally resolve (e.g., via GEPIR) back to the issuing 1720
MO—as the GCP in question has been assigned by the MO to itself for the purpose of generating 1721
individually assigned keys—rather than to the organisation to which the key was issued. The 1722
allocation of individually assigned keys, based on a common GCP, to disparate subscribing 1723
organisations who have no particular relationship to each other, effectively prevents use of the 1724
CompanyPrefix component of EPC encodings for purposes of filtering/correlation/querying to the 1725
level of an individual organisation. 1726

7.2.1 Individually assigned GTINs 1727

When encoding an individually assigned GTIN as an EPC, the GTIN-12, GTIN-13 or GTIN-8 issued by 1728
the MO must first be converted to a 14-digit number by prepending two, one or six leading zeroes, 1729
respectively, to the individually assigned GTIN, as specified in sections and 7.3.1 and 7.3.2. 1730

The individually assigned GTIN, after any necessary padding to increase its length to 14 digits, is 1731
stripped of its check digit (which is omitted from all EPC encodings) and indicator digit or leading 1732
zero, and SHALL be contained in the CompanyPrefix component of the EPC, whose length SHALL be 1733
fixed at 12 digits for an individually assigned GTIN. For a GTIN-12, GTIN-13 or GTIN-8, the 1734
ItemRefAndIndicator component of the resulting SGTIN EPC is a single zero digit. For a GTIN-1735
14, the ItemRefAndIndicator component of the resulting SGTIN EPC consists of the GTIN-14's 1736
leading zero or indicator digit. 1737

Note that these rules also apply to individually assigned GTINs assigned by third parties with the 1738
permission of GS1. 1739

Syntax: 1740

urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber 1741

Example: 1742

GS1 element string: (01)09526567890126(21)4711 1743

EPC URI: urn:epc:id:sgtin:952656789012.0.4711 1744

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 57 of 315

The corresponding EPC Binary encoding (SGTIN-96 and SGTIN-198) uses Partition Value 0, per 1745
Table 14-2 (SGTIN Partition Table). 1746

7.2.2 Individually assigned GLNs 1747

When encoding an individually assigned GLN as an EPC, the entire individually assigned GLN 1748
(stripped of its check digit, which is omitted from EPC encodings) occupies the CompanyPrefix 1749
component of the EPC, whose length is fixed at 12 digits. 1750

For the resulting SGLN EPC, the LocationReference component is a zero-length string. The Extension 1751
component of the SGLN EPC reflects the value of the GLN extension component, AI (254); if the 1752
input GS1 element string did not include a GLN extension component (AI 254), the Extension 1753
component of the SGLN EPC comprises a single zero digit (‘0’). 1754

Note that these rules also apply to individually assigned GLNs (e.g., national business numbers) 1755
assigned by third parties with the permission of GS1. 1756

Syntax: 1757

urn:epc:id:sgln:CompanyPrefix..Extension 1758

Example (without extension): 1759

GS1 element string: (414)9526567890126 1760

EPC URI: urn:epc:id:sgln:952656789012..0 1761

Example (with extension): 1762

GS1 element string: (414)9526567890126(254)4711 1763

EPC URI: urn:epc:id:sgln:952656789012..4711 1764

The corresponding EPC Binary encoding (SGLN-96 and SGLN-195) uses Partition Value 0, per Table 1765
14-7 (SGLN Partition Table). 1766

7.2.3 Other individually assigned GS1 Keys 1767

Other individually assigned GS1 Keys (e.g., SSCC, GIAI) should be encoded as EPCs with 1768
CompanyPrefix components that are 12 digits in length. 1769

In such cases, a subscribing organisation SHALL NOT use the digits comprising a particular 1770
individually assigned key to construct any other GS1 key. For example, if a subscribing organisation 1771
is issued an individually assigned SSCC, it SHALL NOT create additional SSCCs using the 12 digits of 1772
the individually assigned SSCC as though it were a 12-digit GCP. 1773

Example (SSCC): 1774

GS1 element string: (00)095265678901234568 1775

EPC URI: urn:epc:id:sscc:952656789012.03456 1776

Example (GIAI): 1777

GS1 element string: (8004)952656789012345678901234567890 1778

EPC URI: urn:epc:id:giai:952656789012.345678901234567890 1779

The corresponding EPC Binary encoding uses Partition Value 0, per the respective Partition Table in 1780
section 14. 1781

7.3 Serialised Global Trade Item Number (SGTIN) 1782

The SGTIN EPC (Section 6.3.1) does not correspond directly to any GS1 key, but instead 1783
corresponds to a combination of a GTIN key plus a serial number. The serial number in the SGTIN is 1784
defined to be equivalent to AI 21 in the GS1 General Specifications. 1785

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 58 of 315

The correspondence between the SGTIN EPC URI and a GS1 element string consisting of a GTIN key 1786
(AI 01) and a serial number (AI 21) is depicted graphically below: 1787

Figure 7-1 Correspondence between SGTIN EPC URI and GS1 element string 1788

 1789
(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 1790
Indicator Digit in the figure above.) 1791

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 1792
written as follows: 1793

EPC URI: urn:epc:id:sgtin:d2…d(L+1).d1d(L+2)d(L+3)…d13.s1s2…sK 1794

GS1 element string: (01)d1d2…d14 (21)s1s2…sK 1795

where 1 ≤ K ≤ 20. 1796

To find the GS1 element string corresponding to an SGTIN EPC URI: 1797

1. Number the digits of the first two components of the EPC as shown above. Note that there will 1798
always be a total of 13 digits. 1799

2. Number the characters of the serial number (third) component of the EPC as shown above. Each 1800
si corresponds to either a single character or to a percent-escape triplet consisting of a % 1801
character followed by two hexadecimal digit characters. 1802

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + 1803
d8 + d10 + d12)) mod 10)) mod 10. 1804

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 1805
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 1806
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 1807
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 1808
column then gives the corresponding character to use in the GS1 element string.) 1809

To find the EPC URI corresponding to a GS1 element string that includes both a GTIN (AI 1810
01) and a serial number (AI 21): 1811

1. Number the digits and characters of the GS1 element string as shown above. 1812

2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be 1813
done, for example, by reference to an external table of company prefixes. See Section 7.3.2 for 1814
the case of a GTIN-8. 1815

3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is not included 1816
in the EPC URI. For each serial number character si, replace it with the corresponding value in 1817

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 59 of 315

the "URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if 1818
si is not a legal URI character. 1819

Example: 1820

EPC URI: urn:epc:id:sgtin:9521141.012345.32a%2Fb 1821

GS1 element string: (01)09521141123454(21)32a/b 1822

In this example, the slash (/) character in the serial number must be represented as an escape 1823
triplet in the EPC URI. 1824

7.3.1 GTIN-12 and GTIN-13 1825

To find the EPC URI corresponding to the combination of a GTIN-12 or GTIN-13 and a serial 1826
number, first convert the GTIN-12 or GTIN-13 to a 14-digit number by adding two or one leading 1827
zero characters, respectively, as shown in [GS1GS] Section 3.3.2. 1828

Example: 1829

GTIN-12: 614141123452 1830

Corresponding 14-digit number: 00614141123452 1831

Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial 1832

Example: 1833

GTIN-13: 9521141890127 1834

Corresponding 14-digit number: 09521141890127 1835

Corresponding SGTIN-EPC: urn:epc:id:sgtin:9521141.089012.Serial 1836

7.3.2 GTIN-8 1837

A GTIN-8 is a special case of the GTIN that is used to identify small trade items. 1838

The GTIN-8 code consists of eight digits N1, N2…N8, where the first digits N1 to NL are the GS1-8 1839
Prefix (where L = 1, 2, or 3), the next digits NL+1 to N7 are the Item Reference, and the last digit N8 1840
is the check digit. The GS1-8 Prefix is a one-, two-, or three-digit index number, administered by 1841
the GS1 Global Office. It does not identify the origin of the item. The Item Reference is assigned by 1842
the GS1 Member Organisation. The GS1 Member Organisations provide procedures for obtaining 1843
GTIN-8s. 1844

To find the EPC URI corresponding to the combination of a GTIN-8 and a serial number, the 1845
following procedure SHALL be used. For the purpose of the procedure defined above in 1846
Section 7.2.3, the GS1 Company Prefix portion of the EPC shall be constructed by prepending five 1847
zeros to the first three digits of the GTIN-8; that is, the GS1 Company Prefix portion of the EPC is 1848
eight digits and shall be 00000N1N2N3. The Item Reference for the procedure shall be the remaining 1849
GTIN-8 digits apart from the check digit, that is, N4 to N7. The Indicator Digit for the procedure shall 1850
be zero. 1851

Example: 1852

GTIN-8: 95010939 1853

Corresponding SGTIN-EPC: urn:epc:id:sgtin:00000950.01093.Serial 1854

7.3.3 RCN-8 1855

An RCN-8 is an 8-digit code beginning with GS1-8 Prefixes 0 or 2, as defined in [GS1GS] 1856
Section 2.1.11.1. These are reserved for company internal numbering, and are not GTIN-8 codes. 1857
RCN-8 codes SHALL NOT be used to construct SGTIN EPCs, and the procedure for GTN-8 codes does 1858
not apply. 1859

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 60 of 315

7.3.4 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007) 1860

The GS1 General Specifications reserve codes beginning with either 04 or 0001 through 0007 for 1861
company internal numbering. (See [GS1GS], Sections 2.1.11.2 and 2.1.11.3.) 1862

These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of TDS may specify 1863
normative rules for using Company Internal Numbering codes in EPCs. 1864

7.3.5 Restricted Circulation (GS1 Prefixes 02 and 20 – 29) 1865

The GS1 General Specifications reserve codes beginning with either 02 or 20 through 29 for 1866
restricted circulation for geopolitical areas defined by GS1 member organisations and for variable 1867
measure trade items. (See [GS1GS], Sections 2.1.11.1 and 2.1.11.1.4) 1868

These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of TDS may specify 1869
normative rules for using Restricted Circulation codes in EPCs. 1870

7.3.6 Coupon Code Identification for Restricted Distribution (GS1 Prefixes 981-984 1871
and 99) 1872

Coupons may be identified by constructing codes according to Sections 2.6.1-2.6.3 of the GS1 1873
General Specifications. The resulting numbers begin with GS1 Prefixes 981-984 and 99. Strictly 1874
speaking, however, a coupon is not a trade item, and these coupon codes are not actually trade 1875
item identification numbers. 1876

Therefore, coupon codes for restricted distribution SHALL NOT be used to construct SGTIN EPCs. 1877

7.3.7 Refund Receipt (GS1 Prefix 980) 1878

Section 2.6.4 of the GS1 General Specification specifies the construction of codes to represent 1879
refund receipts, such as those created by bottle recycling machines for redemption at point-of-sale. 1880
The resulting number begins with GS1 Prefix 980. Strictly speaking, however, a refund receipt is not 1881
a trade item, and these refund receipt codes are not actually trade item identification numbers. 1882

Therefore, refund receipt codes SHALL NOT be used to construct SGTIN EPCs. 1883

7.3.8 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) 1884

The GS1 General Specifications provide for the use of a 13-digit identifier to represent International 1885
Standard Book Number, International Standard Music Number, and International Standard Serial 1886
Number codes. The resulting code is a GTIN whose GS1 Prefix is 977, 978, or 979. 1887

7.3.8.1 ISBN and ISMN 1888

ISBN and ISMN codes are used for books and printed music, respectively. The codes are defined by 1889
ISO (ISO 2108 for ISBN and ISO 10957 for ISMN) and administered by the International ISBN 1890
Agency (http://www.isbn-international.org/) and affiliated national registration agencies. ISMN is a 1891
separate organisation (http://www.ismn-international.org/) but its management and coding 1892
structure are similar to the ones of ISBN. 1893

While these codes are not assigned by GS1, they have a very similar internal structure that readily 1894
lends itself to similar treatment when creating EPCs. An ISBN code consists of the following parts, 1895
shown below with the corresponding concept from the GS1 system: 1896

Prefix Element + Registrant Group Element = GS1 Prefix (978 or 979 plus more digits) 1897

 Registrant Element = Remainder of GS1 Company Prefix 1898

 Publication Element = Item Reference 1899

 Check Digit = Check Digit 1900

The Registrant Group Elements are assigned to ISBN registration agencies, who in turn assign 1901
Registrant Elements to publishers, who in turn assign Publication Elements to individual publication 1902
editions. This exactly parallels the construction of GTIN codes. As in GTIN, the various components 1903

http://www.isbn-international.org/
http://www.ismn-international.org/

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 61 of 315

are of variable length, and as in GTIN, each publisher knows the combined length of the Registrant 1904
Group Element and Registrant Element, as the combination is assigned to the publisher. The total 1905
length of the "978" or "979" Prefix Element, the Registrant Group Element, and the Registrant 1906
Element is in the range of 6 to 12 digits, which is exactly the range of GS1 Company Prefix lengths 1907
permitted in the SGTIN EPC. The ISBN and ISMN can thus be used to construct SGTINs as specified 1908
in this standard. 1909

To find the EPC URI corresponding to the combination of an ISBN or ISMN and a serial number, the 1910
following procedure SHALL be used. For the purpose of the procedure defined above in 1911
Section 7.2.3, the GS1 Company Prefix portion of the EPC shall be constructed by concatenating the 1912
ISBN/ISMN Prefix Element (978 or 979), the Registrant Group Element, and the Registrant Element. 1913
The Item Reference for the procedure shall be the digits of the ISBN/ISMN Publication Element. The 1914
Indicator Digit for the procedure shall be zero. 1915

Example: 1916

ISBN: 978-81-7525-766-5 1917

Corresponding SGTIN-EPC: urn:epc:id:sgtin:978817525.0766.Serial 1918

7.3.8.2 ISSN 1919

The ISSN is the standardised international code which allows the identification of any serial 1920
publication, including electronic serials, independently of its country of publication, of its language or 1921
alphabet, of its frequency, medium, etc. The code is defined by ISO (ISO 3297) and administered by 1922
the International ISSN Agency (http://www.issn.org/). 1923

The ISSN is a GTIN starting with the GS1 prefix 977. The ISSN structure does not allow it to be 1924
expressed in an SGTIN format. Therefore, pending formal requirements emerging from the serial 1925
publication sector, it is not currently possible to create an SGTIN on the basis of an ISSN. 1926

7.4 Serial Shipping Container Code (SSCC) 1927

The SSCC EPC (Section 6.3.2) corresponds directly to the SSCC key defined in Sections 2.2.1 and 1928
3.3.1 of the GS1 General Specifications [GS1GS]. 1929

The correspondence between the SSCC EPC URI and a GS1 element string consisting of an SSCC 1930
key (AI 00) is depicted graphically below: 1931

Figure 7-2 Correspondence between SSCC EPC URI and GS1 element string 1932

 1933
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 1934
written as follows: 1935

EPC URI: urn:epc:id:sscc:d2d3…d(L+1).d1d(L+2)d(L+3)…d17 1936

http://www.issn.org/

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 62 of 315

GS1 element string: (00)d1d2…d18 1937

To find the GS1 element string corresponding to an SSCC EPC URI: 1938

1. Number the digits of the two components of the EPC as shown above. Note that there will 1939
always be a total of 17 digits. 1940

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + 1941
(d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 1942

3. Arrange the resulting digits and characters as shown for the GS1 element string. 1943

To find the EPC URI corresponding to a GS1 element string that includes an SSCC (AI 00): 1944

1. Number the digits and characters of the GS1 element string as shown above. 1945

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 1946
by reference to an external table of company prefixes. 1947

3. Arrange the digits as shown for the EPC URI. Note that the SSCC check digit d18 is not included 1948
in the EPC URI. 1949

Example: 1950
EPC URI: urn:epc:id:sscc:9521141.1234567890 1951
GS1 element string: (00)195211412345678900 1952

7.5 Global Location Number With or Without Extension (SGLN) 1953

The SGLN EPC (Section 6.3.3) corresponds either directly to a Global Location Number key (GLN) as 1954
specified in Sections 2.4.4 and 3.7.9 of the GS1 General Specifications [GS1GS], or to the 1955
combination of a GLN key plus an extension number as specified in Section 3.5.11 of [GS1GS]. An 1956
extension number of zero is reserved to indicate that an SGLN EPC denotes an unextended GLN, 1957
rather than a GLN plus extension. (See Section 6.3.3 for an explanation of the letter "S" in "SGLN.") 1958

The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN key 1959
(AI 414) without an extension is depicted graphically below: 1960

Figure 7-3 Correspondence between SGLN EPC URI without extension and GS1 element string 1961

 1962

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 63 of 315

The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN key 1963
(AI 414) together with an extension (AI 254) is depicted graphically below: 1964

Figure 7-4 Correspondence between SGLN EPC URI with extension and GS1 element string 1965

 1966
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 1967
written as follows: 1968

EPC URI: urn:epc:id:sgln:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1969

GS1 element string: (414)d1d2…d13 (254)s1s2…sK 1970

To find the GS1 element string corresponding to an SGLN EPC URI: 1971

1. Number the digits of the first two components of the EPC as shown above. Note that there will 1972
always be a total of 12 digits. 1973

2. Number the characters of the Extension (third) component of the EPC as shown above. Each si 1974
corresponds to either a single character or to a percent-escape triplet consisting of a % character 1975
followed by two hexadecimal digit characters. 1976

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 1977
+ d11)) mod 10)) mod 10. 1978

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 1979
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 1980
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 1981
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 1982
column then gives the corresponding character to use in the GS1 element string.). If the serial 1983
number consists of a single character si and that character is the digit zero (‘0’), omit the 1984
extension from the GS1 element string. 1985

To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 414), 1986
with or without an accompanying extension (AI 254): 1987

1. Number the digits and characters of the GS1 element string as shown above. 1988

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 1989
by reference to an external table of company prefixes. 1990

3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d13 is not included in 1991
the EPC URI. For each serial number character si, replace it with the corresponding value in the 1992
"URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if si 1993
is not a legal URI character. If the input GS1 element string did not include an extension (AI 1994
254), use a single zero digit (‘0’) as the entire serial number s1s2…sK in the EPC URI. 1995

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 64 of 315

Example (without extension): 1996

EPC URI: urn:epc:id:sgln:9521141.12345.0 1997

GS1 element string: (414)9521141123454 1998

Example (with extension): 1999

EPC URI: urn:epc:id:sgln:9521141.12345.32a%2Fb 2000

GS1 element string: (414)9521141123454(254)32a/b 2001

In this example, the slash (/) character in the serial number must be represented as an escape 2002
triplet in the EPC URI. 2003

7.6 Global Returnable Asset Identifier (GRAI) 2004

The GRAI EPC (Section 6.3.4) corresponds directly to a serialised GRAI key defined in Sections 2.3.1 2005
and 3.9.3 of the GS1 General Specifications [GS1GS]. Because an EPC always identifies a specific 2006
physical object, only GRAI keys that include the optional serial number have a corresponding GRAI 2007
EPC. GRAI keys that lack a serial number refer to asset classes rather than specific assets, and 2008
therefore do not have a corresponding EPC (just as a GTIN key without a serial number does not 2009
have a corresponding EPC). 2010

Figure 7-5 Correspondence between GRAI EPC URI and GS1 element string 2011

 2012
Note that the GS1 element string includes an extra zero (‘0’) digit following the Application Identifier 2013
(8003). This zero digit is extra padding in the element string, and is not part of the GRAI key itself. 2014

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2015
written as follows: 2016

EPC URI: urn:epc:id:grai:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 2017

GS1 element string: (8003)0d1d2…d13s1s2…sK 2018

To find the GS1 element string corresponding to a GRAI EPC URI: 2019

1. Number the digits of the first two components of the EPC as shown above. Note that there will 2020
always be a total of 12 digits. 2021

2. Number the characters of the serial number (third) component of the EPC as shown above. Each 2022
si corresponds to either a single character or to a percent-escape triplet consisting of a % 2023
character followed by two hexadecimal digit characters. 2024

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 2025
+ d11)) mod 10)) mod 10. 2026

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 65 of 315

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2027
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2028
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2029
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2030
column then gives the corresponding character to use in the GS1 element string.). 2031

To find the EPC URI corresponding to a GS1 element string that includes a GRAI 2032
(AI 8003): 2033

1. If the number of characters following the (8003) application identifier is less than or equal 2034
to 14, stop: this element string does not have a corresponding EPC because it does not include 2035
the optional serial number. 2036

2. Number the digits and characters of the GS1 element string as shown above. 2037

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2038
by reference to an external table of company prefixes. 2039

4. Arrange the digits as shown for the EPC URI. Note that the GRAI check digit d13 is not included 2040
in the EPC URI. For each serial number character si, replace it with the corresponding value in 2041
the "URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if 2042
si is not a legal URI character. 2043

Example: 2044

EPC URI: urn:epc:id:grai:9521141.12345.32a%2Fb 2045

GS1 element string: (8003)0952114112345432a/b 2046

In this example, the slash (/) character in the serial number must be represented as an escape 2047
triplet in the EPC URI. 2048

7.7 Global Individual Asset Identifier (GIAI) 2049

The GIAI EPC (Section 6.3.5) corresponds directly to the GIAI key defined in Sections 2.3.2 and 2050
3.9.4 of the GS1 General Specifications [GS1GS]. 2051

The correspondence between the GIAI EPC URI and a GS1 element string consisting of a GIAI key 2052
(AI 8004) is depicted graphically below: 2053

Figure 7-6 Correspondence between GIAI EPC URI and GS1 element string 2054

 2055
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2056
written as follows: 2057

EPC URI: urn:epc:id:giai:d1d2…dL.s1s2…sK 2058

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 66 of 315

GS1 element string: (8004)d1d2…dLs1s2…sK 2059

To find the GS1 element string corresponding to a GIAI EPC URI: 2060

1. Number the characters of the two components of the EPC as shown above. Each si corresponds 2061
to either a single character or to a percent-escape triplet consisting of a % character followed by 2062
two hexadecimal digit characters. 2063

2. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2064
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2065
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2066
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2067
column then gives the corresponding character to use in the GS1 element string.) 2068

To find the EPC URI corresponding to a GS1 element string that includes a GIAI 2069
(AI 8004): 2070

1. Number the digits and characters of the GS1 element string as shown above. 2071

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2072
by reference to an external table of company prefixes. 2073

3. Arrange the digits as shown for the EPC URI. For each serial number character si, replace it 2074
with the corresponding value in the "URI Form" column of Table I.3.1-1 – either the character 2075
itself or a percent-escape triplet if si is not a legal URI character. 2076

EPC URI: urn:epc:id:giai:9521141.32a%2Fb 2077

GS1 element string: (8004)952114132a/b 2078

In this example, the slash (/) character in the serial number must be represented as an escape 2079
triplet in the EPC URI. 2080

7.8 Global Service Relation Number – Recipient (GSRN) 2081

The GSRN EPC (Section 6.3.6) corresponds directly to the GSRN – Recipient key defined in Sections 2082
2.5.2 and 3.9.14 of the GS1 General Specifications [GS1GS]. 2083

The correspondence between the GSRN EPC URI and a GS1 element string consisting of a GSRN key 2084
(AI 8018) is depicted graphically below: 2085

Figure 7-7 Correspondence between GSRN EPC URI and GS1 element string 2086

 2087

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 67 of 315

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2088
written as follows: 2089

EPC URI: urn:epc:id:gsrn:d1d2…dL.d(L+1)d(L+2)…d17 2090

GS1 element string: (8018)d1d2…d18 2091

To find the GS1 element string corresponding to a GSRN EPC URI: 2092

1. Number the digits of the two components of the EPC as shown above. Note that there will 2093
always be a total of 17 digits. 2094

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + (d2 + 2095
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 2096

3. Arrange the resulting digits and characters as shown for the GS1 element string. 2097

To find the EPC URI corresponding to a GS1 element string that includes a GSRN – 2098
Recipient (AI 8018): 2099

1. Number the digits and characters of the GS1 element string as shown above. 2100

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2101
by reference to an external table of company prefixes. 2102

3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d18 is not included 2103
in the EPC URI. 2104

Example: 2105

EPC URI: urn:epc:id:gsrn:9521141.1234567890 2106

GS1 element string: (8018)952114112345678906 2107

7.9 Global Service Relation Number – Provider (GSRNP) 2108

The GSRNP EPC (Section 6.3.6) corresponds directly to the GSRN – Provider key defined in Sections 2109
2.5.1 and 3.9.14 of the GS1 General Specifications [GS1GS]. 2110

The correspondence between the GSRNP EPC URI and a GS1 element string consisting of a GSRN – 2111
Provider key (AI 8017) is depicted graphically below: 2112

Figure 7-8 Correspondence between GSRNP EPC URI and GS1 element string 2113

 2114
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2115
written as follows: 2116

EPC URI: urn:epc:id:gsrnp:d1d2…dL.d(L+1)d(L+2)…d17 2117

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 68 of 315

GS1 element string: (8017)d1d2…d18 2118

To find the GS1 element string corresponding to a GSRNP EPC URI: 2119

1. Number the digits of the two components of the EPC as shown above. Note that there will 2120
always be a total of 17 digits. 2121

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + (d2 + 2122
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 2123

3. Arrange the resulting digits and characters as shown for the GS1 element string. 2124

To find the EPC URI corresponding to a GS1 element string that includes a GSRN – 2125
Provider (AI 8017): 2126

1. Number the digits and characters of the GS1 element string as shown above. 2127

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2128
by reference to an external table of company prefixes. 2129

3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d18 is not included 2130
in the EPC URI. 2131

Example: 2132

EPC URI: urn:epc:id:gsrnp:9521141.1234567890 2133

GS1 element string: (8017)952114112345678906 2134

7.10 Global Document Type Identifier (GDTI) 2135

The GDTI EPC (Section 6.3.7) corresponds directly to a serialised GDTI key defined in Sections 2.6.9 2136
and 3.5.10 of the GS1 General Specifications [GS1GS]. Because an EPC always identifies a specific 2137
physical object, only GDTI keys that include the optional serial number have a corresponding GDTI 2138
EPC. GDTI keys that lack a serial number refer to document classes rather than specific documents, 2139
and therefore do not have a corresponding EPC (just as a GTIN key without a serial number does 2140
not have a corresponding EPC). 2141

Figure 7-9 Correspondence between GDTI EPC URI and GS1 element string 2142

 2143
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2144
written as follows: 2145

EPC URI: urn:epc:id:gdti:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 2146

GS1 element string: (253)d1d2…d13s1s2…sK 2147

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 69 of 315

To find the GS1 element string corresponding to a GDTI EPC URI: 2148

1. Number the digits of the first two components of the EPC as shown above. Note that there will 2149
always be a total of 12 digits. 2150

2. Number the characters of the serial number (third) component of the EPC as shown above. 2151
Each si corresponds to either a single character or to a percent-escape triplet consisting of a % 2152
character followed by two hexadecimal digit characters. 2153

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 2154
+ d11)) mod 10)) mod 10. 2155

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2156
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2157
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2158
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2159
column then gives the corresponding character to use in the GS1 element string.). 2160

To find the EPC URI corresponding to a GS1 element string that includes a GDTI (AI 253): 2161

1. If the number of characters following the (253) application identifier is less than or equal to 13, 2162
stop: this element string does not have a corresponding EPC because it does not include the 2163
optional serial number. 2164

2. Number the digits and characters of the GS1 element string as shown above. 2165

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2166
by reference to an external table of company prefixes. 2167

4. Arrange the digits as shown for the EPC URI. Note that the GDTI check digit d13 is not included 2168
in the EPC URI. For each serial number character si, replace it with the corresponding value in 2169
the "URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if 2170
si is not a legal URI character. 2171

Example: 2172

EPC URI: urn:epc:id:gdti:9521141.12345.006847 2173

GS1 element string: (253)9521141123454006847 2174

7.11 Component and Part Identifier (CPI) 2175

The CPI EPC (Section 6.3.9) does not correspond directly to any GS1 key, but instead corresponds 2176
to a combination of two data elements defined in sections 3.9.10 and 3.9.11 of the GS1 General 2177
Specifications [GS1GS]. 2178

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 70 of 315

The correspondence between the CPI EPC URI and a GS1 element string consisting of a Component 2179
/ Part Identifier (AI 8010) and a Component / Part serial number (AI 8011) is depicted graphically 2180
below: 2181

Figure 7-10 Correspondence between CPI EPC URI and GS1 element string 2182

 2183
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2184
written as follows: 2185

EPC URI: urn:epc:id:cpi:d1d2…dL.d(L+1)d(L+2)…dN.s1s2…sK 2186

GS1 element string: (8010)d1d2…dN (8011)s1s2…sK 2187

where 1 ≤ N ≤ 30 and 1 ≤ K ≤ 12. 2188

To find the GS1 element string corresponding to a CPI EPC URI: 2189

1. Number the digits of the three components of the EPC as shown above. Each di in the second 2190
component corresponds to either a single character or to a percent-escape triplet consisting of a 2191
% character followed by two hexadecimal digit characters. 2192

2. Arrange the resulting digits and characters as shown for the GS1 element string. If any di in the 2193
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2194
corresponding character according to Table I.3.1-1 (G). (For a given percent-escape triplet %xx, 2195
find the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2196
column then gives the corresponding character to use in the GS1 element string.) 2197

To find the EPC URI corresponding to a GS1 element string that includes both a 2198
Component / Part Identifier (AI 8010) and a Component / Part Serial Number (AI 8011): 2199

1. Number the digits and characters of the GS1 element string as shown above. 2200

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2201
by reference to an external table of company prefixes. 2202

3. Arrange the characters as shown for the EPC URI. For each component/part character di, 2203
replace it with the corresponding value in the "URI Form" column of Table I.3.1-1 (G) – either 2204
the character itself or a percent-escape triplet if di is not a legal URI character. 2205

Example: 2206

EPC URI: urn:epc:id:cpi:9521141.5PQ7%2FZ43.12345 2207

GS1 element string: (8010)95211415PQ7/Z43(8011)12345 2208

Spaces have been added to the GS1 element string for clarity, but they are not normally present. In 2209
this example, the slash (/) character in the component/part reference must be represented as an 2210
escape triplet in the EPC URI. 2211

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 71 of 315

7.12 Serialised Global Coupon Number (SGCN) 2212

The SGCN EPC (Section 6.3.10) corresponds directly to a serialised GCN key defined in 2213
Sections 2.6.1 and 3.5.12 of the GS1 General Specifications [GS1GS]. Because an EPC always 2214
identifies a specific physical or digital object, only SGCN keys that include the serial number have a 2215
corresponding SGCN EPC. GCN keys that lack a serial number refer to coupon classes rather than 2216
specific coupons, and therefore do not have a corresponding EPC. 2217

Figure 7-11 Correspondence between SGCN EPC URI and GS1 element string 2218

 2219
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2220
written as follows: 2221

EPC URI: urn:epc:id:sgcn:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 2222

GS1 element string: (255)d1d2…d13s1s2…sK 2223

To find the GS1 element string corresponding to a SGCN EPC URI: 2224

1. Number the digits of the first two components of the EPC as shown above. Note that there will 2225
always be a total of 12 digits. 2226

2. Number the characters of the serial number (third) component of the EPC as shown above. Each 2227
si is a digit character. 2228

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 2229
+ d11)) mod 10)) mod 10. 2230

4. Arrange the resulting digits as shown for the GS1 element string. 2231

To find the EPC URI corresponding to a GS1 element string that includes a GCN (AI 255): 2232

1. If the number of characters following the (255) application identifier is less than or equal to 13, 2233
stop: this element string does not have a corresponding EPC because it does not include the 2234
optional serial number. 2235

2. Number the digits and characters of the GS1 element string as shown above. 2236

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2237
by reference to an external table of company prefixes. 2238

4. Arrange the digits as shown for the EPC URI. Note that the GCN check digit d13 is not included in 2239
the EPC URI. 2240

Example: 2241

EPC URI: urn:epc:id:sgcn:9521141.67890.04711 2242

GS1 element string: (255)952114167890904711 2243

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 72 of 315

7.13 Global Identification Number for Consignment (GINC) 2244

The GINC EPC (Section 6.5.1) corresponds directly to the GINC key defined in Sections 2.2.2 and 2245
3.7.2 of the GS1 General Specifications [GS1GS]. 2246

The correspondence between the GINC EPC URI and a GS1 element string consisting of a GINC key 2247
(AI 401) is depicted graphically below: 2248

Figure 7-12 Correspondence between GINC EPC URI and GS1 element string 2249

 2250
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2251
written as follows: 2252

EPC URI: urn:epc:id:ginc:d1d2…dL.s1s2…sK 2253

GS1 element string: (401)d1d2…dLs1s2…sK 2254

To find the GS1 element string corresponding to a GINC EPC URI: 2255

1. Number the characters of the two components of the EPC as shown above. Each si corresponds 2256
to either a single character or to a percent-escape triplet consisting of a % character followed by 2257
two hexadecimal digit characters. 2258

2. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2259
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2260
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2261
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2262
column then gives the corresponding character to use in the GS1 element string.) 2263

To find the EPC URI corresponding to a GS1 element string that includes a GINC (AI 401): 2264

1. Number the digits and characters of the GS1 element string as shown above. 2265

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2266
by reference to an external table of company prefixes. 2267

3. Arrange the digits as shown for the EPC URI. For each serial number character si, replace it 2268
with the corresponding value in the "URI Form" column of Table I.3.1-1 – either the character 2269
itself or a percent-escape triplet if si is not a legal URI character. 2270

Example: 2271

EPC URI: urn:epc:id:ginc:9521141.xyz47%2F11 2272

GS1 element string: (401)9521141xyz47/11 2273

In this example, the slash (/) character in the serial number must be represented as an escape 2274
triplet in the EPC URI. 2275

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 73 of 315

7.14 Global Shipment Identification Number (GSIN) 2276

The GSIN EPC (Section 6.5.2) corresponds directly to the GSIN key defined in Sections 2.2.3 and 2277
3.7.3 of the GS1 General Specifications [GS1GS]. 2278

The correspondence between the GSIN EPC URI and a GS1 element string consisting of an GSIN key 2279
(AI 402) is depicted graphically below: 2280

Figure 7-13 Correspondence between GSIN EPC URI and GS1 element string 2281

 2282
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2283
written as follows: 2284

EPC URI: urn:epc:id:gsin:d1d2…dL.d(L+1)d(L+2)d(L+3)…d16 2285

GS1 element string: (402)d1d2…d17 2286

To find the GS1 element string corresponding to an GSIN EPC URI: 2287

1. Number the digits of the two components of the EPC as shown above. Note that there will 2288
always be a total of 16 digits. 2289

2. Calculate the check digit d17 = (10 – (((d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15) + 3(d2 + d4 + 2290
d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 2291

Arrange the resulting digits and characters as shown for the GS1 element string. 2292

1. To find the EPC URI corresponding to a GS1 element string that includes a GSIN (AI 402): 2293

2. Number the digits and characters of the GS1 element string as shown above. 2294

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2295
by reference to an external table of company prefixes. 2296

4. Arrange the digits as shown for the EPC URI. Note that the GSIN check digit d17 is not included 2297
in the EPC URI. 2298

Example: 2299
EPC URI: urn:epc:id:gsin:9521141.123456789 2300
GS1 element string: (402)95211411234567892 2301

7.15 Individual Trade Item Piece (ITIP) 2302

The ITIP EPC (Section 6.3.13) does not correspond directly to any GS1 key, but instead 2303
corresponds to a combination of AIs (8006) and (21). 2304

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 74 of 315

The correspondence between the ITIP EPC URI and a GS1 element string consisting of AI (8006) 2305
and AI (21) is depicted graphically below: 2306

Figure 7-14 Correspondence between ITIP EPC URI and GS1 element string 2307

 2308
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2309
written as follows: 2310

EPC URI: urn:epc:id:itip:d2…d(L+1).d1d(L+2)d(L+3)…d13.).d1d2.d1d2.s1s2…sK 2311

GS1 element string: (8006)d1d2…d18 (21)s1s2…sK 2312

where 1 ≤ K ≤ 20. 2313

To find the GS1 element string corresponding to an ITIP EPC URI: 2314

1. Number the digits of the first four components of the EPC as shown above. Note that there will 2315
always be a total of 17 digits. 2316

2. Number the characters of the serial number (seventh) component of the EPC as shown above. 2317
Each si corresponds to either a single character or to a percent-escape triplet consisting of a % 2318
character followed by two hexadecimal digit characters. 2319

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + 2320
d8 + d10 + d12)) mod 10)) mod 10. 2321

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2322
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2323
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2324
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2325
column then gives the corresponding character to use in the GS1 element string.) 2326

To find the EPC URI corresponding to a GS1 element string that includes both AI (8006) 2327
and AI (21): 2328

1. Number the digits and characters of the GS1 element string as shown above. 2329

Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be 2330
done, for example, by reference to an external table of company prefixes. See Section 7.3.2 for the 2331
case of a GTIN-8. 2332

2. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is not included 2333
in the EPC URI. For each serial number character si, replace it with the corresponding value in 2334
the "URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if 2335
si is not a legal URI character. 2336

Example: 2337

EPC URI: urn:epc:id:itip:9521141.012345.04.04.32a%2Fb 2338

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 75 of 315

GS1 element string: (8006)095211411234540404(21)32a/b 2339

In this example, the slash (/) character in the serial number must be represented as an escape 2340
triplet in the EPC URI. 2341

7.16 Unit Pack Identifier (UPUI) 2342

The UPUI EPC (Section 6.3.14) does not correspond directly to any GS1 key, but instead 2343
corresponds to a combination of a GTIN key plus a Third Party Controlled, Serialised Extension of 2344
GTIN (TPX), as specified in the GS1 General Specifications [GS1GS]. 2345

The correspondence between the UPUI EPC URI and a GS1 element string consisting of a GTIN key 2346
(AI 01) and a Third Party Controlled, Serialised Extension of GTIN (AI 235) is depicted graphically 2347
below: 2348

Figure 7-15 Correspondence between UPUI EPC URI and GS1 element string 2349

 2350
(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 2351
Indicator Digit in the figure above.) 2352

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2353
written as follows: 2354

EPC URI: urn:epc:id:upui:d2…d(L+1).d1d(L+2)d(L+3)…d13.s1s2…sK 2355

GS1 element string: (01)d1d2…d14 (235)s1s2…sK 2356

where 1 ≤ K ≤ 28. 2357

To find the GS1 element string corresponding to a UPUI EPC URI: 2358

1. Number the digits of the first two components of the EPC as shown above. Note that there will 2359
always be a total of 13 digits. 2360

2. Number the characters of the third component (TPX) of the EPC as shown above. Each si 2361
corresponds to either a single character or to a percent-escape triplet consisting of a % character 2362
followed by two hexadecimal digit characters. 2363

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + 2364
d8 + d10 + d12)) mod 10)) mod 10. 2365

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2366
EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2367
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2368
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2369
column then gives the corresponding character to use in the GS1 element string.) 2370

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 76 of 315

To find the EPC URI corresponding to a GS1 element string that includes both a GTIN (AI 2371
01) and a Third Party Controlled, Serialised Extension of GTIN (AI 235): 2372

1. Number the digits and characters of the GS1 element string as shown above. 2373

2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be 2374
done, for example, by reference to an external table of company prefixes. See Section 7.3.2 for 2375
the case of a GTIN-8. 2376

3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is not included 2377
in the EPC URI. For each serial number character si, replace it with the corresponding value in 2378
the "URI Form" column of Table I.3.1-1 – either the character itself or a percent-escape triplet if 2379
si is not a legal URI character. 2380

Example: 2381

EPC URI: urn:epc:id:upui:9521141.089456.51qIgY)%3C%26Jp3*j7'SDB 2382

GS1 element string: (01)09521141894569(235)51qIgY)<&Jp3*j7'SDB 2383

In this example, the ‘less than’ (<) and ampersand (&) characters in the serial number must be 2384
represented as an escape triplet in the EPC URI. 2385

7.17 Global Location Number of Party (PGLN) 2386

The PGLN EPC (Section 6.3.15) corresponds directly to the Global Location Number of a Party 2387
(PARTY) as specified in the GS1 General Specifications [GS1GS]. 2388

The correspondence between the PGLN EPC URI and a GS1 element string consisting of a GLN Party 2389
key (AI 417) is depicted graphically below: 2390

Figure 7-16 Correspondence between PGLN EPC URI without extension and GS1 element string 2391

 2392
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 2393
written as follows: 2394

EPC URI: urn:epc:id:pgln:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 2395

GS1 element string: (417)d1d2…d13 2396

To find the GS1 element string corresponding to an PGLN EPC URI: 2397

1. Number the digits of the first two components of the EPC as shown above. Note that there will 2398
always be a total of 12 digits. 2399

2. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 2400
+ d11)) mod 10)) mod 10. 2401

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 77 of 315

3. Arrange the resulting digits as shown for the GS1 element string. 2402

To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 417): 2403

1. Number the digits and characters of the GS1 element string as shown above. 2404

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, 2405
by reference to an external table of company prefixes. 2406

3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d13 is not included in 2407
the EPC URI. 2408

Example: 2409

EPC URI: urn:epc:id:pgln:9521141.89012 2410

GS1 element string: (417)9521141890127 2411

7.18 GTIN + batch/lot (LGTIN) 2412

The LGTIN EPC Class (Section 6.3.1) does not correspond directly to any GS1 key, but instead 2413
corresponds to a combination of a GTIN key plus a Batch/Lot Number. The Batch/Lot Number in the 2414
LGTIN is defined to be equivalent to AI 10 in the GS1 General Specifications. 2415

The correspondence between the LGTIN EPC Class URI and a GS1 element string consisting of a 2416
GTIN key (AI 01) and a Batch/Lot Number (AI 10) is depicted graphically below: 2417

Figure 7-17 Correspondence between LGTIN EPC Class URI and GS1 element string 2418

 2419
(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 2420
Indicator Digit in the figure above.) 2421

Formally, the correspondence is defined as follows. Let the EPC Class URI and the GS1 element 2422
string be written as follows: 2423

EPC Class URI: urn:epc:class:lgtin:d2d3…d(L+1).d1d(L+2)d(L+3)…d13.s1s2…sK 2424

GS1 element string: (01)d1d2…d14 (10)s1s2…sK 2425

where 1 ≤ K ≤ 20. 2426

To find the GS1 element string corresponding to an LGTIN EPC Class URI: 2427

1. Number the digits of the first two components of the URI as shown above. Note that there will 2428
always be a total of 13 digits. 2429

2. Number the characters of the Batch/Lot Number (third) component of the URI as shown above. 2430
Each si corresponds to either a single character or to a percent-escape triplet consisting of a % 2431
character followed by two hexadecimal digit characters. 2432

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 78 of 315

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + 2433
d8 + d10 + d12)) mod 10)) mod 10. 2434

4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the 2435
URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the 2436
corresponding character according to Table I.3.1-1 (For a given percent-escape triplet %xx, find 2437
the row of Table I.3.1-1 that contains xx in the "Hex Value" column; the "Graphic symbol" 2438
column then gives the corresponding character to use in the GS1 element string.) 2439

To find the EPC Class URI corresponding to a GS1 element string that includes both a 2440
GTIN (AI 01) and a Batch/Lot Number (AI 10): 2441

1. Number the digits and characters of the GS1 element string as shown above. 2442

2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be 2443
done, for example, by reference to an external table of company prefixes. See Section 7.3.2 for 2444
the case of a GTIN-8. 2445

3. Arrange the digits as shown for the EPC Class URI. Note that the GTIN check digit d14 is not 2446
included in the EPC Class URI. For each serial number character si, replace it with the 2447
corresponding value in the "URI Form" column of Table I.3.1-1 – either the character itself or a 2448
percent-escape triplet if si is not a legal URI character. 2449

Example: 2450

EPC Class URI: urn:epc:class:lgtin:9521141.712345.32a%2Fb 2451

GS1 element string: (01)79521141123453(10) 32a/b 2452

In this example, the slash (/) character in the serial number must be represented as an escape 2453
triplet in the EPC Class URI. 2454

For GTIN-12, GTIN-13, GTIN-8 and other forms of the GTIN, see the subsections of Section 7.1. The 2455
considerations in those sections apply in an analogous manner to LGTIN. 2456

8 URIs for EPC Pure identity patterns 2457

Certain software applications need to specify rules for filtering lists of EPC pure identities according 2458
to various criteria. This specification provides a Pure Identity Pattern URI form for this purpose. A 2459
Pure Identity Pattern URI does not represent a single EPC, but rather refers to a set of EPCs. A 2460
typical Pure Identity Pattern URI looks like this: 2461

urn:epc:idpat:sgtin:0652642.*.* 2462

This pattern refers to any EPC SGTIN, whose GS1 Company Prefix is 0652642, and whose Item 2463
Reference and Serial Number may be anything at all. The tag length and filter bits are not 2464
considered at all in matching the pattern to EPCs. 2465

The new EPC schemes defined in TDS v2.0 have not defined an equivalent EPC Pure Identity URI 2466
syntax nor a corresponding EPC Pure Identity Pattern URI syntax; instead the encoding/decoding is 2467
between the binary string and the corresponding GS1 element string, GS1 Digital Link URI or 2468
equivalently, the set of GS1 Application Identifiers and their values, as shown in Figure 3-1. 2469

In general, there is a Pure Identity Pattern URI scheme corresponding to each Pure Identity EPC URI 2470
scheme (Section 6.3), whose syntax is essentially identical except that any number of fields starting 2471
at the right may be a star (*). This is more restrictive than EPC Tag Pattern URIs (Section 13), in 2472
that the star characters must occupy adjacent rightmost fields and the range syntax is not allowed 2473
at all. 2474

The pure identity pattern URI for the DoD Construct is as follows: 2475

urn:epc:idpat:usdod:CAGECodeOrDODAACPat.serialNumberPat 2476

with similar restrictions on the use of star (*). 2477

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 79 of 315

8.1 Syntax 2478

The grammar for Pure Identity Pattern URIs is given below. 2479

IDPatURI = %s"urn:epc:idpat:" IDPatBody 2480

IDPatBody = 2481

 GIDIDPatURIBody / 2482

 SGTINIDPatURIBody / 2483

 SGLNIDPatURIBody / 2484

 GIAIIDPatURIBody / 2485

 SSCCIDPatURIBody / 2486

 GRAIIDPatURIBody / 2487

 GSRNIDPatURIBody / 2488

 GSRNPIDPatURIBody / 2489

 GDTIIDPatURIBody / 2490

 SGCNIDPatURIBody / 2491

 GINCIDPatURIBody / 2492

 GSINIDPatURIBody / 2493

 DODIDPatURIBody / 2494

 ADIIDPatURIBody / 2495

 CPIIDPatURIBody / 2496

 ITIPIDPartURIBody / 2497

 UPUIIDPatURIBody/ 2498

 PGLNIDPatURIBody 2499

GIDIDPatURIBody = %s"gid:" GIDIDPatURIMain 2500

GIDIDPatURIMain = 2501
 2(NumericComponent ".") NumericComponent 2502
 / 2(NumericComponent ".") "*" 2503
 / NumericComponent ".*.*" 2504
 / "*.*.*" 2505

SGTINIDPatURIBody = %s"sgtin:" SGTINPatURIMain 2506

SGTINPatURIMain = 2507
 2(PaddedNumericComponent ".") GS3A3Component 2508
 / 2(PaddedNumericComponent ".") "*" 2509
 / PaddedNumericComponent ".*.*" 2510
 / "*.*.*" 2511

GRAIIDPatURIBody = %s"grai:" SGLNGRAIIDPatURIMain 2512

SGLNIDPatURIBody = %s"sgln:" SGLNGRAIIDPatURIMain 2513

SGLNGRAIIDPatURIMain = 2514
 PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 2515
GS3A3Component 2516
 / PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*" 2517
 / PaddedNumericComponent ".*.*" 2518
 / "*.*.*" 2519

SSCCIDPatURIBody = %s"sscc:" SSCCIDPatURIMain 2520

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 80 of 315

SSCCIDPatURIMain = 2521
 PaddedNumericComponent "." PaddedNumericComponent 2522
 / PaddedNumericComponent ".*" 2523
 / "*.*" 2524

GIAIIDPatURIBody = %s"giai:" GIAIIDPatURIMain 2525

GIAIIDPatURIMain = 2526
 PaddedNumericComponent "." GS3A3Component 2527
 / PaddedNumericComponent ".*" 2528
 / "*.*" 2529

GSRNIDPatURIBody = %s"gsrn:" GSRNIDPatURIMain 2530

GSRNPIDPatURIBody = %s"gsrnp:" GSRNIDPatURIMain 2531

GSRNIDPatURIMain = 2532
 PaddedNumericComponent "." PaddedNumericComponent 2533
 / PaddedNumericComponent ".*" 2534
 / "*.*" 2535

GDTIIDPatURIBody = %s"gdti:" GDTIIDPatURIMain 2536

GDTIIDPatURIMain = 2537
 PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 2538
GS3A3Component 2539
 / PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*" 2540
 / PaddedNumericComponent ".*.*" 2541
 / "*.*.*" 2542

CPIIDPatURIBody = %s"cpi:" CPIIDPatMain 2543

CPIIDPatMain = 2544
 PaddedNumericComponent "." CPRefComponent "." NumericComponent 2545
 / PaddedNumericComponent "." CPRefComponent ".*" 2546
 / PaddedNumericComponent ".*.*" 2547
 / "*.*.*" 2548

SGCNIDPatURIBody = %s"sgcn:" SGCNIDPatURIMain 2549

SGCNIDPatURIMain = 2550
 PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 2551
PaddedNumericComponent 2552
 / PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*" 2553
 / PaddedNumericComponent ".*.*" 2554
 / "*.*.*" 2555

GINCIDPatURIBody = %s"ginc:" GINCIDPatURIMain 2556

GINCIDPatURIMain = 2557
 PaddedNumericComponent "." GS3A3Component 2558
 / PaddedNumericComponent ".*" 2559
 / "*.*" 2560

GSINIDPatURIBody = %s"gsin:" GSINIDPatURIMain 2561

GSINIDPatURIMain = 2562
 PaddedNumericComponent "." PaddedNumericComponent 2563
 / PaddedNumericComponent ".*" 2564
 / "*.*" 2565

ITIPIDPatURIBody = %s"itip:" ITIPPatURIMain 2566

ITIPPatURIMain = 2567
 4(PaddedNumericComponent ".") GS3A3Component 2568
 / 4(PaddedNumericComponent ".") "*" 2569

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 81 of 315

 / 2(PaddedNumericComponent ".") "*.*.*" 2570
 / PaddedNumericComponent ".*.*.*.*" 2571
 / "*.*.*.*.*" 2572

UPUIIDPatURIBody = %s"upui:" UPUIPatURIMain 2573

UPUIPatURIMain = 2574
 2(PaddedNumericComponent ".") GS3A3Component 2575
 / 2(PaddedNumericComponent ".") "*" 2576
 / PaddedNumericComponent ".*.*" 2577
 / "*.*.*" 2578

PGLNIDPatURIBody = %s"pgln:" PGLNPatURIMain 2579

PGLNPatURIMain = 2580
 2(PaddedNumericComponent ".") 2581
 / PaddedNumericComponent ".*" 2582
 / "*.*" 2583

DODIDPatURIBody = %s"usdod:" DODIDPatMain 2584

DODIDPatMain = 2585
 CAGECodeOrDODAAC "." DoDSerialNumber 2586
 / CAGECodeOrDODAAC ".*" 2587
 / "*.*" 2588

ADIIDPatURIBody = %s"adi:" ADIIDPatMain 2589

ADIIDPatMain = 2590
 CAGECodeOrDODAAC "." ADIComponent "." ADIExtendedComponent 2591
 / CAGECodeOrDODAAC "." ADIComponent ".*" 2592
 / CAGECodeOrDODAAC ".*.*" 2593
 / "*.*.*" 2594

BICIDPatURIBody = %s"bic:" BICIDPatMain 2595

BICIDPatMain = BICURIBody / "*" 2596
 2597
IMOVNIDPatURIBody = %s"imovn:" IMOVNPatMain 2598

IMOVNPatMain = VesselNumber / "*" 2599

 2600

8.2 Semantics 2601

The meaning of a Pure Identity Pattern URI (urn:epc:idpat:) is formally defined as denoting a 2602
set of a set of pure identity EPCs, respectively. 2603

The set of EPCs denoted by a specific Pure Identity Pattern URI is defined by the following decision 2604
procedure, which says whether a given Pure Identity EPC URI belongs to the set denoted by the 2605
Pure Identity Pattern URI. 2606

Let urn:epc:idpat:Scheme:P1.P2...Pn be a Pure Identity Pattern URI. Let 2607
urn:epc:id:Scheme:C1.C2...Cn be a Pure Identity EPC URI, where the Scheme field of both 2608
URIs is the same. The number of components (n) depends on the value of Scheme. 2609

First, any Pure Identity EPC URI component Ci is said to match the corresponding Pure Identity 2610
Pattern URI component Pi if: 2611

■ Pi is a NumericComponent, and Ci is equal to Pi; or 2612

■ Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in length; 2613
or 2614

■ Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent and Ci 2615
is equal to Pi, character for character; or 2616

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 82 of 315

■ Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 2617

■ Pi is a StarComponent (and Ci is anything at all) 2618

Then the Pure Identity EPC URI is a member of the set denoted by the Pure Identity Pattern URI if 2619
and only if Ci matches Pi for all 1 ≤ i ≤ n. 2620

9 Memory Organisation of Gen 2 RFID tags 2621

9.1 Types of Tag Data 2622

RFID Tags, particularly Gen 2 RFID tags, may carry data of three different kinds: 2623

■ Business Data: Information that describes the physical object to which the tag is affixed. This 2624
information includes the EPC that uniquely identifies the physical object, and may also include other data 2625
elements carried on the tag. This information is what business applications act upon, and so this data is 2626
commonly transferred between the data capture level and the business application level in a typical 2627
implementation architecture. Most standardised business data on an RFID tag is equivalent to business 2628
data that may be found in other data carriers, such as barcodes. Business data can also include sensor 2629
data (e.g., as encoded in the XPC bits). 2630

■ Control Information: Information that is used by data capture applications to help control the process 2631
of interacting with tags. Control Information includes data that helps a capturing application filter out tags 2632
from large populations to increase read efficiency, special handling information that affects the behaviour 2633
of capturing application, information that controls tag security features, and so on. Control Information is 2634
typically not passed directly to business applications, though Control Information may influence how a 2635
capturing application presents business data to the business application level. Unlike Business Data, 2636
Control Information has no equivalent in barcodes or other data carriers. 2637

■ Tag Manufacture Information: Information that describes the Tag itself, as opposed to the physical 2638
object to which the tag is affixed. Tag Manufacture information includes a manufacturer ID and a code 2639
that indicates the tag model. It may also include information that describes tag capabilities, as well as a 2640
unique serial number assigned at manufacture time. Usually, Tag Manufacture Information is like Control 2641
Information in that it is used by capture applications but not directly passed to business applications. In 2642
some applications, the unique serial number that may be a part of Tag Manufacture Information is used in 2643
addition to the EPC, and so acts like Business Data. Like Control Information, Tag Manufacture 2644
Information has no equivalent in barcodes or other data carriers. 2645

It should be noted that these categories are slightly subjective, and the lines may be blurred in 2646
certain applications. However, they are useful for understanding how TDS is structured, and are a 2647
good guide for their effective and correct use. 2648

The following table summarises the information above. 2649

Table 9-1 Kinds of Data on a Gen 2 RFID Tag 2650

Information
type

Description Where on Gen 2 Tag Where typically used Bar Code
Equivalent

Business Data Describes the
physical object to
which the tag is
affixed.

EPC Bank (excluding PC
and XPC bits, and filter
value within EPC)
User Memory Bank

Data Capture layer and
Business Application layer

Yes: GS1 keys,
Application
Identifiers (AIs)

Control
Information

Facilitates
efficient tag
interaction

Reserved Bank
EPC Bank: PC and XPC
bits, and filter value
within EPC

Data Capture layer No

Tag
Manufacture
Information

Describes the tag
itself, as opposed
to the physical
object to which
the tag is affixed

TID Bank Data Capture layer
Unique tag manufacture
serial number may reach
Business Application layer

No

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 83 of 315

9.2 Gen 2 Tag Memory Map 2651

Binary data structures defined in TDS are intended for use in RFID Tags, particularly in UHF Class 1 2652
Gen 2 tags (also known as ISO/IEC 18000-63 [ISO18000-63] tags). The air interface standard 2653
[UHFC1G2] specifies the structure of memory on Gen 2 tags, as shown in Figure 9-1. Specifically, it 2654
specifies that memory in these tags consists of four separately addressable banks, numbered 00, 2655
01, 10, and 11. It also specifies the intended use of each bank, and constraints upon the content of 2656
each bank dictated by the behaviour of the air interface. For example, the layout and meaning of 2657
the Reserved bank (bank 00), which contains passwords that govern certain air interface 2658
commands, is fully specified in [UHFC1G2]. 2659

For those memory banks and memory locations that have no special meaning to the air interface 2660
(i.e., are "just data" as far as the air interface is concerned), TDS normatively specifies the content 2661
and meaning of these memory locations. 2662

Following the convention established in [UHFC1G2], memory addresses are described using 2663
hexadecimal bit addresses, where each bank begins with bit 00h and extends upward to as many 2664
bits as each bank contains, the capacity of each bank being constrained in some respects by 2665
[UHFC1G2] but ultimately may vary with each tag make and model. Bit 00h is considered the most 2666
significant bit of each bank, and when binary fields are laid out into tag memory the most significant 2667
bit of any given field occupies the lowest-numbered bit address occupied by that field. 2668

NOTE: For reasons of TDS 1.x continuity, with respect to individual fields, the least significant bit of 2669
individual TDS 1.x fields is numbered zero. For example, the TDS 1.x-era specification of Access 2670
Password is a 32-bit unsigned integer consisting of bits b31b30…b0, where b31 is the most significant 2671
bit and b0 is the least significant bit. When the Access Password is stored at address 20h – 3Fh 2672
(inclusive) in the Reserved bank of a Gen 2 tag, the most significant bit b31 is stored at tag address 2673
20h and the least significant bit b0 is stored at address 3Fh. 2674

NOTE: Encodings new to TDS 2.0 are described counting bits from left to right. 2675

The following figure shows the layout of memory on a Gen 2 tag, The colours indicate the type of 2676
data following the categorisation in Figure 3-1. 2677

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 84 of 315

Figure 9-1 Gen 2 Tag Memory Map 2678

 2679
 2680

The following table describes the fields in the memory map above. 2681

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 85 of 315

Table 9-2 Gen 2 Memory Map 2682

Bank Bits Field Description Category Where Specified

Bank 00
(Reserved)

00h –
1Fh

Kill
Passwd

A 32-bit password that must be
presented to the tag in order to
complete the Gen 2 "kill" command.

Control
Info

[UHFC1G2]

20h –
2Fh

Access
Passwd

A 32-bit password that must be
presented to the tag in order to
perform privileged operations

Control
Info

[UHFC1G2]

Bank 01
(EPC)

00h –
0Fh

CRC A 16-bit Cyclic Redundancy Check
computed over the contents of the
EPC bank.

Control
Info

[UHFC1G2]

10h –
1Fh

PC Bits Protocol Control bits (see below) Control
Info

(see below)

20h –
end

EPC Electronic Product Code, plus filter
value and any optionally included
"AIDC data" (normatively specified in
TDS 2.0) appended to the EPC itself.
Note that the DSGTIN+ scheme
supports the expression of a
prioritised date field ahead of the
GTIN within its binary encoding.
This is then zero-filled to the word
boundary.
The Electronic Product code is a
globally unique identifier for the
physical object to which the tag is
affixed. The filter value provides a
means to improve tag read efficiency
by selecting a subset of tags of
interest.

Business
Data
(except
filter value,
which is
Control
Info)

The EPC is
defined in
Sections 6, 7, and
13. The filter
values are
defined in
Section 10.

210h –
21Fh

XPC Bits Extended Protocol Control bits. If bit
16h of the EPC bank is set to one,
then bits 210h – 21Fh (inclusive)
contain additional protocol control
bits as specified in [UHFC1G2]

Control
Info

[UHFC1G2]

Bank 10
(TID)

00h –
end

TID Bits Tag Identification bits, which provide
information about the tag itself, as
opposed to the physical object to
which the tag is affixed.

Tag Manu-
facture Info

Section 16

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 86 of 315

Bank Bits Field Description Category Where Specified

Bank 11
(User)

00h –
end

DSFID Logically, the content of user memory
is a set of name-value pairs, where
the name part is an OID [ASN.1] and
the value is a character string.
Physically, the first few bits are a
Data Storage Format Identifier as
specified in ISO/IEC 15961
[ISO15961] and ISO/IEC 15962
[ISO15962]. The DSFID specifies the
format for the remainder of the user
memory bank. The DSFID is typically
eight bits in length, but may be
extended further as specified in
[ISO15961].

When the DSFID specifies Access
Method 2, the format of the
remainder of user memory is "Packed
Objects" as specified in Section 17.
This format is recommended for use
in EPC applications. The physical
encoding in the Packed Objects data
format is as a sequence of "Packed
Objects," where each Packed Object
includes one or more name-value
pairs whose values are compacted
together.

When the DSFID specifies Access
Method 17, the format of the
remainder of user memory after the
8-bit DSFID (set to 00010001) is an
ISO/IEC 20248 DigSig
(digital signature data structure)
consisting of:
Domain Authority ID (DAID) = 8 bits
(set to 11111110) +44 bits to encode
the GS1 Party GLN (417) of the
organisation that is accountable for
the signature,
Certificate ID (CID) = 16 bits,
Signature and timestamp = 256+20
bits. A 20 bit timestamp supports a
signing period of one year, with a
resolution of minutes.

Business
Data

[ISO15961],
[ISO15962],
Section 17

The following figure illustrates in greater detail the first few bits of the EPC Bank (Bank 01), and in 2683
particular shows the various fields within the Protocol Control bits (bits 10h – 1Fh, inclusive). 2684

Figure 9-2 Gen 2 Protocol Control (PC) Bits Memory Map 2685

 2686
XPC Indicator

(XI)

CRC

00
0F

10
14

15 16 17
18

1F
h

h h h

h h
h

h

h

h

Length Attribute
/ AFI

EPC
Binary
Encoding
[+AIDC data]

Zero Fill
to the
word

boundary

20

Toggle - always zero for EPC

Protocol Control (PC) bits

NSI

User Memory Indicator (UMI) in Gen2v2 tags and earlier
Read User Memory Indicator (RUM) in Gen2v3 and later

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 87 of 315

9.3 PC bits 2687

The following table specifies the meaning of the PC bits: 2688

Table 9-3 Gen 2 Protocol Control (PC) Bits Memory Map 2689

Bits Field Name Description

10h – 14h L4-L0 Length Represents the number of 16-bit words
comprising the EPC field (below), beginning
with the 8-bit, EPC Binary Header at 20h
and including any optional "AIDC data"
(normatively specified in TDS 2.0)
appended to the EPC itself. Note that the
DSGTIN+ scheme enables a prioritised date
value to be encoded before the GTIN in the
binary encoding.
See discussion in Section 15.1.1 for the
encoding of this field.

15h UMI
(Gen2v2 tags
and earlier)

User Memory Indicator (for Gen2v2 tags and earlier)

Bit 15h may be fixed by the Tag
manufacturer or computed by the Tag.

If UMI=0:
If fixed, the Tag does not have File_0 (User
Memory) and is incapable of allocating
memory to it.
If computed, then File_0 (User Memory) is
not allocated or does not contain data.

If UMI=1:
If fixed, the Tag has File 0 (User Memory)
or is capable of allocating memory to it.
If computed, then File_0 (User Memory) is
allocated and contains data.

RUM
(Gen2v3 tags
and later)

Read User Memory indicator (for Gen2v3 tags and later)

Bit 15h indicates that a Tag has memory
allocated to File_0 and, if the Interrogator
initiated the inventory round using a
QueryX, that the Tag has encoded data in
File_0. A Tag shall compute RUM according
to Table 6-17 of [UHFC1G2] regardless of
the lock or permalock status of EPC
memory or the untraceability status of
File_0.
If an Interrogator changes a Tag’s User
Word Count (UWC) value (see [UHFC1G2])
or changes the number of words allocated
to File_0 memory, then a Tag’s RUM may
be incorrect until the Interrogator power-
cycles the Tag. Additionally, RUM may
change without power cycling; for example,
a Tag with memory allocated to File_0 and
with UWC=0 will have RUM=02 after
QueryX begins initializing an inventory
round, but after a Write to the StoredPC,
then RUM may change since the Tag may
recompute its StoredCRC.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 88 of 315

Bits Field Name Description

16h XI XPC W1 Indicator Indicates whether an XPC W1 is present for
the specific circumstances described below.

If XI=0:
Either (i) Tag has no XPC_W1, or (ii) T=0
and either bits 210h–217h or bits 210h–
218h (at tag manufacturer's option) of EPC
memory are all zero, or (iii) T=1 and bits
210h–21Fh of EPC memory are all zero.

If XI=1:
Tag has an XPC_W1 and either (i) T=0 and
at least one bit of 210h–217h or 210h–218h
(at tag manufacturer’s option) of EPC
memory is nonzero, or (ii) T=1 and at least
one bit of 210h–21Fh of EPC memory is
nonzero.

17h T Numbering System Identifier
Toggle

If T=0:
Indicates a GS1 EPCglobal application,
encoded in compliance with TDS.

If T=1:
Indicates a non-GS1 EPCglobal
application, not encoded in compliance
with TDS. In particular, indicates that bits
18h – 1Fh contain the ISO Application Family
Identifier (AFI) as defined in [ISO15961]
and the remainder of the EPC bank contains
a Unique Item Identifier (UII) appropriate
for that AFI.

18h – 1Fh
(if toggle=0)

 RFU (Gen2v2, Gen2v3 tags) or
Attribute bits (Gen v1.x tags)

Gen2 v1.x tags:
Bits that may guide the handling of the
physical object to which the tag is affixed.

18h – 1Fh
(if toggle=1)

AFI Application Family Identifier An Application Family Identifier that
specifies a non-GS1 EPCglobal application,
not encoded in compliance with TDS, for
which the remainder of the EPC bank
contains a Unique Item Identifier (UII)
appropriate for that AFI.
(see [ISO15961])

Bits 17h – 1Fh (inclusive) are collectively known as the Numbering System Identifier (NSI). It should 2690
be noted, however, that when the toggle bit (bit 17h) is zero, the numbering system is always the 2691
Electronic Product Code (EPC), and bits 18h – 1Fh contain the Attribute bits whose purpose is 2692
completely unrelated to identifying the numbering system being used. 2693

The Attribute bits are "control information" that may be used by capturing applications to guide the 2694
capture process. Attribute Bits may be used to determine whether the physical object to which a tag 2695
is affixed requires special handling of any kind. 2696

Attribute bits are available for all EPC types. The Attribute bit definitions specified here apply 2697
regardless of which EPC scheme is used. 2698

Because Attribute bits are not part of the EPC, they are not included when the EPC is represented as 2699
a pure identity URI or as a GS1 Digital Link URI, nor should the Attribute bits be considered as 2700
part of the EPC by business applications. Capturing applications may, however, read the Attribute 2701
bits and pass them upwards to business applications in some data field other than the EPC. It should 2702
be recognised, however, that the purpose of the Attribute bits is to assist in the data capture and 2703
physical handling process, and in most cases the Attribute bits will be of limited or no value to 2704
business applications. The Attribute bits are not intended to provide reliable master data or product 2705
descriptive attributes for business applications to use. 2706

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 89 of 315

9.4 XPC bits 2707

The following table specifies the meaning of the XPC bits for tags whose Numbering System Identifier 2708
Toggle (T, bit 17h) is zero. 2709

For tags whose Numbering System Identifier Toggle is non-zero, please refer to [ISO18000-63] for 2710
XPC bit assignments. 2711

Table 9-4 Gen 2 Extended Protocol Control (XPC) Bits Memory Map 2712

Bits Field Description Settings

210h XEB XPC_W2 indicator 0: Tag has no XPC_W2 or all bits of XPC_W2 are
zero-valued
1: Tag has an XPC_W2 and at least one bit of
XPC_W2 is nonzero

211h –
213h

RFU Reserved for future use

Annex L of Gen2 v2 permits using the ISO XPC bit
definitions; accordingly, bits 211h-217h might not
be fixed zeroes. Specifically, bits 214 h to 217 h
are used by sensor tags 214h –

217h
RFU
(Gen2v2
tags and
earlier)

214h SA
(Gen2v3
tags and
later)

Sensor Alarm indicator 0: Tag is not reporting an alarm condition or does
not support the SA flag
1: Tag is reporting an alarm condition

215h SS
(Gen2v3
tags and
later)

Simple Sensor indicator 0: Tag does not have a Simple Sensor
1: Tag has a Simple Sensor

216h FS
(Gen2v3
tags and
later)

Full Function Sensor indicator 0: Tag does not have a Full Function Sensor
1: Tag has a Full Function Sensor

217h SN
(Gen2v3
tags and
later)

Snapshot Sensor indicator 0: Tag does not have a Snapshot Sensor
1: Tag has a Snapshot Sensor

218h B Battery-assisted passive indicator 0: Tag is passive or does not support the B flag
1: Tag is battery-assisted

219h C Computed response indicator 0: ResponseBuffer is empty or Tag does not
support a ResponseBuffer
1: ResponseBuffer contains a response

21Ah SLI SL indicator 0: Tag has a deasserted SL flag or does not
support the SLI bit
1: Tag has an asserted SL flag

21Bh TN Tag Notification indicator 0: Tag does not assert a notification or does not
support the TN bit
1: Tag asserts a notification

21Ch U Untraceable indicator 0: Tag is traceable or does not support the U bit
1: Tag is untraceable

21Dh K Killable indicator 0: Tag is not killable by Kill command or does not
support the K bit
1: Tag can be killed by Kill command.

21Eh NR Non-Removable indicator 0: Tag is removable from its host item or does not
support the NR bit
1: Tag is not removable from its host item

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 90 of 315

Bits Field Description Settings

21Fh H Hazmat indicator 0: Tagged item is not hazardous material or Tag
does not support the H bit
1: Tagged item is hazardous material
Hazardous materials are defined by government
regulations. Generally, a hazardous material
(HazMat) is any item or agent (biological,
chemical, radiological, and/or physical), which has
the potential to cause harm to humans, animals,
or the environment, either by itself or through
interaction with other factors.

NOTE: 2713
Per section 6.3.2.1.2.2 Protocol-control (PC) word (StoredPC and PacketPC) of Gen2v2: 2714
"If a Tag has T=0, XI=0, implements an XPC_W1, and is not truncating then the Tag 2715
substitutes the 8 LSBs of XPC_W1 (i.e. EPC memory 218h – 21Fh) for the 8 LSBs of the 2716
StoredPC (i.e. PC memory 18h – 1Fh) in its reply." 2717

ALSO NOTE: 2718
Gen2 Inventory operations do not use the READ, WRITE, or BLOCKWRITE commands for obtaining 2719
the contents of the EPC memory bank. Instead, Gen2 Inventory operations use the ACK command, 2720
and the host will only receive the PacketPC, which combines info from both the StoredPC and 2721
XPC_W1. The ACK command may also include the XPC_W1 in its entirety for a sensor tag. 2722

Capture of the EPC memory bank (MB01) is a process that is optimized by the air protocol. As such, 2723
what is commonly referred to as the "PC word" during capture is really the 8 most significant bits 2724
(MSBs) of the Protocol Control (PC) bits, concatenated with 8 least significant bits (LSBs) of the 2725
Extended Protocol Control (XPC) bits when XI=0; when XI=1, the "PC word" during capture consists 2726
of all 16 PC bits, along with all 16 XPC bits. 2727

10 Filter Value 2728

The filter value is additional control information that may be included in the EPC memory bank of a 2729
Gen 2 tag. The intended use of the filter value is to allow an RFID reader to select or deselect the 2730
tags corresponding to certain physical objects, to make it easier to read the desired tags in an 2731
environment where there may be other tags present in the environment. For example, if the goal is 2732
to read the single tag on a pallet, and it is expected that there may be hundreds or thousands of 2733
item-level tags present, the performance of the capturing application may be improved by using the 2734
Gen 2 air interface to select the pallet tag and deselect the item-level tags. 2735

Filter values are available for all EPC types except for the General Identifier (GID). There is a 2736
different set of standardised filter value values associated with each type of EPC, as specified below. 2737

It is essential to understand that the filter value is additional "control information" that is not part of 2738
the Electronic Product Code. The filter value does not contribute to the unique identity of the EPC. 2739
For example, it is not permissible to attach two RFID tags to different physical objects where both 2740
tags contain the same EPC, even if the filter values are different on the two tags. 2741

Because the filter value is not part of the EPC, the filter value is not included when the EPC is 2742
represented as a pure identity URI, element string or GS1 Digital Link URI, nor should the filter 2743
value be considered as part of the EPC by business applications. It is also important to note that 2744
filter values can only be used within EPC RFID data carriers and there is no barcode equivalent. Nor 2745
should filter values be confused with the indicator digit of a GTIN nor the extension digit of an SSCC. 2746

Capturing applications may, however, read the filter value and pass it upwards to business 2747
applications in some data field other than the EPC. It should be recognised, however, that the 2748
purpose of the filter values is to assist in the data capture process, and in most cases the filter value 2749
will be of limited or no value to business applications. The filter value is not intended to provide a 2750
reliable packaging-level indicator for business applications to use. 2751

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 91 of 315

10.1 Use of "Reserved" and "All Others" Filter Values 2752

In the following sections, filter values marked as "reserved" are reserved for assignment by GS1 in 2753
future versions of this specification. Implementations of the encoding and decoding rules specified 2754
herein SHALL accept any value of the filter values, whether reserved or not. Applications, however, 2755
SHOULD NOT direct an encoder to write a reserved value to a tag, nor rely upon a reserved value 2756
decoded from a tag, as doing so may cause interoperability problems if a reserved value is assigned 2757
in a future revision to this specification. 2758

Each EPC scheme includes a filter value identified as "All Others." This filter value means that the 2759
object to which the tag is affixed does not match the description of any of the other filter values 2760
defined for that EPC scheme. In some cases, the "All Others" filter value may appear on a tag that 2761
was encoded to conform to an earlier version of this specification, at which time no other suitable 2762
filter value was available. When encoding a new tag, the filter value should be set to match the 2763
description of the object to which the tag is affixed, with "All Others" being used only if a suitable 2764
filter value for the object is not defined in this specification. 2765

10.2 Filter Values for SGTIN and DSGTIN+ EPC Tags 2766

The normative specifications for Filter Values for SGTIN EPC Tags are specified below. 2767

Table 10-1 SGTIN Filter Values 2768

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Point of Sale (POS) Trade Item 1 001

Full Case for Transport * 2 010

Reserved (see Section 10.1) 3 011

Inner Pack Trade Item Grouping for Handling 4 100

Reserved (see Section 10.1) 5 101

Unit Load ** 6 110

Unit inside Trade Item or component inside a product not
intended for individual sale

7 111

* When used as the EPC Filter Value for an SGTIN, "Full Case for Transport" denotes a case or 2769
carton whose composition of multiple POS trade items is standardised via master data and can be 2770
consistently (re-) ordered in this configuration by referencing a single GTIN. 2771

** When used as the EPC Filter Value for an SGTIN, "Unit Load" denotes one or more trade items 2772
contained on a pallet or other type of load carrier (e.g. rolly, dolly, tote, garment rack, bag, sack, 2773
etc.) *, making them suitable for transport, stacking, and storage as a unit, whose composition is 2774
standardised via master data and can be consistently (re-)ordered in this configuration by 2775
referencing a single GTIN. 2776

10.3 Filter Values for SSCC EPC Tags 2777

The normative specifications for Filter Values for SSCC EPC Tags are specified below. 2778

Table 10-2 SSCC Filter Values 2779

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Full Case for Transport 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 92 of 315

Type Filter Value Binary Value

Unit Load 6 110

Reserved (see Section 10.1) 7 111

10.4 Filter Values for SGLN EPC Tags 2780

Table 10-3 SGLN Filter Values 2781

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

10.5 Filter Values for GRAI EPC Tags 2782

Table 10-4 GRAI Filter Values 2783

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

10.6 Filter Values for GIAI EPC Tags 2784

Table 10-5 GIAI Filter Values 2785

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Rail Vehicle 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 93 of 315

10.7 Filter Values for GSRN and GSRNP EPC Tags 2786

Table 10-6 GSRN and GSRNP Filter Values 2787

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

10.8 Filter Values for GDTI EPC Tags 2788

Table 10-7 GDTI Filter Values 2789

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Travel Document * 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

* A Travel Document is an identity document issued by a government or international treaty 2790
organisation to facilitate the movement of individuals across international boundaries. 2791

10.9 Filter Values for CPI EPC Tags 2792

Table 10-8 CPI Filter Values 2793

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 94 of 315

10.10 Filter Values for SGCN EPC Tags 2794

Table 10-9 SGCN Filter Values 2795

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

10.11 Filter Values for ITIP EPC Tags 2796

Table 10-10 ITIP Filter Values 2797

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

10.12 Filter Values for GID EPC Tags 2798

The GID EPC scheme does not provide for the use of filter values. 2799

10.13 Filter Values for DOD EPC Tags 2800

Filter values for US DoD EPC Tags are as specified in [USDOD]. 2801

10.14 Filter Values for ADI EPC Tags 2802

Table 10-11 ADI Filter Values 2803

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000000

Item, other than an item to which filter values 8 through 63
apply

1 000001

Carton 2 000010

Reserved (see Section 10.1) 3 thru 5 000011 thru 000101

Pallet 6 000110

Reserved (see Section 10.1) 7 000111

Seat cushions 8 001000

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 95 of 315

Type Filter Value Binary Value

Seat covers 9 001001

Seat belts 10 001010

Galley, Galley carts and other Galley Service Equipment 11 001011

Unit Load Devices, cargo containers 12 001100

Aircraft Security items (life vest boxes, rear lavatory walls,
lavatory ceiling access hatches)

13 001101

Life vests 14 001110

Oxygen generators 15 001111

Engine components 16 010000

Avionics 17 010001

Experimental ("flight test") equipment 18 010010

Other emergency equipment (smoke masks, PBE, crash axes,
medical kits, smoke detectors, flashlights, safety cards, etc.)

19 010011

Other rotables; e.g., line or base replaceable 20 010100

Other repairable 21 010101

Other cabin interior 22 010110

Other repair (exclude component); e.g., structure item repair 23 010111

Passenger Seats (structure) 24 011000

IFEs (In-Flight Entertainment) Systems 25 011001

Reserved (see Section 10.1) 26 thru 55 011010 thru 110111

Location Identifier (*) 56 111000

Documentation 57 111001

Tools 58 111010

Ground Support Equipment 59 111011

Other Non-flyable equipment 60 111100

Reserved for internal company use 61 thru 63 111101 thru 111111

 Non-Normative: When assigning filter values to tagged parts, the filter values chosen should 2804
be as specific as possible. For example, a filter value of 17 (Avionics) is a better choice for a 2805
radar black box than the more general category of 20 (Other Rotables). On the other hand, a 2806
filter value of 20 (Other Rotables) would be appropriate for a radar antenna in the nose cone 2807
of a plane since 17 (Avionics) would not be accurate. 2808

 Note: location identifier may act differently from an item "identifying" tag in that it identifies 2809
a location that may be referenced by other items. Thus, an item might have an identification 2810
tag, but also a location tag. An example might be a particular part of an aircraft or even the 2811
entire aircraft. 2812

 Non-Normative: One example of "location" could be a particular airplane "tail number". For 2813
example, Airline XYZ has a fleet of 200 737s with the same interior configuration, and once 2814
you are inside of it, you can’t tell which particular 737 you are in. This Airline wants to place 2815
RFID "location marker(s)" with the tail number encoded, and place them inside the passenger 2816
doors, or cargo hold doors. The doors could end up having two tags, one is for the door itself, 2817
i.e. it has the door part number, serial number, and things, and another tag is for "location" 2818
purpose. 2819

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 96 of 315

11 Attribute bits (refer to 9.3 and 9.4) 2820

This contents of this section have now been subsumed into sections 9.3 and 9.4. 2821

12 EPC Tag URI and EPC Raw URI 2822

The EPC memory bank of a Gen 2 tag contains a binary-encoded EPC, along with other control 2823
information. Applications do not normally process binary data directly. An application wishing to 2824
read the EPC may receive the EPC as a Pure Identity EPC URI, as defined in Section 6. In other 2825
situations, however, a capturing application may be interested in the control information on the tag 2826
as well as the EPC. Also, an application that writes the EPC memory bank needs to specify the 2827
values for control information that are written along with the EPC. In both of these situations, the 2828
EPC Tag URI and EPC Raw URI may be used. 2829

For EPC schemes defined in TDS before TDS v2.0, the EPC Tag URI specifies both the EPC and the 2830
values of control information in the EPC memory bank. It also specifies which of several variant 2831
binary coding schemes is to be used (e.g., the choice between SGTIN-96 and SGTIN-198). As such, 2832
an EPC Tag URI completely and uniquely specifies the contents of the EPC memory bank for those 2833
EPC schemes for which it is defined. The EPC Raw URI also specifies the complete contents of the 2834
EPC memory bank, but represents the memory contents as a single decimal or hexadecimal 2835
numeral. The new EPC schemes defined in TDS v2.0 have not defined an equivalent EPC Tag URI 2836
syntax; instead the encoding/decoding is between the binary string and the corresponding GS1 2837
element string, GS1 Digital Link URI or equivalently, the set of GS1 Application Identifiers and their 2838
values, as shown in Figure 3-1. It should also be noted that the new EPC schemes defined in TDS 2839
2.0 all permit the encoding of additional AIDC data after the EPC within the EPC/UII memory bank, 2840
as an alternative to encoding such data in the user memory bank. 2841

12.1 Structure of the EPC Tag URI and EPC Raw URI 2842

The EPC Tag URI begins with urn:epc:tag:, and is used when the EPC memory bank contains a 2843
valid EPC. EPC Tag URIs resemble Pure Identity EPC URIs, but with added control information. The 2844
EPC Raw URI begins with urn:epc:raw:, and is used when the EPC memory bank does not contain 2845
a valid EPC. This includes situations where the toggle bit (bit 17h) is set to one, as well as situations 2846
where the toggle bit is set to zero but the remainder of the EPC bank does not conform to the 2847
coding rules specified in Section 14, either because the header bits are unassigned or the remainder 2848
of the binary encoding violates a validity check for that header. 2849

The following figure illustrates these URI forms. 2850

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 97 of 315

Figure 12-1 Illustration of EPC Tag URI and EPC Raw URI 2851

 2852
The first form in the figure, the EPC Tag URI, is used for a valid EPC. It resembles the Pure Identity 2853
EPC URI, with the addition of optional control information fields as specified in Section 12.2.2 and a 2854
(non-optional) filter value. The EPC scheme name (sgtin-96 in the example above) specifies a 2855
particular binary encoding scheme, and so it includes the length of the encoding. This is in contrast 2856
to the Pure Identity EPC URI which identifies an EPC scheme but not a specific binary encoding 2857
(e.g., sgtin but not specifically sgtin-96). 2858

The EPC raw URI illustrated by the second example in the figure can be used whenever the toggle 2859
bit (bit 17h) is zero, but is typically only used if the first form cannot (that is, if the contents of the 2860
EPC bank cannot be decoded according to Section 14.3.9). It specifies the contents of bit 20h 2861
onward as a single hexadecimal numeral. The number of bits in this numeral is determined by the 2862
"length" field in the EPC bank of the tag (bits 10h – 14h). (The grammar in Section 12.4 includes a 2863
variant of this form in which the contents are specified as a decimal numeral. This form is 2864
deprecated.) 2865

The EPC Raw URI illustrated by the third example in the figure is used when the toggle bit (bit 17h) 2866
is one. It is similar to the second form, but with an additional field between the length and payload 2867
that reports the value of the AFI field (bits 18h – 1Fh) as a hexadecimal numeral. 2868

Each of these forms is fully defined by the encoding and decoding procedures specified in Sections 2869
14.3 and 14.4. 2870

12.2 Control Information 2871

The EPC Tag URI and EPC Raw URI specify the complete contents of the Gen 2 EPC memory bank, 2872
including control information such as filter values and Attribute bits. This section specifies how 2873
control information is included in these URIs. 2874

urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.9521141.012345.4711

urn:epc:raw:[att=x01][xpc=x0004]:96.x0123456890ABCDEF01234567

urn:epc:raw:[umi=1][xpc=x0004]:64.x31.x0123456890ABCDEF

EPC Tag URI

EPC Raw URI, toggle=0

EPC Raw URI, toggle=1

Control fields
(optional)

Filter value

Application Family
Identifier (AFI)

EPC Encoding Scheme
Name (includes

length)

Explicit
Length

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 98 of 315

12.2.1 Filter Values 2875

Filter values are only available when the EPC bank contains a valid EPC, and only then when the EPC 2876
is an EPC scheme other than GID. In the EPC Tag URI, the filter value is indicated as an additional 2877
field following the scheme name and preceding the remainder of the EPC, as illustrated below: 2878

Figure 12-2 Illustration of Filter Value within EPC Tag URI 2879

 2880
The filter value is a decimal integer. The allowed values of the filter value are specified in 2881
Section 10. 2882

12.2.2 Other control information fields 2883

Control information in the EPC bank apart from the filter values is stored separately from the EPC. 2884
Such information can be represented both in the EPC Tag URI and the EPC Raw URI, using the 2885
name-value pair syntax described below. 2886

In both URI forms, control field name-value pairs may occur following the urn:epc:tag: or 2887
urn:epc:raw:, as illustrated below: 2888

urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.9521141.112345.400 2889

urn:epc:raw:[att=x01][xpc=x0004]:96.x012345689ABCDEF01234567 2890

Each element in square brackets specifies the value of one control information field. An omitted field 2891
is equivalent to specifying a value of zero. As a limiting case, if no control information fields are 2892
specified in the URI it is equivalent to specifying a value of zero for all fields. This provides back-2893
compatibility with earlier versions of TDS. 2894

The available control information fields are specified in the following table. 2895

Table 12-1 Control information fields 2896

Field Syntax Description Read/Write

Attribute Bits [att=xNN] The value of the Attribute bits
(bits 18h – 1Fh), as a two-digit
hexadecimal numeral NN.

This field is only available if the
toggle bit (bit 17h) is zero.

Read / Write

User Memory
Indicator

[umi=B] The value of the user memory
indicator bit (bit 15h). The value
B is either the digit 0 or the digit
1.

Read / Write
Note that certain Gen 2 Tags
may ignore the value written
to this bit, and some may
calculate the value of the bit
from the contents of user
memory. See [UHFC1G2].

Extended PC Bits [xpc=xNNNN] The value of the XPC bits (bits
210h-21Fh) as a four-digit
hexadecimal numeral NNNN.

Read only

The user memory indicator and extended PC bits are calculated by the tag as a function of other 2897
information on the tag or based on operations performed to the tag. Therefore, these fields cannot 2898
be written directly. When reading from a tag, any of the control information fields may appear in the 2899

urn:epc:id:sgtin:9521141.012345.4711 EPC Pure Identity URI

urn:epc:tag:sgtin-96:3.9521141.012345.4711 EPC Tag URI

Filter value

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 99 of 315

URI that results from decoding the EPC memory bank. When writing a tag, the umi and xpc fields 2900
will be ignored when encoding the URI into the tag. 2901

To aid in decoding, any control information fields that appear in a URI must occur in alphabetical 2902
order (the same order as in the table above). 2903

 Non-Normative: Examples: The following examples illustrate the use of control information 2904
fields in the EPC Tag URI and EPC Raw URI. 2905

urn:epc:tag:sgtin-96:3.9521141.112345.400 2906

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material Attribute bit set to 2907
zero, no user memory (user memory indicator = 0), and not recommissioned (extended PC = 2908
0). This illustrates back-compatibility with earlier versions of the Tag Data Standard. 2909

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material Attribute bit set to 2910
one, no user memory (user memory indicator = 0), and not recommissioned (extended PC = 2911
0). This URI might be specified by an application wishing to commission a tag with the 2912
hazardous material bit set to one and the filter bits and EPC as shown. 2913

urn:epc:raw:[att=x01][umi=1][xpc=x0004]:96.x1234567890ABCDEF01234567 2914

This is a tag with toggle=0, random data in bits 20h onward (not decodable as an EPC), the 2915
hazardous material Attribute bit set to one, non-zero contents in user memory, and has been 2916
recommissioned (as indicated by the extended PC). 2917

urn:epc:raw:[xpc=x0001]:96.xC1.x1234567890ABCDEF01234567 2918

This is a tag with toggle=1, Application Family Indicator = C1 (hexadecimal), and has had its 2919
user memory killed (as indicated by the extended PC). 2920

12.3 EPC Tag URI and EPC Pure Identity URI 2921

The Pure Identity EPC URI as defined in Section 6 is a representation of an EPC for use in 2922
information systems. The only information in a Pure Identity EPC URI is the EPC itself. The EPC Tag 2923
URI, in contrast, contains additional information: it specifies the contents of all control information 2924
fields in the EPC memory bank, and it also specifies which encoding scheme is used to encode the 2925
EPC into binary. Therefore, to convert a Pure Identity EPC URI to an EPC Tag URI, additional 2926
information must be provided. Conversely, to extract a Pure Identity EPC URI from an EPC Tag URI, 2927
this additional information is removed. The procedures in this section specify how these conversions 2928
are done. 2929

12.3.1 EPC Binary Coding Schemes 2930

For each EPC scheme as specified in Section 6, there are one or more corresponding EPC Binary 2931
Coding Schemes that determine how the EPC is encoded into binary representation for use in RFID 2932
tags. When there is more than one EPC Binary Coding Scheme available for a given EPC scheme, a 2933
user must choose which binary coding scheme to use. In general, the shorter binary coding schemes 2934
result in fewer bits and therefore permit the use of less expensive RFID tags containing less 2935
memory, but are restricted in the range of serial numbers that are permitted. The longer binary 2936
coding schemes allow for the full range of serial numbers permitted by the GS1 General 2937
Specifications, but require more bits and therefore more expensive RFID tags. TDS 2.0 introduces 2938
several new EPC schemes and corresponding binary encodings that support simpler 2939
encoding/decoding rules and efficient variable-length encoding using the most efficient character set 2940
for the actual value being encoded. The new EPC schemes and binary encodings introduced in TDS 2941
2.0 do not use partition tables and require no knowledge of the length of the GS1 Company Prefix; 2942
this is intended to improve interoperability between EPC and other data carriers such as 1D and 2D 2943
barcodes, in which the length of the GS1 Company Prefix is not considered to be significant. 2944

For EPC schemes defined before TDS 2.0, it is important to note that two EPCs are the same if and 2945
only if the Pure Identity EPC URIs are character for character identical. A long binary encoding (e.g., 2946
SGTIN-198) is not a different EPC from a short binary encoding (e.g., SGTIN-96) if the GS1 2947
Company Prefix, item reference with indicator, and serial numbers are identical. The new EPC 2948
binary encodings introduced in TDS v2.0 do not define corresponding Pure Identity EPC URIs but 2949

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 100 of 315

their values are considered to be equivalent to those encoded in a short binary encoding (e.g., 2950
SGTIN-96) or a long binary encoding (e.g., SGTIN-198) if they all correspond to the same canonical 2951
GS1 Digital Link URI or the same GS1 element string, e.g. if the SGTIN-96, SGTIN-198, SGTIN+ or 2952
DSGTIN+ all express the same value for GTIN, AI (01) and Serial Number, AI (21). 2953

All EPC schemes defined before TDS 2.0 remain valid in TDS 2.0. However, the new EPC schemes 2954
and binary encodings introduced in TDS 2.0 may be particularly suitable for the following scenarios: 2955

1. When there is a desire/need to encode additional AIDC data after the EPC within the EPC/UII 2956
memory bank 2957

2. When there is a desire or need to simplify encoding/decoding or difficulty in determining the 2958
length of a GS1 Company Prefix. 2959

3. When there is a desire to use fewer bits than the maximum when using alphanumeric values 2960
with a constrained character set or where a variable-length value is significantly shorter 2961
than its maximum permitted length. In such situations, the encoding indicators and length 2962
indicators in the new EPC schemes may result in a lower total bit count than for the 2963
equivalent "long" EPC schemes defined before TDS 2.0. 2964

The following table enumerates the available EPC binary coding schemes, and indicates the 2965
limitations imposed on serial numbers. 2966

Table 12-2 EPC Binary Coding Schemes and their limitations 2967

EPC
Scheme

EPC Binary Coding
Scheme

EPC +
Filter Bit
Count

Includes
Filter
Value

Serial number limitation

sgtin

sgtin-96 96
Yes

Numeric-only, no leading zeros, decimal value
must be less than 238 (i.e., decimal value less
than or equal to 274,877,906,943).

sgtin-198 198

Yes
All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters)

sgtin+ Variable
up to 216

dsgtin+ Variable
up to 236

sscc
sscc-96 96

Yes

All values permitted by GS1 General
Specifications (11 – 5 decimal digits including
extension digit, depending on GS1 Company
Prefix length)

sscc+ 84

sgln

sgln-96 96
Yes

Numeric-only, no leading zeros, decimal value
must be less than 241 (i.e., decimal value less
than or equal to 2,199,023,255,551).

sgln-195 195

Yes
All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters) sgln+ Variable

up to 212

grai

grai-96 96
Yes

Numeric-only, no leading zeros, decimal value
must be less than 238 (i.e., decimal value less
than or equal to 274,877,906,943).

grai-170 170

Yes
All values permitted by GS1 General
Specifications (up to 16 alphanumeric
characters) grai+ Variable

up to 188

giai

giai-96 96

Yes

Numeric-only, no leading zeros, decimal value
must be less than a limit that varies according to
the length of the GS1 Company Prefix. See
Section 14.6.5.1.

giai-202 202

Yes
All values permitted by GS1 General
Specifications (up to 18 – 24 alphanumeric
characters, depending on company prefix length) giai+ Variable

up to 216

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 101 of 315

EPC
Scheme

EPC Binary Coding
Scheme

EPC +
Filter Bit
Count

Includes
Filter
Value

Serial number limitation

gsrn
gsrn-96 96

Yes
All values permitted by GS1 General
Specifications (11 – 5 decimal digits, depending
on GS1 Company Prefix length) gsrn+ 84

gsrnp
gsrnp-96 96

Yes
All values permitted by GS1 General
Specifications (11 – 5 decimal digits, depending
on GS1 Company Prefix length) gsrnp+ 84

gdti

gdti-96 96
Yes

Numeric-only, no leading zeros, decimal value
must be less than 241 (i.e., decimal value less
than or equal to 2,199,023,255,551).

gdti-113
(DEPRECATED as of
TDS 1.9)

113
Yes

All values permitted by GS1 General
Specifications prior to [GS1GS12.0] (up to 17
decimal digits, with or without leading zeros)

gdti-174 174

Yes
All values permitted by GS1 General
Specifications (up to 17 alphanumeric
characters) gdti+ Variable

up to 191

sgcn
sgcn-96 96

Yes Numeric only, up to 12 decimal digits, with or
without leading zeros. sgcn+ Variable

up to 108

itip

itip-110 110
Yes

Numeric-only, no leading zeros, decimal value
must be less than 238 (i.e., decimal value less
than or equal to 274,877,906,943).

itip-212 212

Yes
All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters) itip+ Variable

up to 232

gid gid-96 96
No

Numeric-only, no leading zeros, decimal value
must be less than 236 (i.e., decimal value must
be less than or equal to 68,719,476,735).

usdod usdod-96 96 See "United States Department of Defense Supplier's Passive
RFID Information Guide" [USDOD].

adi adi-var Variable Yes See Section 14.6.14.1

cpi

cpi-96 96 Yes Serial Number: Numeric-only, no leading zeros,
decimal value must be less than 231 (i.e.,
decimal value less than or equal to
2,147,483,647).
The component/part reference is also limited to
values that are numeric-only, with no leading
zeros, and whose length is less than or equal to
15 minus the length of the GS1 Company Prefix

cpi-var Variable
Yes

All values permitted by GS1 General
Specifications (up to 12 decimal digits, no
leading zeros). cpi+ Variable

up to 274

 Non-Normative: Explanation: For the SGTIN, SGLN, GRAI, and GIAI EPC schemes, the serial 2968
number according to the GS1 General Specifications is a variable length, alphanumeric string. 2969
This means that serial number 34, 034, 0034, etc, are all different serial numbers, as are 2970
P34, 34P, 0P34, P034, and so forth. In order to provide for up to 20 alphanumeric 2971
characters, 140 bits are required to encode the serial number within schemes such as SGTIN-2972
198 that were defined before TDS 2.0. This is why the "long" binary encodings all have such a 2973
large number of bits. Similar considerations apply to the GDTI EPC scheme, except that the 2974

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 102 of 315

GDTI only allows digit characters (but still permits leading zeros). For the new EPC binary 2975
encodings introduced in TDS 2.0, instead of allocating sufficient bit capacity to accommodate 2976
the maximum permitted length of serial number components and all permitted characters, the 2977
new EPC schemes use encoding indicators and length indicators to enable fewer bits to be 2978
used if the actual value of a serial number component is shorter than the maximum permitted 2979
length or if it uses a more constrained character set (e.g. only uses numeric digits even where 2980
alphanumeric characters are permitted). This is explained in further detail in section 14.5. 2981

In order to accommodate the very common 96-bit RFID tag, additional binary coding schemes 2982
are introduced that only require 96 bits. In order to fit within 96 bits, some serial numbers 2983
have to be excluded. The 96-bit encodings of SGTIN, SGLN, GRAI, GIAI, and GDTI are limited 2984
to serial numbers that consist only of digits, which do not have leading zeros (unless the 2985
serial number consists in its entirety of a single 0 digit), and whose value when considered as 2986
a decimal numeral is less than 2B, where B is the number of bits available in the binary coding 2987
scheme. The choice to exclude serial numbers with leading zeros was an arbitrary design 2988
choice at the time the 96-bit encodings were first defined; for example, an alternative would 2989
have been to permit leading zeros, at the expense of excluding other serial numbers. But it is 2990
impossible to escape the fact that in B bits there can be no more than 2B different serial 2991
numbers. 2992

When decoding a "long" binary encoding defined before TDS 2.0 or any of the new EPC binary 2993
encodings introduced in TDS 2.0, it is not permissible to strip off leading zeros when the 2994
binary encoding includes leading zero characters. Likewise, when encoding an EPC into either 2995
the "short" or "long" form or new EPC binary encodings introduced in TDS 2.0, it is not 2996
permissible to strip off leading zeros prior to encoding. This means that EPCs whose serial 2997
numbers have leading zeros can only be encoded in the "long" form or in the new EPC binary 2998
encodings introduced in TDS 2.0, which are also capable of preserving leading zeros. 2999

In certain applications, it is desirable for the serial number to always contain a specific 3000
number of characters. Reasons for this may include wanting a predictable length for the EPC 3001
URI string, or for having a predictable size for a corresponding barcode encoding of the same 3002
identifier. In certain barcode applications, this is accomplished through the use of leading 3003
zeros. If 96-bit tags are used, however, the option to use leading zeros does not exist. 3004

Therefore, in applications that both require 96-bit tags and require that the serial number be 3005
a fixed number of characters, it is recommended that numeric serial numbers be used that 3006
are in the range 10D ≤ serial < 10D+1, where D is the desired number of digits. For example, if 3007
11-digit serial numbers are desired, an application can use serial numbers in the range 3008
10,000,000,000 through 99,999,999,999. Such applications must take care to use serial 3009
numbers that fit within the constraints of 96-bit tags. For example, if 12-digit serial numbers 3010
are desired for SGTIN-96 encodings, then the serial numbers must be in the range 3011
100,000,000,000 through 274,877,906,943. 3012

It should be remembered, however, that many applications do not require a fixed number of 3013
characters in the serial number, and so all serial numbers from 0 through the maximum value 3014
(without leading zeros) may be used with 96-bit tags. 3015

12.3.2 EPC Pure Identity URI to EPC Tag URI 3016

Given: 3017

■ An EPC Pure Identity URI as specified in Section 6.3. This is a string that matches the EPC-URI 3018
production of the grammar in Section 6.3. 3019

■ A selection of a binary coding scheme to use. This is one of the binary coding schemes specified in the 3020
"EPC Binary Coding Scheme" column of Table 12-2. The chosen binary coding scheme must be one that 3021
corresponds to the EPC scheme in the EPC Pure Identity URI. 3022

■ A filter value, if the "Includes Filter Value" column of Table 12-2 indicates that the binary encoding 3023
includes a filter value. 3024

■ The value of the Attribute bits. 3025

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 103 of 315

■ The value of the user memory indicator. 3026

Validation: 3027

■ The serial number portion of the EPC (the characters following the rightmost dot character) must conform 3028
to any restrictions implied by the selected binary coding scheme, as specified by the "Serial Number 3029
Limitation" column of Table 12-2. 3030

■ The filter value must be in the range 0 ≤ filter ≤ 7. 3031

Procedure: 3032

1. Starting with the EPC Pure Identity URI, replace the prefix urn:epc:id: with urn:epc:tag:. 3033

2. Replace the EPC scheme name with the selected EPC binary coding scheme name. For example, 3034
replace sgtin with sgtin-96 or sgtin-198. 3035

3. If the selected binary coding scheme includes a filter value, insert the filter value as a single 3036
decimal digit following the rightmost colon (":") character of the URI, followed by a dot (".") 3037
character. 3038

4. If the Attribute bits are non-zero, construct a string [att=xNN],where NN is the value of the 3039
Attribute bits as a 2-digit hexadecimal numeral. 3040

5. If the user memory indicator is non-zero, construct a string [umi=1]. 3041

6. If Step 4 or Step 5 yielded a non-empty string, insert those strings following the rightmost colon 3042
(":") character of the URI, followed by an additional colon character. 3043

7. The resulting string is the EPC Tag URI. 3044

12.3.3 EPC Tag URI to EPC Pure Identity URI 3045

Given: 3046

1. An EPC Tag URI as specified in Section 12. This is a string that matches the TagURI production 3047
of the grammar in Section 12.4. 3048

Procedure: 3049

1. Starting with the EPC Tag URI, replace the prefix urn:epc:tag: with urn:epc:id:. 3050

2. Replace the EPC binary coding scheme name with the corresponding EPC scheme name. For 3051
example, replace sgtin-96 or sgtin-198 with sgtin. 3052

3. If the coding scheme includes a filter value, remove the filter value (the digit following the 3053
rightmost colon character) and the following dot (".") character. 3054

4. If the URI contains one or more control fields as specified in Section 12.2.2, remove them and 3055
the following colon character. 3056

5. The resulting string is the Pure Identity EPC URI. 3057

12.4 Grammar 3058

The following grammar specifies the syntax of the EPC Tag URI and EPC Raw URI. The grammar 3059
makes reference to grammatical elements defined in Sections 5 and 6.3. 3060

TagOrRawURI = TagURI / RawURI 3061
TagURI = %s"urn:epc:tag:" TagURIControlBody 3062
TagURIControlBody = 0*1(ControlField+ ":") TagURIBody 3063
TagURIBody = SGTINTagURIBody / SSCCTagURIBody / SGLNTagURIBody / 3064
 GRAITagURIBody / GIAITagURIBody / GDTITagURIBody / 3065
 GSRNTagURIBody / GSRNPTagURIBody / ITIPTagURIBody / 3066
 GIDTagURIBody / SGCNTagURIBody / DODTagURIBody / 3067
 ADITagUriBody / CPITagURIBody 3068

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 104 of 315

 3069
SGTINTagURIBody = SGTINEncName ":" NumericComponent "." SGTINURIBody 3070
SGTINEncName = %s"sgtin-96" / %s"sgtin-198" 3071
SSCCTagURIBody = SSCCEncName ":" NumericComponent "." SSCCURIBody 3072
SSCCEncName = %s"sscc-96" 3073
SGLNTagURIBody = SGLNEncName ":" NumericComponent "." SGLNURIBody 3074
SGLNEncName = %s"sgln-96" / %s"sgln-195" 3075
GRAITagURIBody = GRAIEncName ":" NumericComponent "." GRAIURIBody 3076
GRAIEncName = %s"grai-96" / %s"grai-170" 3077
GIAITagURIBody = GIAIEncName ":" NumericComponent "." GIAIURIBody 3078
GIAIEncName = %s"giai-96" / %s"giai-202" 3079
GSRNTagURIBody = GSRNEncName ":" NumericComponent "." GSRNURIBody 3080
GSRNEncName = %s"gsrn-96" 3081
GSRNPEncName = %s"gsrnp-96" 3082
GDTITagURIBody = GDTIEncName ":" NumericComponent "." GDTIURIBody 3083
GDTIEncName = %s"gdti-96" / %s"gdti-113" / %s"gdti-174" 3084
CPITagURIBody = CPIEncName ":" NumericComponent "." CPIURIBody 3085
CPIEncName = %s"cpi-96" / %s"cpi-var" 3086
SGCNTagURIBody = SGCNEncName ":" NumericComponent "." SGCNURIBody 3087
SGCNEncName = %s"sgcn-96" 3088
ITIPTagURIBody = ITIPEncName ":" NumericComponent "." ITIPURIBody 3089
ITIPEncName = %s"itip-110" / %s"itip-212" 3090
GIDTagURIBody = GIDEncName ":" GIDURIBody 3091
GIDEncName = %s"gid-96" 3092
DODTagURIBody = DODEncName ":" NumericComponent "." DODURIBody 3093
DODEncName = %s"usdod-96" 3094
ADITagURIBody = ADIEncName ":" NumericComponent "." ADIURIBody 3095
ADIEncName = %s"adi-var" 3096
RawURI = %s"urn:epc:raw:" RawURIControlBody 3097
RawURIControlBody = 0*1(ControlField+ ":") RawURIBody 3098
RawURIBody = DecimalRawURIBody / HexRawURIBody / AFIRawURIBody 3099
DecimalRawURIBody = NonZeroComponent "." NumericComponent 3100
HexRawURIBody = NonZeroComponent ".x" HexComponentOrEmpty 3101
AFIRawURIBody = NonZeroComponent ".x" HexComponent ".x" HexComponentOrEmpty 3102
ControlField = "[" ControlName "=" ControlValue "]" 3103
ControlName = %s"att" / %s"umi" / %s"xpc" 3104
ControlValue = BinaryControlValue / HexControlValue 3105
BinaryControlValue = "0" / "1" 3106
HexControlValue = %s"x" HexComponent 3107

13 URIs for EPC Tag Encoding patterns 3108

Certain software applications need to specify rules for filtering lists of tags according to various 3109
criteria. This specification provides an EPC Tag Pattern URI for this purpose. An EPC Tag Pattern URI 3110
does not represent a single tag encoding, but rather refers to a set of tag encodings. A typical 3111
pattern looks like this: 3112

urn:epc:pat:sgtin-96:3.0652642.[102400-204700].* 3113

This pattern refers to any tag containing a 96-bit SGTIN EPC Binary Encoding, whose Filter field is 3, 3114
whose GS1 Company Prefix is 0652642, whose Item Reference is in the range 102400 ≤ 3115
itemReference ≤ 204700, and whose Serial Number may be anything at all. 3116

In general, for all EPC schemes defined before TDS v2.0, there is an EPC Tag Pattern URI scheme 3117
corresponding to each of those EPC Binary Encoding schemes, whose syntax is essentially identical 3118
except that ranges or the star (*) character may be used in each field. 3119

The new EPC schemes defined in TDS v2.0 have not defined an equivalent EPC Tag URI syntax nor a 3120
corresponding EPC Tag Pattern URI syntax; instead the encoding/decoding is between the binary 3121
string and the corresponding GS1 element string, GS1 Digital Link URI or equivalently, the set of 3122
GS1 Application Identifiers and their values, as shown in Figure 3-1 3123

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 105 of 315

For the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN, GDTI, SGCN and ITIP patterns, the pattern syntax 3124
slightly restricts how wildcards and ranges may be combined. Only two possibilities are permitted 3125
for the CompanyPrefix field. One, it may be a star (*), in which case the following field 3126
(ItemReference, SerialReference, LocationReference, 3127
AssetType,IndividualAssetReference, ServiceReference, DocumentType, 3128
CouponReference, Piece or Total) must also be a star. Two, it may be a specific company 3129
prefix, in which case the following field may be a number, a range, or a star. A range may not be 3130
specified for the CompanyPrefix. 3131

 Non-Normative: Explanation: Because the company prefix is variable length, a range may 3132
not be specified, as the range might span different lengths. When a particular company prefix 3133
is specified, however, it is possible to match ranges or all values of the following field, 3134
because its length is fixed for a given company prefix. The other case that is allowed is when 3135
both fields are a star, which works for all tag encodings because the corresponding tag fields 3136
(including the Partition field, where present) are simply ignored. 3137

The pattern URI for the DoD Construct is as follows: 3138

urn:epc:pat:usdod-96:filterPat.CAGECodeOrDODAACPat.serialNumberPat 3139

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 3140
CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * character; and serialNumberPat 3141
is either a serial number, a range of the form [lo-hi], or a * character. 3142

The pattern URI for the Aerospace and Defense (ADI) identifier is as follows: 3143

urn:epc:pat:adi-3144
var:filterPat.CAGECodeOrDODAACPat.partNumberPat.serialNumberPat 3145

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 3146
CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * character; partNumberPat is 3147
either an empty string, a part number, or a * character; and serialNumberPat is either a serial 3148
number or a * character. 3149

The pattern URI for the Component / Part (CPI) identifier is as follows: 3150

urn:epc:pat:cpi-96:filterPat.CPI96PatBody.serialNumberPat 3151

or 3152

urn:epc:pat:cpi-var:filterPat.CPIVarPatBody 3153

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 3154
CPI96PatBody is either *.* or a GS1 Company Prefix followed by a dot and either a numeric 3155
component/part number, a range in the form[lo-hi], or a * character; serialNumberPat is 3156
either a serial number or a * character or a range in the form[lo-hi]; and CPIVarPatBody is 3157
either *.*.* or a GS1 Company Prefix followed by a dot followed by a component/part reference 3158
followed by a dot followed by either a component/part serial number, a range in the form[lo-hi]or 3159
a * character. 3160

13.1 Syntax 3161

The syntax of EPC Tag Pattern URIs is defined by the grammar below. 3162

PatURI = %s"urn:epc:pat:" PatBody 3163
PatBody = 3164
 GIDPatURIBody / 3165
 SGTINPatURIBody / 3166
 SGTINAlphaPatURIBody / 3167
 SGLNGRAI96PatURIBody / 3168
 SGLNGRAIAlphaPatURIBody / 3169
 SSCCPatURIBody / 3170
 GIAI96PatURIBody / 3171

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 106 of 315

 GIAIAlphaPatURIBody / 3172
 GSRNPatURIBody / 3173
 GSRNPPatURIBody / 3174
 GDTIPatURIBody / 3175
 CPIVarPatURIBody / 3176
 SGCNPatURIBody / 3177
 ITIPPatURIBody / 3178
 USDOD96PatURIBody / 3179
 ITIP212PatURIBody / 3180
 ADIVarPatURIBody / 3181
 CPI96PatURIBody 3182
GIDPatURIBody = %s"gid-96:" 2(PatComponent ".") PatComponent 3183
SGTIN96PatURIBody = %s"sgtin-96:" PatComponent "." GS1PatBody "." 3184
PatComponent 3185
SGTINAlphaPatURIBody = %s"sgtin-198:" PatComponent "." GS1PatBody "." 3186
GS3A3PatComponent 3187
SGLNGRAI96PatURIBody = SGLNGRAI96TagEncName ":" PatComponent "." GS1EpatBody 3188
"." PatComponent 3189
SGLNGRAI96TagEncName = %s"sgln-96" / %s"grai-96" 3190
SGLNGRAIAlphaPatURIBody = SGLNGRAIAlphaTagEncName ":" PatComponent "." 3191
GS1EpatBody "." GS3A3PatComponent 3192
SGLNGRAIAlphaTagEncName = %s"sgln-195" / %s"grai-170" 3193
SSCCPatURIBody = %s"sscc-96:" PatComponent "." GS1PatBody 3194
GIAI96PatURIBody = %s"giai-96:" PatComponent "." GS1PatBody 3195
GIAIAlphaPatURIBody = %s"giai-202:" PatComponent "." GS1GS3A3PatBody 3196
GSRNPatURIBody = %s"gsrn-96:" PatComponent "." GS1PatBody 3197
GSRNPPatURIBody = %s"gsrnp-96:" PatComponent "." GS1PatBody 3198
GDTIPatURIBody = GDTI96PatURIBody / GDTI113PatURIBody/ GDTI174PatURIBody 3199
GDTI96PatURIBody = %s"gdti-96:" PatComponent "." GS1EpatBody "." 3200
PatComponent 3201
GDTI113PatURIBody = %s"gdti-113:" PatComponent "." GS1EpatBody "." 3202
PaddedNumericOrStarComponent 3203
GDTI174PatURIBody = %s"gdti-174:" PatComponent "." GS1EpatBody "." 3204
GS3A3PatComponent 3205
CPI96PatURIBody = %s"cpi-96:" PatComponent "." GS1PatBody "." PatComponent 3206
CPIVarPatURIBody = %s"cpi-var:" PatComponent "." CPIVarPatBody 3207
CPIVarPatBody = "*.*.*" 3208
 / PaddedNumericComponent "." CPRefComponent "." PatComponent 3209
SGCNPatURIBody = SGCN96PatURIBody 3210
SGCN96PatURIBody = %s"sgcn-96:" PatComponent "." GS1EpatBody "." 3211
PaddedNumericOrStarComponent 3212
ITIP110PatURIBody = %s"itip-110:" PatComponent "." GS1PatBody "." 3213
PatComponent "." PatComponent "." PatComponent 3214
ITIP212PatURIBody = %s"itip-212:" PatComponent "." GS1PatBody "." 3215
PatComponent "." PatComponent "." GS3A3PatComponent 3216
USDOD96PatURIBody = %s"usdod-96:" PatComponent "." CAGECodeOrDODAACPat "." 3217
PatComponent 3218
ADIVarPatURIBody = %s"adi-var:" PatComponent "." CAGECodeOrDODAACPat "." 3219
ADIPatComponent "." ADIExtendedPatComponent 3220
PaddedNumericOrStarComponent = PaddedNumericComponent / StarComponent 3221
GS1PatBody = "*.*" / (PaddedNumericComponent "." PaddedPatComponent) 3222
GS1EpatBody = "*.*" / (PaddedNumericComponent "." PaddedOrEmptyPatComponent 3223
) 3224
GS1GS3A3PatBody = "*.*" / (PaddedNumericComponent "." GS3A3PatComponent) 3225
PatComponent = NumericComponent / StarComponent / RangeComponent 3226
PaddedPatComponent = PaddedNumericComponent / StarComponent / RangeComponent 3227
PaddedOrEmptyPatComponent = PaddedNumericComponentOrEmpty 3228
 / StarComponent 3229
 / RangeComponent 3230
GS3A3PatComponent = GS3A3Component / StarComponent 3231

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 107 of 315

CAGECodeOrDODAACPat = CAGECodeOrDODAAC / StarComponent 3232
ADIPatComponent= ADIComponent / StarComponent 3233
ADIExtendedPatComponent = ADIExtendedComponent / StarComponent 3234
StarComponent = "*" 3235
RangeComponent = "[" NumericComponent "-" NumericComponent "]" 3236

For a RangeComponent to be legal, the numeric value of the first NumericComponent must be 3237
less than or equal to the numeric value of the second NumericComponent. 3238

13.2 Semantics 3239

The meaning of an EPC Tag Pattern URI (urn:epc:pat:) is formally defined as denoting a set of 3240
EPC Tag URIs. 3241

The set of EPCs denoted by a specific EPC Tag Pattern URI is defined by the following decision 3242
procedure, which says whether a given EPC Tag URI belongs to the set denoted by the EPC Tag 3243
Pattern URI. 3244

Let urn:epc:pat:EncName:P1.I..Pn be an EPC Tag Pattern URI. Let 3245
urn:epc:tag:EncName:IC2...Cn be an EPC Tag URI, where the EncName field of both URIs is 3246
the same. The number of components (n) depends on the value of EncName. 3247

First, any EPC Tag URI component Ci is said to match the corresponding EPC Tag Pattern URI 3248
component Pi if: 3249

■ Pi is a NumericComponent, and Ci is equal to Pi; or 3250

■ Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in length; or 3251

■ Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent and Ci is 3252
equal to Pi, character for character; or 3253

■ Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 3254

■ Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or 3255

■ Pi is a StarComponent (and Ci is anything at all) 3256

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and only if Ci 3257
matches Pi for all 1 ≤ i ≤ n. 3258

14 EPC Binary Encoding 3259

This section specifies how EPC Tag URIs or element strings (GS1 Application Identifiers and their 3260
values) are encoded into binary strings, and conversely how a binary string is decoded into an EPC 3261
Tag URI (if possible) or element string (GS1 Application Identifiers and their values). The binary 3262
strings defined by the encoding and decoding procedures in this section are suitable for use in the 3263
EPC memory bank of a Gen 2 tag. 3264

The general structure of an EPC Binary Encoding as used on a tag is as a string of bits (i.e., a binary 3265
representation), consisting of a fixed length header followed by a series of fields whose overall 3266
length, structure, and function are determined by the header value. The assigned header values are 3267
specified in Section 14.2. Both the encoding and decoding procedures are driven by coding tables 3268
specified in Section 14.6. Each coding table specifies, for a given header value, the structure of the 3269
fields following the header. 3270

EPC schemes are defined for most of the globally unique instance identifiers that can be constructed 3271
using GS1 identification keys – so not only for GTIN but also SSCC, GRAI, GIAI etc. However, 3272
binary encodings have only been defined for those where there is a strong case for encoding an EPC 3273
in an RFID data carrier (e.g. for a serialised product instance or for a logistic unit, asset physical 3274
location) but not for organisations nor for groupings of logistic units that correspond to 3275
consignments or shipments. 3276

TDS 2.0 introduces alternative modernised EPC binary encodings for all EPC schemes based on GS1 3277
identifiers, for which a binary encoding was already defined in TDS 1.13. These new EPC binary 3278

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 108 of 315

encodings have much simpler translation to/from GS1 element strings on barcodes, with no need to 3279
know the length of the GS1 Company Prefix, no omission of the check digit and no rearrangement of 3280
the indicator digit of the GTIN nor the extension digit of the SSCC. The encoding/decoding is 3281
between the binary string and the corresponding GS1 element string, GS1 Digital Link URI or 3282
equivalently, the set of GS1 Application Identifiers and their values, as shown in Figure 3-1. These 3283
new EPC binary encodings all have names ending '+', to denote that they also offer the option of 3284
encoding additional +AIDC data after the EPC binary string. No EPC Tag URI syntax is defined for 3285
any of the new EPC schemes introduced in TDS 2.0, so instead of referring to Sections 14.3 and 3286
14.4 for the encoding and decoding procedures, Section 14.5 explains the encoding and decoding 3287
procedures for the new EPC schemes introduced in TDS v2.0 and should be read in conjunction with 3288
the relevant binary coding table from Section 14.6, which provides the binary coding tables for all 3289
EPC schemes (old and new). A requirement for TDS 2.0 conformance is that implementations of 3290
decoders SHALL support all of the new encoding and decoding methods in Section 14.5. 3291
Implementers of encoders SHALL support all of the new encoding methods in Section 14.5 that are 3292
explicitly mentioned within columns b or i of Table F in Section 15.3. 3293

The older EPC schemes defined before TDS 2.0 remain valid and for these EPC schemes, the 3294
complete procedure for encoding an EPC Tag URI into the binary contents of the EPC memory bank 3295
of a Gen 2 tag is specified in Section 15.1.1. The procedure in Section 15.1.1 uses the procedure 3296
defined below in Section 14.3 (encoding URI to binary) to do the bulk of the work. Conversely, the 3297
complete procedure for decoding the binary contents of the EPC memory bank of a Gen 2 tag into 3298
an EPC Tag URI (or EPC Raw URI, if necessary) is specified in Section 15.2.2. The procedure in 3299
Section 15.2.2 uses the procedure defined below in Section 14.4 (decoding binary to URI) to do the 3300
bulk of the work. 3301

14.1 Overview of Binary Encoding 3302

To convert an EPC Tag URI to the EPC Binary Encoding, follow the procedure specified in 3303
Section 14.3, which is summarised as follows. First, the appropriate coding table is selected from 3304
among the tables specified in Section 14.4.9. The correct coding table is the one whose "URI 3305
Template" entry matches the given EPC Tag URI. Each column in the coding table corresponds to a 3306
bit field within the final binary encoding. Within each column, a "Coding Method" is specified that 3307
says how to calculate the corresponding bits of the binary encoding, given some portion of the URI 3308
as input. The encoding details for each "Coding Method" are given in subsections of Section 14.3. 3309

To convert an EPC Binary Encoding into an EPC Tag URI, follow the procedure specified in 3310
Section 14.4, which is summarised as follows. First, the most significant eight bits are looked up in 3311
the table of EPC binary headers (Table 14-1 in Section 14.2). This identifies the EPC coding scheme, 3312
which in turn selects a coding table from among those specified in Section 14.6. Each column in the 3313
coding table corresponds to a bit field in the input binary encoding. Within each column, a "Coding 3314
Method" is specified that says how to calculate a corresponding portion of the output URI, given that 3315
bit field as input. The decoding details for each "Coding Method" are given in subsections of 3316
Section 14.4. 3317

14.2 EPC Binary Headers 3318

As already noted, the general structure of an EPC Binary Encoding as used on a tag is as a string of 3319
bits (i.e., a binary representation), consisting of a fixed length, 8 bit, header followed by a series of 3320
fields whose overall length, structure, and function are determined by the header value. For future 3321
expansion purpose, a header value of 11111111 is defined, to indicate that longer headers beyond 3322
8 bits is used; this provides for future expansion so that more than 256 header values may be 3323
accommodated by using longer headers. Therefore, the present specification provides for up to 255 3324
8-bit headers, plus a currently undetermined number of longer headers. 3325

 Non-Normative: Back-compatibility note: In earlier versions of TDS, the header was of 3326
variable length, using a tiered approach in which a zero value in each tier indicated that the 3327
header was drawn from the next longer tier. For the encodings defined in the earlier 3328
specification, headers were either 2 bits or 8 bits. Given that a zero value is reserved to 3329
indicate a header in the next longer tier, the 2-bit header had 3 possible values (01, 10, and 3330
11, not 00), and the 8-bit header had 63 possible values (recognising that the first 2 bits 3331

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 109 of 315

must be 00 and 00000000 is reserved to allow headers that are longer than 8 bits). The 2-bit 3332
headers were only used in conjunction with certain 64-bit EPC Binary Encodings. 3333

In more recent versions of TDS, the tiered header approach has been abandoned. Also, all 3334
64-bit encodings (including all encodings that used 2-bit headers) have been deprecated, and 3335
should not be used in new applications. 3336

The encoding schemes defined in this version of TDS are shown in Table 14-1. The table also 3337
indicates currently unassigned header values that are "Reserved for Future Use" (RFU). All header 3338
values that had been reserved for legacy 64-bit encodings, defined in prior versions of the EPC Tag 3339
Data Standard, were sunset, effective 1 July, 2009, as previously announced by EPCglobal on 1 July, 3340
2006. 3341

Table 14-1 EPC Binary Header Values 3342

Header Value
(binary)

Header Value
(hexadecimal)

Encoding
Length (bits)

Coding Scheme

0000 0000 00 NA Unprogrammed Tag

0000 0001

0000 001x

0000 01xx

01
02,03
04,05
06,07

NA
NA
NA
NA

Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use

0000 1000 08 Reserved for Future Use

0000 1001 09 Reserved for Future Use

0000 1010 0A Reserved for Future Use

0000 1011 0B Reserved for Future Use

0000 1100

to

0000 1111

0C
to
0F

 Reserved for Future Use

0001 0000

to

0010 1011

10
to
2B

NA

NA

Reserved for Future Use

0010 1100 2C 96 GDTI-96

0010 1101 2D 96 GSRN-96

0010 1110 2E 96 GSRNP-96

0010 1111 2F 96 USDoD-96

0011 0000 30 96 SGTIN-96

0011 0001 31 96 SSCC-96

0011 0010 32 96 SGLN-96

0011 0011 33 96 GRAI-96

0011 0100 34 96 GIAI-96

0011 0101 35 96 GID-96

0011 0110 36 198 SGTIN-198

0011 0111 37 170 GRAI-170

0011 1000 38 202 GIAI-202

0011 1001 39 195 SGLN-195

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 110 of 315

Header Value
(binary)

Header Value
(hexadecimal)

Encoding
Length (bits)

Coding Scheme

0011 1010 3A 113 GDTI-113 (DEPRECATED as of TDS 1.9)

0011 1011 3B Variable ADI-var

0011 1100 3C 96 CPI-96

0011 1101 3D Variable CPI-var

0011 1110 3E 174 GDTI-174

0011 1111 3F 96 SGCN-96

0100 0000 40 110 ITIP-110

0100 0001 41 212 ITIP-212

0100 0010

to

0111 1111

42
to
7F

 Reserved for Future Use

1000 0000

to

1011 1111

80
to
BF

 Reserved for Future Use

1100 0000

to

1100 1101

C0
to
CD

 Reserved for Future Use

1100 1110 CE Reserved for Future Use

1100 1111

to

1110 0001

CF
to
E1

 Reserved for Future Use

1110 0010 E2 E2 remains PERMANENTLY RESERVED to avoid
confusion with the first eight bits of TID memory
(Section 16).

1110 0011

to

11010 1111

E3
to
EF

 Reserved for Future Use

1111 0000 F0 variable CPI+

1111 0001 F1 variable GRAI+

1111 0010 F2 variable SGLN+

1111 0011 F3 variable ITIP+

1111 0100 F4 84 GSRN+

1111 0101 F5 84 GSRNP+

1111 0110 F6 variable GDTI+

1111 0111 F7 variable SGTIN+

1111 1000 F8 variable SGCN+

1111 1001 F9 84 SSCC+

1111 1010 FA variable GIAI+

1111 1011 FB variable DSGTIN+

1111 1100 FC RFU

1111 1101 FD RFU

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 111 of 315

Header Value
(binary)

Header Value
(hexadecimal)

Encoding
Length (bits)

Coding Scheme

1111 1110 FE 'Unspecified' / 'Pad' Header for use with optimised
Select functionality tentatively planned for Gen2v3

1111 1111 FF NA Reserved for Future Use
(expressly reserved for headers longer than 8 bits)

14.3 Encoding procedure 3343

The following procedure encodes an EPC Tag URI into a bit string containing the encoded EPC and 3344
the filter value (for EPC schemes that have a filter value and for EPC schemes for which an EPC Tag 3345
URI is defined; no EPC Tag URI format is defined for new EPC schemes introduced in TDS 2.0 – for 3346
those schemes, the starting point for encoding is the corresponding GS1 element string or 3347
equivalently, the set of GS1 Application Identifiers and their values. For all new EPC schemes 3348
introduced in TDS 2.0, please refer to section 14.5 instead). This bit string is suitable for storing in 3349
the EPC memory bank of a Gen 2 Tag beginning at bit 20h. See Section 15.1.1 for the complete 3350
procedure for encoding the entire EPC memory bank, including control information that resides 3351
outside of the encoded EPC. (The procedure in Section 15.1.1 uses the procedure below as a 3352
subroutine.) 3353

Given: 3354

■ An EPC Tag URI of the form urn:epc:tag:scheme:remainder 3355

Yields: 3356

■ A bit string containing the EPC binary encoding of the specified EPC Tag URI, containing the encoded EPC 3357
together with the filter value (if applicable); OR 3358

■ An exception indicating that the EPC Tag URI could not be encoded. 3359

Procedure: 3360

1. Use the scheme to identify the coding table for this URI scheme. If no such scheme exists, 3361
stop: this URI is not syntactically legal. 3362

2. Confirm that the URI syntactically matches the URI template associated with the coding table. If 3363
not, stop: this URI is not syntactically legal. 3364

3. Read the coding table left-to-right, and construct the encoding specified in each column to 3365
obtain a bit string. If the "Coding Segment Bit Count" row of the table specifies a fixed number 3366
of bits, the bit string so obtained will always be of this length. The method for encoding each 3367
column depends on the "Coding Method" row of the table. If the "Coding Method" row specifies a 3368
specific bit string, use that bit string for that column. Otherwise, consult the following sections 3369
that specify the encoding methods. If the encoding of any segment fails, stop: this URI cannot 3370
be encoded. 3371

4. Concatenate the bit strings from Step 3 to form a single bit string. If the overall binary length 3372
specified by the scheme is of fixed length, then the bit string so obtained will always be of that 3373
length. The position of each segment within the concatenated bit string is as specified in the "Bit 3374
Position" row of the coding table. Section 15.1.1 specifies the procedure that uses the result of 3375
this step for encoding the EPC memory bank of a Gen 2 tag. 3376

The following sections specify the procedures to Ie used in Step 3. 3377

14.3.1 "Integer" Encoding Method 3378

The Integer encoding method is used for a segment that appears as a decimal integer in the URI, 3379
and as a binary integer in the binary encoding. 3380

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 112 of 315

Input: 3381

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3382
encoding table, a character string with no dot (".") characters. 3383

Validity Test: 3384

The input character string must satisfy the following: 3385

■ It must match the grammar for NumericComponent as specified in Section 5. 3386

■ The value of the string SHALL be considered as a decimal integer (i.e., leading zeros are not permitted) 3387
and SHALL be less than 2b, where b is the value specified in the "Coding Segment Bit Count" row of the 3388
encoding table. 3389

If any of the above tests fails, the encoding of the URI fails. 3390

Output: 3391

The encoding of this segment is a b-bit integer (padded to the left with zero bits as necessary), 3392
where b is the value specified in the "Coding Segment Bit Count" row of the encoding table, whose 3393
value is the value of the input character string considered as a decimal integer. 3394

14.3.2 "String" Encoding method 3395

The String encoding method is used for a segment that appears as an alphanumeric string in the 3396
URI, and as an ISO/IEC 646 [ISO646] (ASCII) encoded bit string in the binary encoding. 3397

Input: 3398

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3399
encoding table, a character string with no dot (".") characters. 3400

Validity Test: 3401

The input character string must satisfy the following: 3402

■ It must match the grammar for GS3A3Component as specified in Section 5. 3403

■ For each portion of the string that matches the Escape production of the grammar specified in Section 5 3404
(that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two 3405
hexadecimal characters following the % character must map to one of the 82 allowed characters specified 3406
in Table I.3.1-1. 3407

■ The number of characters must be less than or equal to b/7, where b is the value specified in the "Coding 3408
Segment Bit Count" row of the coding table. 3409

If any of the above tests fails, the encoding of the URI fails. 3410

Output: 3411

Consider the input to be a string of zero or more characters s1s2…sN, where each character si is 3412
either a single character or a 3-character sequence matching the Escape production of the 3413
grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal 3414
digits). Translate each character to a 7-bit string. For a single character, the corresponding 7-bit 3415
string is specified in Table I.3.1-1. For an Escape sequence, the 7-bit string is the value of the two 3416
hexadecimal characters considered as a 7-bit integer. Concatenating those 7-bit strings in the order 3417
corresponding to the input, then pad to the right with zero bits as necessary to total b bits, where b 3418
is the value specified in the "Coding Segment Bit Count" row of the coding table. (The number of 3419
padding bits will be b – 7N.) The resulting b-bit string is the output. 3420

14.3.3 "Partition Table" Encoding method 3421

The Partition Table encoding method is used for a segment that appears in the URI as a pair of 3422
variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-3423

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 113 of 315

bit "partition" field followed by two variable length binary integers. The number of characters in the 3424
two URI fields always totals to a constant number of characters, and the number of bits in the 3425
binary encoding likewise totals to a constant number of bits. 3426

The Partition Table encoding method makes use of a "partition table." The specific partition table to 3427
use is specified in the coding table for a given EPC scheme. 3428

Input: 3429

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3430
encoding table. This consists of two strings of digits separated by a dot (".") character. For the 3431
purpose of this encoding procedure, the digit strings to the left and right of the dot are denoted C 3432
and D, respectively. 3433

Validity Test: 3434

The input must satisfy the following: 3435

■ C must match the grammar for PaddedNumericComponent as specified in Section 5. 3436

■ D must match the grammar for PaddedNumericComponentOrEmpty as specified in Section 5. 3437

■ The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" 3438
column of the partition table. The corresponding row is called the "matching partition table row" in the 3439
remainder of the encoding procedure. 3440

■ The number of digits in D must match the corresponding value specified in the other field digits column of 3441
the matching partition table row. Note that if the other field digits column specifies zero, then D must be 3442
the empty string, implying the overall input segment ends with a "dot" character. 3443

Output: 3444

Construct the output bit string by concatenating the following three components: 3445

■ The value P specified in the "partition value" column of the matching partition table row, as a 3-bit binary 3446
integer. 3447

■ The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the 3448
number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row. 3449

■ The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the 3450
number of bits specified in the other field bits column of the matching partition table row. If D is the 3451
empty string, the value of the N-bit integer is zero. 3452

The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit 3453
Count" for this segment as indicated in the coding table. 3454

14.3.4 "Unpadded Partition Table" Encoding method 3455

The Unpadded Partition Table encoding method is used for a segment that appears in the URI as a 3456
pair of variable-length numeric fields separated by a dot (".") character, and in the binary encoding 3457
as a 3-bit "partition" field followed by two variable length binary integers. The number of characters 3458
in the two URI fields is always less than or equal to a known limit, and the number of bits in the 3459
binary encoding is always a constant number of bits. 3460

The Unpadded Partition Table encoding method makes use of a "partition table." The specific 3461
partition table to use is specified in the coding table for a given EPC scheme. 3462

Input: 3463

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3464
encoding table. This consists of two strings of digits separated by a dot (".") character. For the 3465
purpose of this encoding procedure, the digit strings to the left and right of the dot are denoted C 3466
and D, respectively. 3467

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 114 of 315

Validity Test: 3468

The input must satisfy the following: 3469

■ C must match the grammar for PaddedNumericComponent as specified in Section 5. 3470

■ D must match the grammar for NumericComponent as specified in Section 5. 3471

■ The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" 3472
column of the partition table. The corresponding row is called the "matching partition table row" in the 3473
remainder of the encoding procedure. 3474

■ The value of D, considered as a decimal integer, must be less than 2N, where N is the number of bits 3475
specified in the other field bits column of the matching partition table row. 3476

Output: 3477

Construct the output bit string by concatenating the following three components: 3478

■ The value P specified in the "partition value" column of the matching partition table row, as a 3-bit binary 3479
integer. 3480

■ The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the 3481
number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row. 3482

■ The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the 3483
number of bits specified in the other field bits column of the matching partition table row. If D is the 3484
empty string, the value of the N-bit integer is zero. 3485

The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit 3486
Count" for this segment as indicated in the coding table. 3487

14.3.5 "String Partition Table" Encoding method 3488

The String Partition Table encoding method is used for a segment that appears in the URI as a 3489
variable-length numeric field and a variable-length string field separated by a dot (".") character, 3490
and in the binary encoding as a 3-bit "partition" field followed by a variable length binary integer 3491
and a variable length binary-encoded character string. The number of characters in the two URI 3492
fields is always less than or equal to a known limit (counting a 3-character escape sequence as a 3493
single character), and the number of bits in the binary encoding is padded if necessary to a constant 3494
number of bits. 3495

The Partition Table encoding method makes use of a "partition table." The specific partition table to 3496
use is specified in the coding table for a given EPC scheme. 3497

Input: 3498

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3499
encoding table. This consists of two strings separated by a dot (".") character. For the purpose of 3500
this encoding procedure, the strings to the left and right of the dot are denoted C and D, 3501
respectively. 3502

Validity Test: 3503

The input must satisfy the following: 3504

■ C must match the grammar for PaddedNumericComponent as specified in Section 5. 3505

■ D must match the grammar for GS3A3Component as specified in Section 5. 3506

■ The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" 3507
column of the partition table. The corresponding row is called the "matching partition table row" in the 3508
remainder of the encoding procedure. 3509

■ The number of characters in D must be less than or equal to the corresponding value specified in the 3510
other field maximum characters column of the matching partition table row. For the purposes of this rule, 3511
an escape triplet (%nn) is counted as one character. 3512

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 115 of 315

■ For each portion of D that matches the Escape production of the grammar specified in Section 5 (that is, 3513
a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two 3514
hexadecimal characters following the % character must map to one of the 82 allowed characters specified 3515
in Table I.3.1-1. 3516

Output: 3517

Construct the output bit string by concatenating the following three components: 3518

■ The value P specified in the "partition value" column of the matching partition table row, as a 3-bit binary 3519
integer. 3520

■ The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the 3521
number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row. 3522

■ The value of D converted to an N-bit binary string, where N is the number of bits specified in the other 3523
field bits column of the matching partition table row. This N-bit binary string is constructed as follows. 3524
Consider D to be a string of zero or more characters s1s2…sN, where each character si is either a single 3525
character or a 3-character sequence matching the Escape production of the grammar (that is, a 3-3526
character sequence consisting of a % character followed by two hexadecimal digits). Translate each 3527
character to a 7-bit string. For a single character, the corresponding 7-bit string is specified in Table 3528
I.3.1-1. For an Escape sequence, the 7-bit string is the value of the two hexadecimal characters 3529
considered as a 7-bit integer. Concatenate those 7-bit strings in the order corresponding to the input, 3530
then pad with zero bits as necessary to total N bits. 3531

The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit 3532
Count" for this segment as indicated in the coding table. 3533

14.3.6 "Numeric String" Encoding method 3534

The Numeric String encoding method is used for a segment that appears as a numeric string in the 3535
URI, possibly including leading zeros. The leading zeros are preserved in the binary encoding by 3536
prepending a "1" digit to the numeric string before encoding. 3537

Input: 3538

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3539
encoding table, a character string with no dot (".") characters. 3540

Validity Test: 3541

The input character string must satisfy the following: 3542

■ It must match the grammar for PaddedNumericComponent as specified in Section 5. 3543

■ The number of digits in the string, D, must be such that 2 × 10D < 2b, where b is the value specified in 3544
the "Coding Segment Bit Count" row of the encoding table. (For the GDTI-113 scheme, b = 58 and 3545
therefore the number of digits D must be less than or equal to 17. GDTI-113 and SGCN-96 are the only 3546
schemes that uses this encoding method.) 3547

If any of the above tests fails, the encoding of the URI fails. 3548

Output: 3549

Construct the output bit string as follows: 3550

■ Prepend the character "1" to the left of the input character string. 3551

■ Convert the resulting string to a b-bit integer (padded to the left with zero bits as necessary), where b is 3552
the value specified in the "bit count" row of the encoding table, whose value is the value of the input 3553
character string considered as a decimal integer. 3554

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 116 of 315

14.3.7 "6-bit CAGE/DODAAC" Encoding method 3555

The 6-Bit CAGE/DoDAAC encoding method is used for a segment that appears as a 5-character 3556
CAGE code or 6-character DoDAAC in the URI, and as a 36-bit encoded bit string in the binary 3557
encoding. 3558

Input: 3559

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3560
encoding table, a 5- or 6-character string with no dot (".") characters. 3561

Validity Test: 3562

The input character string must satisfy the following: 3563

■ It must match the grammar for CAGECodeOrDODAAC as specified in Section 6.3.17. 3564

If the above test fails, the encoding of the URI fails. 3565

Output: 3566

Consider the input to be a string of five or six characters d1d2…dN, where each character di is a 3567
single character. Translate each character to a 6-bit string using Table I.3.1-1 (G). Concatenate 3568
those 6-bit strings in the order corresponding to the input. If the input was five characters, prepend 3569
the 6-bit value 100000 to the left of the result. The resulting 36-bit string is the output. 3570

14.3.8 "6-Bit Variable String" Encoding method 3571

The 6-Bit Variable String encoding method is used for a segment that appears in the URI as a string 3572
field, and in the binary encoding as variable length null-terminated binary-encoded character string. 3573

Input: 3574

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3575
encoding table. 3576

Validity Test: 3577

The input must satisfy the following: 3578

■ The input must match the grammar for the corresponding portion of the URI as specified in the 3579
appropriate subsection of Section 6.3. 3580

■ The number of characters in the input must be greater than or equal to the minimum number of 3581
characters and less than or equal to the maximum number of characters specified in the footnote to the 3582
coding table for this coding table column. For the purposes of this rule, an escape triplet (%nn) is counted 3583
as one character. 3584

■ For each portion of the input that matches the Escape production of the grammar specified in Section 5 3585
(that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two 3586
hexadecimal characters following the % character must map to one of the characters specified in Table 3587
I.3.1-1 (G), and the character so mapped must satisfy any other constraints specified in the coding table 3588
for this coding segment. 3589

■ For each portion of the input that is a single character (as opposed to a 3-character escape sequence), 3590
that character must satisfy any other constraints specified in the coding table for this coding segment. 3591

Output: 3592

Consider the input to be a string of zero or more characters s1s2…sN, where each character si is 3593
either a single character or a 3-character sequence matching the Escape production of the 3594
grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal 3595
digits). Translate each character to a 6-bit string. For a single character, the corresponding 6-bit 3596
string is specified in Table I.3.1-1 (G). For an Escape sequence, the corresponding 6-bit string is 3597
specified in Table I.3.1-1 (G) by finding the escape sequence in the "URI Form" column. 3598

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 117 of 315

Concatenate those 6-bit strings in the order corresponding to the input, then append six zero bits 3599
(000000). 3600

The resulting bit string is of variable length, but is always at least 6 bits and is always a multiple of 3601
6 bits. 3602

14.3.9 "6-Bit Variable String Partition Table" Encoding method 3603

The 6-Bit Variable String Partition Table encoding method is used for a segment that appears in the 3604
URI as a variable-length numeric field and a variable-length string field separated by a dot (".") 3605
character, and in the binary encoding as a 3-bit "partition" field followed by a variable length binary 3606
integer and a null-terminated binary-encoded character string. The number of characters in the two 3607
URI fields is always less than or equal to a known limit (counting a 3-character escape sequence as 3608
a single character), and the number of bits in the binary encoding is also less than or equal to a 3609
known limit. 3610

The 6-Bit Variable String Partition Table encoding method makes use of a "partition table." The 3611
specific partition table to use is specified in the coding table for a given EPC scheme. 3612

Input: 3613

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3614
encoding table. This consists of two strings separated by a dot (".") character. For the purpose of 3615
this encoding procedure, the strings to the left and right of the dot are denoted C and D, 3616
respectively. 3617

Validity Test: 3618

The input must satisfy the following: 3619

■ The input must match the grammar for the corresponding portion of the URI as specified in the 3620
appropriate subsection of Section 6.3. 3621

■ The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" 3622
column of the partition table. The corresponding row is called the "matching partition table row" in the 3623
remainder of the encoding procedure. 3624

■ The number of characters in D must be less than or equal to the corresponding value specified in the 3625
other field maximum characters column of the matching partition table row. For the purposes of this rule, 3626
an escape triplet (%nn) is counted as one character. 3627

■ For each portion of D that matches the Escape production of the grammar specified in Section 5 (that is, 3628
a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two 3629
hexadecimal characters following the % character must map to one of the 39 allowed characters specified 3630
in Table I.3.1-1 (G). 3631

Output: 3632

Construct the output bit string by concatenating the following three components: 3633

■ The value P specified in the "partition value" column of the matching partition table row, as a 3-bit binary 3634
integer. 3635

■ The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the 3636
number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row. 3637

■ The value of D converted to an N-bit binary string, where N is less than or equal to the number of bits 3638
specified in the other field maximum bits column of the matching partition table row. This binary string is 3639
constructed as follows. Consider D to be a string of one or more characters s1s2…sN, where each 3640
character si is either a single character or a 3-character sequence matching the Escape production of 3641
the grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal 3642
digits). Translate each character to a 6-bit string. For a single character, the corresponding 6-bit string is 3643
specified in Table I.3.1-1 (G). For an Escape sequence, the 6-bit string is the value of the two 3644
hexadecimal characters considered as a 6-bit integer. Concatenate those 6-bit strings in the order 3645
corresponding to the input, then add six zero bits. 3646

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 118 of 315

The resulting bit string is (3 + M + N) bits in length, which is always less than or equal to the 3647
maximum "Coding Segment Bit Count" for this segment as indicated in the coding table. 3648

14.3.10 "Fixed Width Integer" Encoding Method 3649

The Fixed Width Integer encoding method is used for a segment that appears as a zero-padded 3650
decimal integer in the URI, and as a binary integer in the binary encoding. 3651

Input: 3652

The input to the encoding method is the URI portion indicated in the "URI portion" row of the 3653
encoding table, an all-numeric character string with no dot (".") characters. 3654

Validity Test: 3655

The input character string must satisfy the following: 3656

■ It must match the grammar for PaddedNumericComponent as specified in Section 5. 3657

■ The value of the string when considered as a non-negative decimal integer must be less than ((10^D) -1) 3658
where D=int(b*log(2)/log(10)), where b is the value specified in the "Coding Segment Bit Count" row of 3659
the encoding table. 3660

If any of the above tests fails, the encoding of the URI fails. 3661

Output: 3662

The encoding of this segment is a b-bit integer (padded to the left with zero bits as necessary), 3663
where b is the value specified in the "Coding Segment Bit Count" row of the encoding table, whose 3664
value is the value of the input character string considered as a decimal integer. 3665

14.4 Decoding procedure 3666

This procedure decodes a bit string as found beginning at bit 20h in the EPC memory bank of a Gen 3667
2 Tag into an EPC Tag URI (This section only applies for EPC schemes for which an EPC Tag URI is 3668
defined; no EPC Tag URI format is defined for new EPC schemes introduced in TDS 2.0 – for those 3669
schemes, the result of decoding is the corresponding GS1 element string or equivalently, the set of 3670
GS1 Application Identifiers and their values. For all new EPC schemes introduced in TDS 2.0, please 3671
refer to section 14.5 instead). This procedure only decodes the EPC and filter value (if applicable). 3672
Section 15.2.2 gives the complete procedure for decoding the entire contents of the EPC memory 3673
bank, including control information that is stored outside of the encoded EPC. The procedure in 3674
Section 15.2.2 should be used by most applications. (The procedure in Section 15.2.2 uses the 3675
procedure below as a subroutine.) 3676

Given: 3677

■ A bit string consisting of N bits bN-1 bN-2…b0 3678

Yields: 3679

■ An EPC Tag URI beginning with urn:epc:tag:, which does not contain control information fields (other 3680
than the filter value if the EPC scheme includes a filter value); OR 3681

■ An exception indicating that the bit string cannot be decoded into an EPC Tag URI. 3682

Procedure: 3683

1. Extract the most significant eight bits, the EPC header: bN-1 bN-2…bN-8. Referring to Table 14-1 in 3684
Section 14.2, use the header to identify the coding table for this binary encoding and the 3685
encoding bit length B. If no coding table exists for this header, stop: this binary encoding cannot 3686
be decoded. 3687

2. Confirm that the total number of bits N is greater than or equal to the total number of bits B 3688
specified for this header in Table 14-1. If not, stop: this binary encoding cannot be decoded. 3689

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 119 of 315

3. If necessary, truncate the least significant bits of the input to match the number of bits specified 3690
in Table 14-1 That is, if Table 14-1 specifies B bits, retain bits bN-1 bN-2…bN-B. For the remainder 3691
of this procedure, consider the remaining bits to be numbered bB-1 bB-2…b0.(The purpose of this 3692
step is to remove any trailing zero padding bits that may have been read due to word-oriented 3693
data transfer.) 3694

4. For a variable-length coding scheme, there is no B specified in Table 14-1 and so this step must 3695
be omitted. There may be trailing zero padding bits remaining after all segments are decoded in 3696
Step 4, below; if so, ignore them. 3697

5. Separate the bits of the binary encoding into segments according to the "bit position" row of the 3698
coding table. For each segment, decode the bits to obtain a character string that will be used as 3699
a portion of the final URI. The method for decoding each column depends on the "coding 3700
method" row of the table. If the "coding method" row specifies a specific bit string, the 3701
corresponding bits of the input must match those bits exactly; if not, stop: this binary encoding 3702
cannot be decoded. Otherwise, consult the following sections that specify the decoding methods. 3703
If the decoding of any segment fails, stop: this binary encoding cannot be decoded. 3704

6. For a variable-length coding segment, the coding method is applied beginning with the bit 3705
following the bits consumed by the previous coding column. That is, if the previous coding 3706
column (the column to the left of this one) consumed bits up to and including bit bi, then the 3707
most significant bit for decoding this segment is bit bi-1. The coding method will determine 3708
where the ending bit for this segment is. 3709

7. Concatenate the following strings to obtain the final URI: the string urn:epc:tag:,the scheme 3710
name as specified in the coding table, a colon (":") character, and the strings obtained in Step 3711
4, inserting a dot (".") character between adjacent strings. 3712

The following sections specify the procedures to be used in Step 4. 3713

14.4.1 "Integer" Decoding method 3714

The Integer decoding method is used for a segment that appears as a decimal integer in the URI, 3715
and as a binary integer in the binary encoding. 3716

Input: 3717

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3718
table. 3719

Validity Test: 3720

There are no validity tests for this decoding method. 3721

Output: 3722

The decoding of this segment is a decimal numeral whose value is the value of the input considered 3723
as an unsigned binary integer. The output shall not begin with a zero character if it is two or more 3724
digits in length. 3725

14.4.2 "String" Decoding method 3726

The String decoding method is used for a segment that appears as an alphanumeric string in the 3727
URI, and as an ISO/IEC 646 [ISO646] (ASCII) encoded bit string in the binary encoding. 3728

Input: 3729

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3730
table. This length of this bit string is always a multiple of seven. 3731

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 120 of 315

Validity Test: 3732

The input bit string must satisfy the following: 3733

■ Each 7-bit segment must have a value corresponding to a character specified in Table I.3.1-1, or be all 3734
zeros. 3735

■ All 7-bit segments following an all-zero segment must also be all zeros. 3736

■ The first 7-bit segment must not be all zeros. (In other words, the string must contain at least one 3737
character.) 3738

If any of the above tests fails, the decoding of the segment fails. 3739

Output: 3740

Translate each 7-bit segment, up to but not including the first all-zero segment (if any), into a 3741
single character or 3-charcter escape triplet by looking up the 7-bit segment in Table I.3.1-1, and 3742
using the value found in the "URI Form" column. Concatenate the characters and/or 3-character 3743
triplets in the order corresponding to the input bit string. The resulting character string is the 3744
output. This character string matches the GS3A3 production of the grammar in Section 5. 3745

14.4.3 "Partition Table" Decoding method 3746

The Partition Table decoding method is used for a segment that appears in the URI as a pair of 3747
variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-3748
bit "partition" field followed by two variable length binary integers. The number of characters in the 3749
two URI fields always totals to a constant number of characters, and the number of bits in the 3750
binary encoding likewise totals to a constant number of bits. 3751

The Partition Table decoding method makes use of a "partition table." The specific partition table to 3752
use is specified in the coding table for a given EPC scheme. 3753

Input: 3754

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3755
table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value, 3756
followed by two substrings of variable length. 3757

Validity Test: 3758

The input must satisfy the following: 3759

■ The three most significant bits of the input bit string, considered as a binary integer, must match one of 3760
the values specified in the "partition value" column of the partition table. The corresponding row is called 3761
the "matching partition table row" in the remainder of the decoding procedure. 3762

■ Extract the M next most significant bits of the input bit string following the three partition bits, where M is 3763
the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider 3764
these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the 3765
value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row. 3766

■ There are N bits remaining in the input bit string, where N is the value specified in the other field bits 3767
column of the matching partition table row. Consider these N bits to be an unsigned binary integer, D. 3768
The value of D must be less than 10K, where K is the value specified in the other field digits (K) column of 3769
the matching partition table row. Note that if K = 0, then the value of D must be zero. 3770

Output: 3771

Construct the output character string by concatenating the following three components: 3772

■ The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L 3773
digits in total. 3774

■ A dot (".") character. 3775

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 121 of 315

■ The value D converted to a decimal numeral, padding on the left with zero ("0") characters to make K 3776
digits in total. If K = 0, append no characters to the dot above (in this case, the final URI string will have 3777
two adjacent dot characters when this segment is combined with the following segment). 3778

14.4.4 "Unpadded Partition Table" Decoding method 3779

The Unpadded Partition Table decoding method is used for a segment that appears in the URI as a 3780
pair of variable-length numeric fields separated by a dot (".") character, and in the binary encoding 3781
as a 3-bit "partition" field followed by two variable length binary integers. The number of characters 3782
in the two URI fields is always less than or equal to a known limit, and the number of bits in the 3783
binary encoding is always a constant number of bits. 3784

The Unpadded Partition Table decoding method makes use of a "partition table." The specific 3785
partition table to use is specified in the coding table for a given EPC scheme. 3786

Input: 3787

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3788
table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value, 3789
followed by two substrings of variable length. 3790

Validity Test: 3791

The input must satisfy the following: 3792

■ The three most significant bits of the input bit string, considered as a binary integer, must match one of 3793
the values specified in the "partition value" column of the partition table. The corresponding row is called 3794
the "matching partition table row" in the remainder of the decoding procedure. 3795

■ Extract the M next most significant bits of the input bit string following the three partition bits, where M is 3796
the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider these 3797
M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the value 3798
specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row. 3799

■ There are N bits remaining in the input bit string, where N is the value specified in the other field bits 3800
column of the matching partition table row. Consider these N bits to be an unsigned binary integer, D. 3801

Output: 3802

Construct the output character string by concatenating the following three components: 3803

■ The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L digits 3804
in total. 3805

■ A dot (".") character. 3806

■ The value D converted to a decimal numeral, with no leading zeros (except that if D = 0 it is converted to 3807
a single zero digit). 3808

14.4.5 "String Partition Table" Decoding method 3809

The String Partition Table decoding method is used for a segment that appears in the URI as a 3810
variable-length numeric field and a variable-length string field separated by a dot (".") character, 3811
and in the binary encoding as a 3-bit "partition" field followed by a variable length binary integer 3812
and a variable length binary-encoded character string. The number of characters in the two URI 3813
fields is always less than or equal to a known limit (counting a 3-character escape sequence as a 3814
single character), and the number of bits in the binary encoding is padded if necessary to a constant 3815
number of bits. 3816

The Partition Table decoding method makes use of a "partition table." The specific partition table to 3817
use is specified in the coding table for a given EPC scheme. 3818

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 122 of 315

Input: 3819

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3820
table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value, 3821
followed by two substrings of variable length. 3822

Validity Test: 3823

The input must satisfy the following: 3824

■ The three most significant bits of the input bit string, considered as a binary integer, must match one of 3825
the values specified in the "partition value" column of the partition table. The corresponding row is called 3826
the "matching partition table row" in the remainder of the decoding procedure. 3827

■ Extract the M next most significant bits of the input bit string following the three partition bits, where M is 3828
the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider 3829
these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the 3830
value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row. 3831

■ There are N bits remaining in the input bit string, where N is the value specified in the other field bits 3832
column of the matching partition table row. These bits must consist of one or more non-zero 7-bit 3833
segments followed by zero or more all-zero bits. 3834

■ The number of non-zero 7-bit segments that precede the all-zero bits (if any) must be less or equal to 3835
than K, where K is the value specified in the "Maximum Characters" column of the matching partition 3836
table row. 3837

■ Each of the non-zero 7-bit segments must have a value corresponding to a character specified in Table 3838
I.3.1-1. 3839

Output: 3840

Construct the output character string by concatenating the following three components: 3841

■ The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L 3842
digits in total. 3843

■ A dot (".") character. 3844

■ A character string determined as follows. Translate each non-zero 7-bit segment as determined by the 3845
validity test into a single character or 3-character escape triplet by looking up the 7-bit segment in Table 3846
I.3.1-1, and using the value found in the "URI Form" column. Concatenate the characters and/or 3-3847
character triplet in the order corresponding to the input bit string. 3848

14.4.6 "Numeric String" Decoding method 3849

The Numeric String decoding method is used for a segment that appears as a numeric string in the 3850
URI, possibly including leading zeros. The leading zeros are preserved in the binary encoding by 3851
prepending a "1" digit to the numeric string before encoding. 3852

Input: 3853

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3854
table. 3855

Validity Test: 3856

The input must be such that the decoding procedure below does not fail. 3857

Output: 3858

Construct the output string as follows. 3859

■ Convert the input bit string to a decimal numeral without leading zeros whose value is the value of the 3860
input considered as an unsigned binary integer. 3861

■ If the numeral from the previous step does not begin with a "1" character, stop: the input is invalid. 3862

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 123 of 315

■ If the numeral from the previous step consists only of one character, stop: the input is invalid (because 3863
this would correspond to an empty numeric string). 3864

■ Delete the leading "1" character from the numeral. 3865

■ The resulting string is the output. 3866

14.4.7 "6-Bit CAGE/DoDAAC" Decoding method 3867

The 6-Bit CAGE/DoDAAC decoding method is used for a segment that appears as a 5-character 3868
CAGE code or 6-character DoDAAC code in the URI, and as a 36-bit encoded bit string in the binary 3869
encoding. 3870

Input: 3871

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3872
table. This length of this bit string is always 36 bits. 3873

Validity Test: 3874

The input bit string must satisfy the following: 3875

■ When the bit string is considered as consisting of six 6-bit segments, each 6-bit segment must have a 3876
value corresponding to a character specified in Table I.3.1-1 (G) except that the first 6-bit segment may 3877
also be the value 100000. 3878

■ The first 6-bit segment must be the value 100000, or correspond to a digit character, or an uppercase 3879
alphabetic character excluding the letters I and O. 3880

■ The remaining five 6-bit segments must correspond to a digit character or an uppercase alphabetic 3881
character excluding the letters I and O. 3882

If any of the above tests fails, the decoding of the segment fails. 3883

Output: 3884

Disregard the first 6-bit segment if it is equal to 100000. Translate each of the remaining five or six 3885
6-bit segments into a single character by looking up the 6-bit segment in Table I.3.1-1 (G) and 3886
using the value found in the "URI Form" column. Concatenate the characters in the order 3887
corresponding to the input bit string. The resulting character string is the output. This character 3888
string matches the CAGECodeOrDODAAC production of the grammar in Section 6.3.17. 3889

14.4.8 "6-Bit Variable String" Decoding method 3890

The 6-Bit Variable String decoding method is used for a segment that appears in the URI as a 3891
variable-length string field, and in the binary encoding as a variable-length null-terminated binary-3892
encoded character string. 3893

Input: 3894

The input to the decoding method is the bit string that begins in the next least significant bit 3895
position following the previous coding segment. Only a portion of this bit string is consumed by this 3896
decoding method, as described below. 3897

Validity Test: 3898

The input must be such that the decoding procedure below does not fail. 3899

Output: 3900

Construct the output string as follows. 3901

■ Beginning with the most significant bit of the input, divide the input into adjacent 6-bit segments, until a 3902
terminating segment consisting of all zero bits (000000) is found. If the input is exhausted before an all-3903
zero segment is found, stop: the input is invalid. 3904

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 124 of 315

■ The number of 6-bit segments preceding the terminating segment must be greater than or equal to the 3905
minimum number of characters and less than or equal to the maximum number of characters specified in 3906
the footnote to the coding table for this coding table column. If not, stop: the input is invalid. 3907

■ For each 6-bit segment preceding the terminating segment, consult Table I.3.1-1 (G) to find the 3908
character corresponding to the value of the 6-bit segment. If there is no character in the table 3909
corresponding to the 6-bit segment, stop: the input is invalid. 3910

■ If the input violates any other constraint indicated in the coding table, stop: the input is invalid. 3911

■ Translate each 6-bit segment preceding the terminating segment into a single character or 3-character 3912
escape triplet by looking up the 6-bit segment in Table I.3.1-1 (G) and using the value found in the "URI 3913
Form" column. Concatenate the characters and/or 3-character triplets in the order corresponding to the 3914
input bit string. The resulting string is the output of the decoding procedure. 3915

■ If any columns remain in the coding table, the decoding procedure for the next column resumes with the 3916
next least significant bit after the terminating 000000 segment. 3917

14.4.9 "6-Bit Variable String Partition Table" Decoding method 3918

The 6-Bit Variable String Partition Table decoding method is used for a segment that appears in the 3919
URI as a variable-length numeric field and a variable-length string field separated by a dot (".") 3920
character, and in the binary encoding as a 3-bit "partition" field followed by a variable length binary 3921
integer and a null-terminated binary-encoded character string. The number of characters in the two 3922
URI fields is always less than or equal to a known limit (counting a 3-character escape sequence as 3923
a single character), and the number of bits in the binary encoding is also less than or equal to a 3924
known limit. 3925

The 6-Bit Variable String Partition Table decoding method makes use of a "partition table." The 3926
specific partition table to use is specified in the coding table for a given EPC scheme. 3927

Input: 3928

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3929
table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value, 3930
followed by two substrings of variable length. 3931

Validity Test: 3932

The input must satisfy the following: 3933

■ The three most significant bits of the input bit string, considered as a binary integer, must match one of 3934
the values specified in the "partition value" column of the partition table. The corresponding row is called 3935
the "matching partition table row" in the remainder of the decoding procedure. 3936

■ Extract the M next most significant bits of the input bit string following the three partition bits, where M is 3937
the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider 3938
these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the 3939
value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row. 3940

■ There are up to N bits remaining in the input bit string, where N is the value specified in the other field 3941
maximum bits column of the matching partition table row. These bits must begin with one or more non-3942
zero 6-bit segments followed by six all-zero bits. Any additional bits after the six all-zero bits belong to 3943
the next coding segment in the coding table. 3944

■ The number of non-zero 6-bit segments that precede the all-zero bits must be less or equal to than K, 3945
where K is the value specified in the "Maximum Characters" column of the matching partition table row. 3946

■ Each of the non-zero 6-bit segments must have a value corresponding to a character specified in Table 3947
I.3.1-1 (G) 3948

Output: 3949

Construct the output character string by concatenating the following three components: 3950

■ The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L 3951
digits in total. 3952

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 125 of 315

■ A dot (".") character. 3953

■ A character string determined as follows. Translate each non-zero 6-bit segment as determined by the 3954
validity test into a single character or 3-character escape triplet by looking up the 6-bit segment in Table 3955
I.3.1-1 (G) and using the value found in the "URI Form" column. Concatenate the characters and/or 3-3956
character triplet in the order corresponding to the input bit string. 3957

14.4.10 "Fixed Width Integer" Decoding method 3958

The Integer decoding method is used for a segment that appears as a zero-padded decimal integer 3959
in the URI, and as a binary integer in the binary encoding. 3960

Input: 3961

The input to the decoding method is the bit string identified in the "bit position" row of the coding 3962
table. 3963

Validity Test: 3964

Given a sequence of bits of length b, calculate imax as follows: 3965
 3966
D = int(b*log(2)/log(10)) 3967

imax = 10^D – 1 3968

Interpret the sequence of bits of length b as a non-negative integer value, i 3969

If i > imax then decoding fails because the bits correspond to a value that cannot be expressed in D 3970
digits. 3971

Output: 3972

The decoding of this segment is a decimal numeral whose value is the value of the input considered 3973
as an unsigned binary integer. The output is padded to the left, so that the total number of digits D 3974
is given by D=int(b*log(2)/log(10)). 3975

14.5 Encoding/Decoding methods introduced in TDS 2.0 3976

TDS 2.0 introduces several new binary encoding/decoding methods that are used both within the 3977
construction and parsing of the new EPC identifiers as well as for the expression of additional AIDC 3978
data beyond the end of the EPC identifier, as summarised in the table below and detailed in the 3979
following subsections, which explain the encoding and decoding methods for each: 3980

Table 14-2 Summary of Encoding/Decoding methods introduced in TDS 2.0 3981

Method name Section Used within binary
encoding of new EPC
identifiers

Used within binary
encoding of '+AIDC data'

"+AIDC Data Toggle Bit" 14.5.1 Yes – to indicate whether
additional AIDC data
follows after the EPC
identifier

No

"Fixed-Bit-Length Numeric String" 14.5.2 Yes – for filter value Yes – e.g. for (20)
Internal Product Variant

"Prioritised Date" 14.5.3 Yes – within DSGTIN+ No

"Fixed-Length Numeric" 14.5.4 Yes for most primary
GS1 identification keys
(e.g. GTIN, SSCC etc.).
Not used by GIAI or CPI

Yes – when expressing
additional GS1
identification keys within
+AIDC data (e.g.
expressing a GRAI in
conjunction with an
SGTIN+ EPC)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 126 of 315

Method name Section Used within binary
encoding of new EPC
identifiers

Used within binary
encoding of '+AIDC data'

"Delimited/Terminated Numeric" 14.5.5 Yes – used for GIAI or
CPI

Yes – used for GIAI or
CPI

"Variable-length alphanumeric" 14.5.6 Yes – e.g. for (21) Serial
Number within SGTIN+,
DSGTIN+, ITIP+

Yes – e.g. for (10)
Batch/Lot Number

"Variable-length numeric string" 14.5.6.1 Yes – if value uses only
0-9 (leading zero digits
are preserved)

Yes – if value uses only
0-9 (leading zero digits
are preserved)

"Variable-length upper case
hexadecimal"

14.5.6.2 Yes – if value uses only
characters
0123456789ABCDEF

Yes – if value uses only
characters
0123456789ABCDEF

"Variable-length lower case
hexadecimal"

14.5.6.3 Yes – if value uses only
characters
0123456789abcdef

Yes – if value uses only
characters
0123456789abcdef

"Variable-length 6-bit file-safe
URI-safe base 64"

14.5.6.4 Yes – if value uses only
characters 0-9 A-Z a-z
hyphen or underscore

Yes – if value uses only
characters 0-9 A-Z a-z
hyphen or underscore

"Variable-length URN Code 40" 14.5.6.5 Yes – if value uses only
0-9 A-Z colon, dot or
hyphen

Yes – if value uses only
0-9 A-Z colon, dot or
hyphen

"Variable-length 7-bit ASCII" 14.5.6.6 Yes – if value contains
characters within the 82-
character GS1 invariant
subset of [ISO646]
OTHER than digits 0-9 or
letters A-Z a-z or
hyphen, or underscore.

Yes – if value contains
characters within the 82-
character GS1 invariant
subset of [ISO646]
OTHER than digits 0-9 or
letters A-Z a-z or
hyphen, or underscore.

"Single data bit" 14.5.7 No Yes – e.g. for AI (4321),
(4322), (4323)

"6-digit date YYMMDD" 14.5.8 No – but see Prioritised
Date within DSGTIN+,
section 14.5.3

Yes – e.g. for AI (17)

"10-digit date+time
YYMMDDhhmm"

14.5.9 No Yes – e.g. for AI (4324),
(4325), (7003)

"Variable-format date / date
range"

14.5.10 No Yes – e.g. for AI (7007)
= Harvest date / Harvest
date range

"Variable-precision date+time" 14.5.11 No Yes – e.g. for AI (8008)
= Production date+time

"Country code (ISO 3166-1
alpha-2)"

14.5.12 No Yes –for AI (4307) and
(4317)

"Variable-length numeric string
without encoding indicator"

14.5.13 Yes – in CPI+ and
SGCN+

Yes – for
(255),(30),(37),
(3900)-(3909), (3910)-
(3919), (3920)-(3929),
(3930)-(3939),
(423), (425), (7004),
(8011) and (8019)

"Optional minus sign in 1 bit" 14.5.14 No Yes - for (4330) and
(4331).

"Sequence indicator" 14.5.15 No Yes - for (7258).

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 127 of 315

14.5.1 "+AIDC Data Toggle Bit" 3982

The Data Toggle Bit encoding method is used for a segment that appears as a single bit in the 3983
binary encoding that indicates whether or not additional AIDC data is encoded after the EPC within 3984
the EPC/UII memory bank. This is primarily useful for 'Select' filtering over the air interface. 3985

The data toggle bit is a single bit that appears immediately after the 8-bit header of the new EPC 3986
schemes and before the 3-bit filter value. Whoever / whatever encodes an EPC identifier into an 3987
RFID tag has the responsibility to set the +AIDC data toggle bit correctly. Note that the +AIDC data 3988
toggle bit is primarily used for selection of tag populations via the air interface and a non-essential 3989
role in the decoding procedure if the guidance at the end of Section 15.3 is followed, to determine 3990
whether or not any additional +AIDC data has been encoded after the end of the EPC identifier. 3991

If no additional AIDC data is encoded, the data toggle bit SHALL be set to 0. 3992

If additional AIDC is encoded, the data toggle bit SHALL be set to 1. 3993

The figure below shows an example of the use of the +AIDC data toggle bit. 3994
Figure 14-1 Example of the use of the +AIDC data toggle bit 3995

 3996

14.5.1.1 Encoding: 3997

Input: 3998

The input to the encoding method is a Boolean value, in which: 3999
true = additional AIDC data is to be encoded after the EPC within the EPC/UII memory bank 4000
false = no additional AIDC data is to be encoded after the EPC within the EPC/UII memory bank 4001

Validity Test: 4002

The input must be either true or false, otherwise the encoding fails. 4003

Output: 4004

The encoding of this segment is a single bit, in which true is encoded as 1 while false is encoded as 4005
0. 4006

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 128 of 315

14.5.1.2 Decoding: 4007

Input: 4008

The input to the decoding method is a single bit, which is interpreted as follows: 4009
1 = additional AIDC data is to be encoded after the EPC within the EPC/UII memory bank 4010
0 = no additional AIDC data is to be encoded after the EPC within the EPC/UII memory bank 4011

Validity Test: 4012

The output must be either true or false, otherwise the decoding fails. 4013

Output: 4014

The encoding of this segment is a Boolean value, in which 0 is interpreted as false (i.e. no additional 4015
AIDC data is to be encoded after the EPC within the EPC/UII memory bank), whereas 1 is 4016
interpreted as true (i.e. additional AIDC data is to be encoded after the EPC within the EPC/UII 4017
memory bank). If the +AIDC data toggle bit is set to 1, then refer to section 15.3 for further details 4018
about extraction of AIDC data that follows after new EPC schemes within the EPC/UII memory bank. 4019

14.5.2 "Fixed-Bit-Length Numeric String" 4020

The Fixed-Bit-Length Numeric String encoding method is used for a segment that can represent 4021
numeric digits 0-9 using approximately 3.32 bits per digit, but using 3 bits in the case of a single 4022
digit filter value in the range 0-7. When this method is used to encode the value of a GS1 4023
Application Identifier, it is necessary to use Table F to determine the expected bit length, by locating 4024
the row for which the GS1 Application Identifier key is shown in column a, then reading the 4025
expected bit length from column e. 4026

14.5.2.1 Encoding 4027

Input: 4028

The input to the encoding method is a numeric string consisting only of digits 0-9. The expected 4029
number of bits must be determined from Table F (see introduction above) unless this method is 4030
being used to encode the filter value as 3 bits. 4031

Validity Test: 4032

The input must be a numeric string consisting only of digits 0-9, otherwise the encoding fails. 4033
Leading digits of zero ('0') are permitted and SHALL be reinstated upon decoding. 4034

Output: 4035

Convert the base 10 value to binary and if necessary left-pad with '0' bits to reach the expected bit 4036
length. This is the output of this encoding method. 4037

14.5.2.2 Decoding 4038

Input: 4039

The input to the decoding method is a fixed-length binary string of N bits, where N is determined 4040
from Table F (see introduction above) unless this method is being used to decode the filter value as 4041
3 bits. 4042

Validity Test: 4043

The output must be a numeric string consisting only of digits 0-9. 4044

Output: 4045

Read N bits and convert the value to an unsigned base 10 integer. Refer to Table F to determine 4046
the expected length in digits, shown in column d for the row that includes the GS1 Application 4047
Identifier key in column a. Convert the base 10 integer value to a numeric string and if 4048

Mark Harrison
Can we delete this and just not mention this method in connection with three-bit filter values?

Mark Harrison
Can we delete this and just not mention this method in connection with three-bit filter values?

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 129 of 315

necessary, left-pad with digits of '0' to reach the expected number of digits, as shown in column d of 4049
Table F. The result is the output of this decoding method. 4050

14.5.3 "Prioritised Date" 4051

The Prioritised Date encoding method is used within the DSGTIN+ scheme for a segment that 4052
represents a date value in a well-defined position within the binary string (irrespective of the length 4053
or character set used for the serial number), to support air interface filtering on a date of interest. 4054
This is particularly useful to enable efficient scanning of perishable items with limited remaining 4055
shelf life or to ensure that all expired / expiring products have been removed from sale. The 4056
prioritised date format only supports 6-digit date values (YYMMDD) and includes a four-bit date type 4057
indicator to express the meaning of the value – whether it corresponds to (11) production date, (17) 4058
expiration date, (7007) harvest date, (16) sell-by date etc, as illustrated in the figure below. 4059

Figure 14-2 Prioritised date format support for 6-digit date values 4060

 4061
Within the binary encoding of the DSGTIN+ scheme, the 4-bit date type indicator appears 4062
immediately after the filter bits, i.e. 12 bits after the start of the EPC, starting at 2Ch. 4063

Its 4-bit string value must be one of the values shown in the table below. All other values are 4064
reserved for future use. 4065

GS1 Application Identifier 4-bit string for date type indicator

(11) Production date 0000

(13) Packaging date 0001

(15) Best before date 0010

(16) Sell by date 0011

(17) Expiration date 0100

(7006) First freeze date 0101

(7007) Harvest date 0110

14.5.3.1 Encoding 4066

Input: 4067

The input to the encoding method is a date-related GS1 Application Identifier and a 6-digit numeric 4068
string representing a date value in the format YYMMDD, as expected in the GS1 General 4069
Specifications. 4070

Validity Test: 4071

The GS1 Application Identifier must appear listed within the table above and the 6-digit numeric 4072
string must only consist of digits 0-9 and is further constrained to be a plausible date value, 4073
meaning that the third and fourth digits are always in the range 01-12 and the fifth and sixth digits 4074
are always in the range 00-31 and do not indicate a day-of-month value that is greater than the 4075

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 130 of 315

number of days in the month indicated by the third and fourth Digits. e.g. if the third and fourth 4076
digits are "09" then a value of "31" for the fifth and sixth digits would be invalid because September 4077
can only contain 30 days. 4078

Output: 4079

Create an empty binary string buffer to receive the output. Lookup the GS1 Application Identifier in 4080
the table below and append the corresponding four bits to the binary string buffer as the date type 4081
indicator. 4082

Consider the input string as pairs of digits in which the first two digits are YY, the next two digits are 4083
MM and the final two digits are DD. 4084

Convert YY to a decimal integer (e.g. '22' 22) and convert this to an unsigned binary value, then 4085
if the resulting binary string for YY is less than seven bits in length, pad to the left with bits set to '0' 4086
to reach a total of seven bits. Append these seven bits to the binary string buffer. 4087

Convert MM to a decimal integer (e.g. '05' 5) and convert this to an unsigned binary value, then 4088
if the resulting binary string for MM is less than four bits in length, pad to the left with bits set to '0' 4089
to reach a total of four bits. Append these four bits to the binary string buffer. 4090

Convert DD to a decimal integer (e.g. '31' 31) and convert this to an unsigned binary value, then 4091
if the resulting binary string for DD is less than five bits in length, pad to the left with bits set to '0' 4092
to reach a total of five bits. Append these five bits to the binary string buffer. 4093

The binary string buffer should now consist of a total of 20 bits and should be considered as the 4094
output of this encoding method. 4095

14.5.3.2 Decoding 4096

Input: 4097

The input to the decoding method is a binary string of 20 bits. 4098

Validity Test: 4099

The left-most four bits must appear in the date table above, to indicate a specific date type, 4100
otherwise encoding fails. The next sixteen bits will be decoded as a 6-digit numeric string 4101
representing a date formatted as YYMMDD. After decoding, the third and fourth digits are always in 4102
the range 01-12 and the fifth and sixth digits are always in the range 00-31 and do not indicate a 4103
day-of-month value that is greater than the number of days in the month indicated by the third and 4104
fourth Digits. e.g. if the third and fourth digits are "09" then a value of "31" for the fifth and sixth 4105
digits would be invalid because September can only contain 30 days. 4106

Output: 4107

Lookup the left-most four bits in the table above to identify the GS1 Application Identifier to which 4108
the YYMMDD value corresponds. 4109

Create an empty string buffer to receive the six-digit output value YYMMDD. 4110

Treat the remaining sixteen bits as an encoding of the value. 4111

Working from left to right, read the next 7 bits as unsigned binary integer y, then convert to a base 4112
10 value YY, padding to the left with a single '0' digit if the initial result after conversion to base 10 4113
was in the range 0-9. 4114

Read the next 4 bits as unsigned binary integer m, then convert to a base 10 value MM, padding to 4115
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4116

Read the next 5 bits as unsigned binary integer d, then convert to a base 10 value DD, padding to 4117
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4118

Check that MM is within the range 01-12 and that DD is within the range 00-31 and does not exceed 4119
the number of days in the month for the month indicated by MM. Otherwise decoding fails. 4120

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 131 of 315

Concatenate YY MM and DD in sequence as the output value YYMMDD for the date-related GS1 4121
Application Identifier identified by the date type indicator (the left-most four bits of the binary input 4122
string). 4123

14.5.4 "Fixed-Length Numeric" 4124

The Fixed-Length Numeric encoding method is used for a segment that can represent numeric digits 4125
0-9 using 4 bits per digit/character, preserving leading zero digits and (where possible) aligning with 4126
nibble (half-byte) boundaries to support air interface filtering on a known sequence of digits (such 4127
as a known GS1 Company Prefix), irrespective of any initial indicator digit or extension digit that 4128
may be present. The encoding and decoding methods use the following table: 4129

 4130

Table 14-3 "Fixed-Length Numeric" encoding table 4131

Numeric character 4-bit sequence

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

14.5.4.1 Encoding 4132

Input: 4133

The input to the encoding method is a fixed-length string of N characters, each of which is either a 4134
numeric digit in the range 0-9. 4135

Validity Test: 4136

The input must not contain any characters except for digits 0-9, otherwise the encoding fails. 4137

Output: 4138

Create an empty binary string buffer to receive the output. Working from left to right, consider 4139
each character of the input string. Lookup the character in the table above and append the 4140
corresponding sequence of four bits to the binary string buffer. Continue until each character of the 4141
input string has been processed. For an input string of N digits, the binary string buffer should now 4142
contain 4N bits and is considered to be the output of this encoding method. 4143

14.5.4.2 Decoding 4144

Input: 4145

The input to the decoding method is a fixed-length binary string of 4N bits, considered as a 4146
concatenation of N groups of 4-bit sequences 4147

Validity Test: 4148

Each of the 4-bit sequences in the input must appear within the table above, otherwise decoding 4149
fails. The output must not contain any characters except for digits 0-9, otherwise the decoding fails 4150

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 132 of 315

Output: 4151

Create an empty string buffer to receive the numeric string output. Working from left to right, 4152
consider each set of four bits of the input string, moving the cursor to the right by four bits each 4153
time. Lookup the four bit sequence in the table above and append the corresponding character to 4154
the output string buffer. Continue until no further bits remain to be processed in the binary input 4155
string. For a binary input string of 4N bits, the output string buffer should now contain N digits 0-9 4156
and is considered to be the output of this decoding method. 4157

14.5.5 "Delimited/Terminated Numeric" 4158

The Delimited/Terminated 4-bit Integer encoding method is used for a segment that can represent a 4159
variable-length string that begins with numeric digits 0-9, preserving leading zero digits and (where 4160
possible) aligning with nibble (half-byte) boundaries to support air interface filtering on a known 4161
sequence of digits, irrespective of any initial indicator digit or extension digit that may be present. 4162

If the string contains no characters except digits 0-9, a 4-bit terminator '1111' indicates the end of 4163
the string. 4164

If the string contains characters other than numeric digits 0-9, a 4-bit delimiter indicates the end of 4165
the initial all-numeric substring, with the remainder of the string (starting with the first character 4166
that is not a digit 0-9) being encoded using the variable-length alphanumeric method. 4167

Figure 14-3 Example of numeric delimiter and terminator 4168

 4169
The encoding and decoding methods use the following table for all of the initial digits: 4170

 4171

Table 14-4 Encoding table for initial digits of "Delimited/Terminated Numeric" encoding method 4172

Numeric character 4-bit sequence Interpretation

0 0000 Numeric digit '0'

1 0001 Numeric digit '1'

2 0010 Numeric digit '2'

3 0011 Numeric digit '3'

4 0100 Numeric digit '4'

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 133 of 315

Numeric character 4-bit sequence Interpretation

5 0101 Numeric digit '5'

6 0110 Numeric digit '6'

7 0111 Numeric digit '7'

8 1000 Numeric digit '8'

9 1001 Numeric digit '9'

Delimiter 1110 End of the initial all-numeric substring; the remainder
of the string uses the variable-length alphanumeric –
see section 14.5.6 and its subsections.

Terminator 1111 End of a string that is all-numeric

14.5.5.1 Encoding 4173

Input: 4174

The input to the encoding method is a string of characters, either consisting only of digits 0-9 or 4175
with an initial substring that consists only of digits 0-9. 4176

Validity Test: 4177

The input must begin with a sequence of numeric digits 0-9, preserving leading zero digits, but may 4178
be followed by a string of alphanumeric or symbol characters that are permitted for the value of this 4179
GS1 Application Identifier. 4180

Output: 4181

Create an empty binary string buffer to receive the output. Working from left to right, consider 4182
each character of the input string. If the character is a digit 0-9, lookup the 4183

Lookup the digit in the table below and append the corresponding sequence of four bits to the binary 4184
string buffer. Continue until each character of the input string has been processed. Finally, if no 4185
variable-length alphanumeric segment follows, append a terminator sequence of four bits ('1111') 4186
otherwise, if a variable-length alphanumeric segment follows, append a delimiter sequence of four 4187
bits ('1110'). For an input string of N digits, the binary string buffer should now contain (4N+4) bits 4188
and is considered to be the output of this encoding method. If the input string was not all-numeric, 4189
the binary string buffer should be further appended with the output of applying the variable-length 4190
alphanumeric method to the remaining characters– see section 14.5.6 4191

14.5.5.2 Decoding 4192

Input: 4193

The input to the encoding method is a binary string 4194

Validity Test: 4195

The output must begin with a sequence of numeric digits 0-9, preserving leading zero digits, but 4196
may be followed by a string of alphanumeric or symbol characters that are permitted for the value 4197
of this GS1 Application Identifier. 4198

Output: 4199

Create an empty string buffer to receive the output. Working from left to right, consider each 4200
excessive group of four bits as a hexadecimal character. 4201

If the four bits correspond to a digit 0-9, append this character to the output buffer. If the four bits 4202
are '1111' (hexadecimal character F), the final terminator has been read and indicates the end of an 4203

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 134 of 315

all-numeric value; the output is the all-numeric contents of the output string buffer. If the four bits 4204
are '1110' (hexadecimal character E), the delimiter character has now been read, indicating that the 4205
next character is not a digit but instead decoding switches after reading the delimiter '1110' to the 4206
variable-length alphanumeric method and the next bits are a 3-bit encoding indicator, followed by a 4207
length indicator (see column g of Table F). The final output consists of the all-numeric contents of 4208
the output string buffer from this method, concatenated with with the output of the variable length 4209
alphanumeric method used to decode the remaining bits. 4210

14.5.6 "Variable-length alphanumeric" 4211

The Variable-length Alphanumeric encoding method is used to encode variable-length alphanumeric 4212
strings using the minimum number of bits. This requires knowledge of the length of the string to be 4213
encoded, as well as analysis of the character set required to express the value. Shorter lengths and 4214
more restricted character sets result in fewer bits. 4215

Figure 14-4 Examples of "Variable-length alphanumeric" encoding method 4216

 4217
When encoding, implementations may use the decision tree below, to determine the most 4218
efficient encoding method to use, based on the characters actually present in the value to be 4219
encoded, then use that method specified in the relevant subsection. Having said that, a tag that is 4220
encoded using a less efficient encoding method may still conform to TDS 2.0 provided that the 4221
actual encoding method used has been correctly indicated via the three encoding indicator bits. 4222

When decoding, the first three bits are the encoding indicator. Refer to the decision tree flowchart or 4223
Table E (encoding indicator values) to determine which subsection to use for the value of the 4224
encoding indicator. 4225

Although the decision tree flowchart and Table E provide guidance about which encoding method is 4226
likely to require the fewest bits for the actual value being encoded, the use of a less efficient 4227
encoding method is permitted, provided that the encoding indicator is set correctly. 4228

Note also that although the "Variable-length URN Code 40 (§14.5.6.5) method is slightly more 4229
efficient (at 16 bits per 3 characters) than the "Variable-length 6-bit file-safe URI-safe base 64 4230
(§14.5.6.4) method (at 6 bits per character), there are situations where use of the latter may result 4231
in fewer bits, particularly if the length of the value is less than 3 characters or if it is less than 14 4232
characters and not an exact multiple of 3 characters. For values longer than 13 characters, 4233
"Variable-length URN Code 40 (§14.5.6.5) may be more efficient, if its more restricted character set 4234
is sufficient to express the value being encoded. 4235

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 135 of 315

Figure 14-5 Decision tree flowchart to select the most efficient encoding method based on the value being 4236
encoded 4237

 4238
 4239

 4240

 4241

 4242

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 136 of 315

Table E – lists the permitted values for encoding indicator together with the encoding methods 4243
and the character ranges supported by each method 4244

3-bit encoding
indicator

Coding method name Defined in
TDS section

Supported characters Number of bits per
character

000 = 0 Variable-length numeric
string

14.5.6.1 0-9 ≈ 3.32 bits per
digit, rounded up to
next integer

001 = 1 Variable-length upper
case hexadecimal

14.5.6.2 0-9 A-F 4 bits per digit or
hexadecimal
character

010 = 2 Variable-length lower
case hexadecimal

14.5.6.3 0-9 a-f 4 bits per digit or
hexadecimal
character

011 = 3 Variable-length file-safe
URI-safe base 64

14.5.6.4 0-9 A-Z a-z _ - 6 bits per character

100 = 4 Variable-length 7-bit
ASCII

14.5.6.6 All 82 characters within
GS1 Gen Specs Fig
7.11-1
OR
All 39 characters within
GS1 Gen Specs Fig
7.11-2

7 bits per character

101 = 5 Variable-length URN Code
40

14.5.6.5 0-9 A-Z . : - ≈ 5.33 bits per
character (16 bits
per 3 characters)

110 = 6 Reserved for future
use

111 = 7 Reserved for encoding
indicators longer than
3 bits

14.5.6.1 "Variable-length numeric string" 4245

The Variable-length numeric string encoding method is used to encode variable-length numeric 4246
strings as unsigned binary integers using the minimum number of bits. It preserves leading zeros, 4247
since the decoding method is required to left-pad the decoded integer to the number of digits 4248
indicated by the length indicator that was encoded. This method requires knowledge of L, the 4249
length of the string to be encoded, as well as Lmax, the maximum permitted length for such a string. 4250

Note: this is similar to the Fixed-Bit-Length Numeric String method (§14.5.2) except that the 4251
binary value is appended after appropriate encoding indicator (three bits set to 000) and length 4252
indicator. 4253

14.5.6.1.1 Encoding 4254

Input: 4255

The input to the encoding method is a numeric string of length L consisting only of digits 0-9. 4256

Validity Test: 4257

If the input string contains characters other than digits 0-9 or length L > Lmax, encoding fails. 4258

Output: 4259

Create an empty binary string buffer to receive the output. Append three bits '000' to the binary 4260
string buffer, to set an encoding indicator value of '0'. 4261

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4262

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 137 of 315

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4263
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4264

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4265

Append the binary string representing the length indicator to the binary string buffer. 4266

Convert the input string of L digits 0-9 to a base10 integer then convert this to an unsigned binary 4267
integer, v. 4268

Calculate bv, the number of bits for expressing the value either via a lookup of L in table B and 4269
reading the value in the column titled 'Integer encoding' or using the following formula: 4270
 4271
bv = ceiling(L*log(10)/log(2)) 4272

If necessary, pad the binary string v with bits of '0' to reach a total length bv for the binary string 4273
representing the numeric string value. 4274

After any necessary padding, append binary string v (of length bv) to the binary string buffer. 4275

The contents of the binary string buffer is now the binary output of this encoding method. 4276

14.5.6.1.2 Decoding 4277

Input: 4278

The input to the decoding method is a binary string for which the leftmost three bits must be '000'. 4279

Validity Test: 4280

If the leftmost three bits of the input binary string do not match '000', decoding fails. 4281

If the output string contains characters other than digits 0-9 or if length L > Lmax, decoding fails. 4282

Output: 4283

Create an empty binary string buffer to receive the output. 4284

Read the first three bits of the input binary string as the encoding indicator and check that these 4285
match '000', otherwise this decoding method cannot be used. 4286

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4287

Read the next bLI bits of the binary input string as the length indicator and convert this binary value 4288
to an unsigned base 10 integer L, the number of characters that are encoded. Within the binary 4289
input string, move the cursor past the bLI length indicator bits to begin decoding the actual value. 4290

Calculate bv, the number of bits for expressing the value either via a lookup of L in table B and 4291
reading the value in the column titled 'Integer encoding' or using the following formula: 4292
 4293
bv = ceiling(L*log(10)/log(2)) 4294

Read the next bv bits from the binary string and convert this to an unsigned base 10 integer V. 4295

Convert V to a numeric string. If V is fewer than L digits in length, left-pad V with digits of '0' to 4296
reach a total of L digits. The resulting L-digit numeric string value V (with any necessary left-4297
padding) is the output of this decoding method. 4298

14.5.6.2 "Variable-length upper case hexadecimal" 4299

The Variable-length upper case hexadecimal method is used to encode variable-length strings 4300
consisting of digits 0-9 and letters A-F as unsigned binary integers using four bits per character. 4301
This requires knowledge of L, the length of the string to be encoded, as well as Lmax, the maximum 4302
permitted length for such a string. 4303

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 138 of 315

This method uses the following table to map each character 0-9 A-F to a 4 bit binary string: 4304
Table 14-5 Mapping table for "Variable-length upper case hexadecimal" encoding method 4305

Character 4-bit binary string Character 4-bit binary string

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

14.5.6.2.1 Encoding 4306

Input: 4307

The input to the encoding method is a numeric string of length L consisting only of digits 0-9 or 4308
letters A-F. 4309

Validity Test: 4310

If the input string contains characters other than digits 0-9 or letters A-F or length L > Lmax, 4311
encoding fails. 4312

Output: 4313

Create an empty binary string buffer to receive the output. Append three bits '001' to the binary 4314
string buffer, to set an encoding indicator value of '1'. 4315

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4316

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4317
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4318

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4319

Append the binary string representing the length indicator to the binary string buffer. 4320

Working from left to right across the input string, lookup each character in the table above and 4321
append the corresponding four bits to the binary string buffer. Repeat until all L characters of the 4322
input string have been processed. 4323

The contents of the binary string buffer is now the output of this encoding method. 4324

14.5.6.2.2 Decoding 4325

Input: 4326

The input to the encoding method is a binary string whose leftmost three bits are '001', 4327
corresponding to an encoding indicator value '1' for this method. 4328

Validity Test: 4329

If the input binary string does not begin with bits '001' this decoding method cannot be used. 4330

If the output string contains characters other than digits 0-9 or letters A-F or is of length L > Lmax, 4331
decoding fails. 4332

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 139 of 315

Output: 4333

Create an empty string buffer to receive the output. 4334

Read three bits from the binary input string and check that these match '001', otherwise decoding 4335
fails. Within the binary input string, advance the cursor beyond those leftmost three bits. 4336

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4337

Read bLI bits from the binary input string and convert this unsigned integer value to base 10 value 4338
L, the number of characters that are to be decoded. Within the binary input string, advance the 4339
cursor beyond the bLI length indicator bits. Repeat the follow procedure L times, once per character 4340
to be decoded: 4341

Read the next four bits from the binary input string and advance the cursor beyond the bits that 4342
have just been read. Lookup the four bits in the table above and append the corresponding 4343
character to the output string buffer. 4344

When L characters have been decoded, the contents of the output string buffer is the output of this 4345
decoding method. 4346

14.5.6.3 "Variable-length lower case hexadecimal" 4347

The Variable-length lower case hexadecimal method is used to encode variable-length strings 4348
consisting of digits 0-9 and letters a-f as unsigned binary integers using four bits per character. 4349
This requires knowledge of L, the length of the string to be encoded, as well as Lmax, the maximum 4350
permitted length for such a string. 4351

This method uses the following table to map each character 0-9 a-f to a 4 bit binary string: 4352
Table 14-6 Mapping table for "Variable-length lower case hexadecimal" encoding method 4353

Character 4-bit binary string Character 4-bit binary string

0 0000 8 1000

1 0001 9 1001

2 0010 a 1010

3 0011 b 1011

4 0100 c 1100

5 0101 d 1101

6 0110 e 1110

7 0111 f 1111

14.5.6.3.1 Encoding 4354

Input: 4355

The input to the encoding method is a numeric string of length L consisting only of digits 0-9 or 4356
letters a-f. 4357

Validity Test: 4358

If the input string contains characters other than digits 0-9 or letters a-f or length L > Lmax, 4359
encoding fails. 4360

Output: 4361

Create an empty binary string buffer to receive the output. Append three bits '010' to the binary 4362
string buffer, to set an encoding indicator value of '2'. 4363

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 140 of 315

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4364

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4365
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4366

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4367

Append the binary string representing the length indicator to the binary string buffer. 4368

Working from left to right across the input string, lookup each character in the table above and 4369
append the corresponding four bits to the binary string buffer. Repeat until all L characters of the 4370
input string have been processed. 4371

The contents of the binary string buffer is now the output of this encoding method. 4372

14.5.6.3.2 Decoding 4373

Input: 4374

The input to the encoding method is a binary string whose leftmost three bits are '010', 4375
corresponding to an encoding indicator value '2' for this method. 4376

Validity Test: 4377

If the input binary string does not begin with bits '010' this decoding method cannot be used. 4378

If the output string contains characters other than digits 0-9 or letters a-f or is of length L > Lmax, 4379
decoding fails. 4380

Output: 4381

Create an empty string buffer to receive the output. 4382

Read three bits from the binary input string and check that these match '010', otherwise decoding 4383
fails. Within the binary input string, advance the cursor beyond those leftmost three bits. 4384

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4385

Read bLI bits from the binary input string and convert this unsigned integer value to base 10 value 4386
L, the number of characters that are to be decoded. Within the binary input string, advance the 4387
cursor beyond the bLI length indicator bits. Repeat the follow procedure L times, once per character 4388
to be decoded: 4389

Read the next four bits from the binary input string and advance the cursor beyond the bits that 4390
have just been read. Lookup the four bits in the table above and append the corresponding 4391
character to the output string buffer. 4392

When L characters have been decoded, the contents of the output string buffer is the output of this 4393
decoding method. 4394

14.5.6.4 "Variable-length 6-bit file-safe URI-safe base 64" 4395

The Variable-length file-safe base64 encoding method is used to encode variable-length strings of 4396
digits 0-9, upper case letters A-Z, lower case letters a-z, hyphen or underscore characters using 6 4397
bits per character. This requires knowledge of L, the length of the string to be encoded, as well as 4398
Lmax, the maximum permitted length for such a string. 4399

Figure 14-6 Example value - alphanumeric, encoded as file-safe URI-safe base 64 4400

 4401

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 141 of 315

Table 14-7 Mapping table for "Variable-length 6-bit file-safe URI-safe base 64" encoding method 4402

Character 6-bit binary string Character 6-bit binary
string

A 000000 g 100000

B 000001 h 100001

C 000010 i 100010

D 000011 j 100011

E 000100 k 100100

F 000101 l 100101

G 000110 m 100110

H 000111 n 100111

I 001000 o 101000

J 001001 p 101001

K 001010 q 101010

L 001011 r 101011

M 001100 s 101100

N 001101 t 101101

O 001110 u 101110

P 001111 v 101111

Q 010000 w 110000

R 010001 x 110001

S 010010 y 110010

T 010011 z 110011

U 010100 0 110100

V 010101 1 110101

W 010110 2 110110

X 010111 3 110111

Y 011000 4 111000

Z 011001 5 111001

a 011010 6 111010

b 011011 7 111011

c 011100 8 111100

d 011101 9 111101

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 142 of 315

e 011110 - (hyphen) 111110

f 011111 _ (underscore) 111111

14.5.6.4.1 Encoding 4403

Input: 4404

The input to the encoding method is a string of length L consisting only of digits 0-9 or upper case 4405
letters A-Z, colon, hyphen and full-stop (period/dot). 4406

Validity Test: 4407

If the input string contains characters other than digits 0-9 or upper case letters A-Z, colon, hyphen 4408
and full-stop (period/dot) or length L > Lmax, encoding fails. 4409

Output: 4410

Create an empty binary string buffer to receive the output. Append three bits '011' to the binary 4411
string buffer, to set an encoding indicator value of '3'. 4412

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4413

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4414
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4415

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4416

Append the binary string representing the length indicator to the binary string buffer. 4417

Starting at the beginning of the input string and moving left-to-right, considering each character in 4418
turn until no further characters remain to be encoded, lookup the character in the table below and 4419
append the corresponding set of six bits to the binary string buffer. 4420

The contents of the binary string buffer is now the binary output of this encoding method. 4421

14.5.6.4.2 Decoding 4422

Input: 4423

The input to the encoding method is a binary string whose leftmost three bits are '011', 4424
corresponding to an encoding indicator value '3' for this method. 4425

Validity Test: 4426

If the input binary string does not begin with bits '011' this decoding method cannot be used. 4427

If the output string contains characters other than digits 0-9 or letters A-Z a-z, hyphen or 4428
underscore or is of length L > Lmax, decoding fails. 4429

Output: 4430

Create an empty string buffer to receive the output. 4431

Read three bits from the binary input string and check that these match '011', otherwise decoding 4432
fails. Within the binary input string, advance the cursor beyond those leftmost three bits. 4433

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4434

Read bLI bits from the binary input string and convert this unsigned integer value to base 10 value 4435
L, the number of characters that are to be decoded. Within the binary input string, advance the 4436
cursor beyond the bLI length indicator bits. Repeat the follow procedure L times, once per character 4437
to be decoded: 4438

Read the next six bits from the binary input string and advance the cursor beyond the bits that have 4439
just been read. Lookup the six bits in the table above and append the corresponding character to 4440
the output string buffer. 4441

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 143 of 315

When L characters have been decoded, the contents of the output string buffer is the output of this 4442
decoding method. 4443

14.5.6.5 "Variable-length URN Code 40" 4444

The Variable-length URN Code 40 encoding method is used to encode variable-length strings of 4445
digits 0-9, upper case letters A-Z, colon, hyphen and full-stop (period/dot) using 16 bits for each set 4446
of 3 characters. This requires knowledge of L, the length of the string to be encoded, as well as 4447
Lmax, the maximum permitted length for such a string. 4448

The figure below illustrates the use of the variable-length URN Code 40 method to encode 6 4449
characters. 4450

Figure 14-7 Use of the "Variable-length URN Code 40" method to encode 6 characters 4451

 4452
URN Code 40 uses the following character table to map supportable characters to index values that 4453
are used in the calculation: 4454

Table 14-8 URN Code 40 character table 4455

Character Index Character Index

PAD character 0 T 20

A 1 U 21

B 2 V 22

C 3 W 23

D 4 X 24

E 5 Y 25

F 6 Z 26

G 7 - (hyphen) 27

H 8 . (full stop) 28

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 144 of 315

I 9 : (colon) 29

J 10 0 30

K 11 1 31

L 12 2 32

M 13 3 33

N 14 4 34

O 15 5 35

P 16 6 36

Q 17 7 37

R 18 8 38

S 19 9 39

14.5.6.5.1 Encoding 4456

Input: 4457

The input to the encoding method is a string of length L consisting only of digits 0-9 or upper case 4458
letters A-Z, colon, hyphen and full-stop (period/dot). The maximum permitted length for the value 4459
(Lmax) must also be known. 4460

Validity Test: 4461

If the input string contains characters other than digits 0-9 or upper case letters A-Z, colon, hyphen 4462
and full-stop (period/dot) or length L > Lmax, encoding fails. 4463

Output: 4464

Create an empty binary string buffer to receive the output. Append three bits '101' to the binary 4465
string buffer, to set an encoding indicator value of '5'. 4466

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4467

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4468
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4469

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4470

Append the binary string representing the length indicator to the binary string buffer. 4471

Working from left to right across the input string, consider each successive group of three 4472
characters. If the final group only contains one or two characters, consider the final group to be 4473
appended at the right with two or one pad characters respectively, to reach a total of three 4474
characters. 4475

Within each group of three characters, lookup the corresponding index values for each character. i1 4476
is the index value for the first character, i2 the index for the second character and i3 is the index for 4477
the third character. Calculate r = (1600i1 + 40i2 + i3 + 1). Convert r to binary and if necessary, 4478
left-pad with bits of '0' to reach a total of 16 bits. Append this 16 bit string to the binary string 4479
buffer and repeat this process for the next group of three characters until no further groups remain 4480
to be processed. 4481

The contents of the binary string buffer is now the binary output of this encoding method. 4482

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 145 of 315

14.5.6.5.2 Decoding 4483

Input: 4484

The input to the decoding method is a binary string. The maximum permitted length for the value (4485
Lmax) must also be known. 4486

Validity Test: 4487

If the leftmost three bits of the binary input string are not '101' then this method cannot be used 4488
because the encoding indicator does not correspond to this method. 4489

If the output string contains characters other than digits 0-9 or upper case letters A-Z, colon, 4490
hyphen and full-stop (period/dot) or length L > Lmax, encoding fails. 4491

Output: 4492

Create an empty string buffer to receive the output. Working from left to right across the binary 4493
input string, read the first three bits and check that these are '101', the encoding indicator value for 4494
this method. Otherwise, this method cannot be used. 4495

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4496

Read bLI bits as the length indicator and convert that unsigned binary integer to a base 10 value L, 4497
the number of characters to be read. Move the cursor of the binary string past the three-bit 4498
encoding indicator '101' and the length indicator of bLI bits to begin reading the encoded data. 4499

If L is exactly divisible by 3, the number of iterations n = L/3, otherwise n = ceiling(L/3). 4500

Repeat the following procedure n times, reading and processing 16 bits from the input binary string 4501
on each iteration and advancing the cursor accordingly: 4502

For each iteration, convert the 16 bit string to a base 10 unsigned integer r. 4503

Calculate i3 = (r–1)%40 where % is the modulo division operator and (r–1)%40 is the 4504
remainder of (r–1) after division by 40. 4505

Calculate i2 = ((r–1 – i3)/40)%40 4506

Calculate i1 = ((r–1 – i3 – 40i2)/1600) 4507

Lookup i1 in the table above and append the corresponding character to the output string buffer. 4508

If i2 > 0, lookup i2 in the table above and append the corresponding character to the output string 4509
buffer. 4510

If i3 > 0, lookup i3 in the table above and append the corresponding character to the output string 4511
buffer. 4512

After all n iterations have been completed, the contents of the output string buffer are considered to 4513
be the output of this decoding method. 4514

14.5.6.6 "Variable-length 7-bit ASCII" 4515

The Variable-length 7-bit ASCII encoding method is used to encode variable-length strings of 4516
characters within the 82-character GS1 invariant subset of ISO/IEC 646 [ISO646] or within the 39 4517
character GS1 invariant subset of ISO/IEC 646 using 7 bits per character. This requires knowledge 4518
of L, the length of the string to be encoded, as well as Lmax, the maximum permitted length for such 4519
a string. 4520

This method uses the following character table, mapping characters to 7 bit sequences. 4521
Table 14-9 Character table for "Variable-length 7-bit ASCII" encoding method 4522

Character 7-bit binary
string

 Character 7-bit binary
string

! 0100001 M 1001101

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 146 of 315

Character 7-bit binary
string

 Character 7-bit binary
string

" 0100010 N 1001110

0100011 O 1001111

% 0100101 P 1010000

& 0100110 Q 1010001

' 0100111 R 1010010

(0101000 S 1010011

) 0101001 T 1010100

* 0101010 U 1010101

+ 0101011 V 1010110

, 0101100 W 1010111

- 0101101 X 1011000

. 0101110 Y 1011001

/ 0101111 Z 1011010

0 0110000 _ 1011111

1 0110001 a 1100001

2 0110010 b 1100010

3 0110011 c 1100011

4 0110100 d 1100100

5 0110101 e 1100101

6 0110110 f 1100110

7 0110111 g 1100111

8 0111000 h 1101000

9 0111001 i 1101001

: 0111010 j 1101010

; 0111011 k 1101011

< 0111100 l 1101100

= 0111101 m 1101101

> 0111110 n 1101110

? 0111111 o 1101111

A 1000001 p 1110000

B 1000010 q 1110001

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 147 of 315

Character 7-bit binary
string

 Character 7-bit binary
string

C 1000011 r 1110010

D 1000100 s 1110011

E 1000101 t 1110100

F 1000110 u 1110101

G 1000111 v 1110110

H 1001000 w 1110111

I 1001001 x 1111000

J 1001010 y 1111001

K 1001011 z 1111010

L 1001100

The following figure provides a worked example to illustrate this method. 4523
Figure 14-8 Example of alphanumeric encoded as 7-bit ASCII 4524

 4525

14.5.6.6.1 Encoding 4526

Input: 4527

The input to the encoding method is a string of length L consisting only of characters appearing 4528
within the 82-character GS1 invariant subset of ISO/IEC 646 or within the 39 character GS1 4529
invariant subset of ISO/IEC 646. See GS1 General Specifications, Figures 7.11-1 and 7.11-2. 4530

Validity Test: 4531

If the input string contains characters other than those appearing within the 82-character GS1 4532
invariant subset of ISO/IEC 646 or within the 39 character GS1 invariant subset of ISO/IEC 646 or 4533
length L > Lmax, encoding fails. 4534

Output: 4535

Create an empty binary string buffer to receive the output. Append three bits '100' to the binary 4536
string buffer, to set an encoding indicator value of '4'. 4537

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4538

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4539
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4540

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4541

Append the binary string representing the length indicator to the binary string buffer. 4542

Starting at the beginning of the input string and moving left-to-right, considering each character in 4543
turn until no further characters remain to be encoded, lookup the character in the table below and 4544
append the corresponding set of seven bits to the binary string buffer. 4545

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 148 of 315

The contents of the binary string buffer is now the binary output of this encoding method. 4546

14.5.6.6.2 Decoding 4547

Input: 4548

The input to the decoding method is a binary string. The maximum permitted length for the value (4549
Lmax) must also be known. 4550

Validity Test: 4551

If the leftmost three bits of the binary input string are not '100' then this method cannot be used 4552
because the encoding indicator does not correspond to this method. 4553

If the output string contains characters other than digits 0-9 or letters A-Z a-z, 4554
h148ninitialiundescore or if its length L > Lmax, decoding fails. 4555

Output: 4556

Create an empty string buffer to receive the output. Working from left to right across the binary 4557
input string, read the first three bits and check that these are '100', the encoding indicator value for 4558
this method. Otherwise, this method cannot be used. 4559

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4560

Read bLI bits from the binary input string and convert this unsigned integer value to base 10 value 4561
L, the number of characters that are to be decoded. Within the binary input string, advance the 4562
cursor beyond the leftmost encoding indicator bits '100' and the bLI length indicator bits. Repeat the 4563
follow procedure L times, once per character to be decoded: 4564

Read the next seven bits from the binary input string and advance the cursor beyond the bits that 4565
have just been read. Lookup the seven bits in the table above and append the corresponding 4566
character to the output string buffer. 4567

When L characters have been decoded, the contents of the output string buffer is the output of this 4568
decoding method. 4569

14.5.7 "Single data bit" 4570

GS1 Application Identifiers (4321), (4322), (4323) use a single digit of '0' or '1' to represent a single 4571
bit Boolean value in which '0' indicates false, whereas '1' indicates true. 4572

14.5.7.1 Encoding 4573

Input: 4574

The input to the encoding method is one decimal digit, 0 ("false") or 1 ("true"). 4575

Validity Test: 4576

The input must consist of exactly one decimal digit, which must be 0 or 1, 4577

Output: 4578

The output is a lone bit, 0 or 1. 4579

14.5.7.2 Decoding 4580

Input: 4581

The input to the encoding method is a lone bit, 0 or 1. 4582

Validity Test: 4583

The input must consist of exactly one bit, otherwise the encoding fails. 4584

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 149 of 315

Output: 4585

If the single bit is 0, it is decoded as decimal value 0. If the single bit is 1, it is decoded as decimal 4586
value 1. 0 = false, 1 = true. 4587

14.5.8 "6-digit date YYMMDD" 4588

Several GS1 Application Identifiers express a date value as a six-digit numeric string formatted as 4589
YYMMDD, in which YY represents the year, MM represents the month and DD represents the day of 4590
the month. Such a numeric string value can be efficiently encoded using 16 bits as shown in the 4591
figure below, using 7 bits to encode YY, 4 bits to encode MM and 5 bits to encode DD: 4592

Figure 14-9 Efficient encoding of YYMMDD date value using 16 bits 4593

 4594

14.5.8.1 Encoding 4595

Input: 4596

The input to the encoding method is a 6-digit numeric string representing a date value in the format 4597
YYMMDD, as expected in the GS1 General Specifications. 4598

Validity Test: 4599

The 6-digit numeric string must only consist of digits 0-9 and is further constrained to be a plausible 4600
date value, meaning that the third and fourth digits are always in the range 01-12 and the fifth and 4601
sixth digits are always in the range 00-31 and do not indicate a day-of-month value that is greater 4602
than the number of days in the month indicated by the third and fourth Digits. e.g. if the third and 4603
fourth digits are "09" then a value of "31" for the fifth and sixth digits would be invalid because 4604
September can only contain 30 days. 4605

Output: 4606

Create an empty binary string buffer to receive the output. 4607

Consider the input string as pairs of digits in which the first two digits are YY, the next two digits are 4608
MM and the final two digits are DD. 4609

Convert YY to a decimal integer (e.g. '22' 22) and convert this to an unsigned binary value, then 4610
if the resulting binary string for YY is less than seven bits in length, pad to the left with bits set to '0' 4611
to reach a total of seven bits. Append these seven bits to the binary string buffer. 4612

Convert MM to a decimal integer (e.g. '05' 5) and convert this to an unsigned binary value, then 4613
if the resulting binary string for MM is less than four bits in length, pad to the left with bits set to '0' 4614
to reach a total of four bits. Append these four bits to the binary string buffer. 4615

Convert DD to a decimal integer (e.g. '31' 31) and convert this to an unsigned binary value, then 4616
if the resulting binary string for DD is less than five bits in length, pad to the left with bits set to '0' 4617
to reach a total of five bits. Append these five bits to the binary string buffer. 4618

The binary string buffer should now consist of a total of 16 bits and should be considered as the 4619
output of this encoding method. 4620

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 150 of 315

14.5.8.2 Decoding 4621

Input: 4622

The input to the decoding method is a binary string of 16 bits. 4623

Validity Test: 4624

The sixteen bits will be decoded as a 6-digit numeric string representing a date formatted as 4625
YYMMDD. After decoding, the third and fourth digits must always be in the range 01-12 and the 4626
fifth and sixth digits must always be in the range 00-31 and must not indicate a day-of-month value 4627
that is greater than the number of days in the month indicated by the third and fourth Digits. e.g. if 4628
the third and fourth digits are "09" then a value of "31" for the fifth and sixth digits would be invalid 4629
because September can only contain 30 days. 4630

Output: 4631

Create an empty string buffer to receive the six-digit output value YYMMDD. 4632

Treat the sixteen bits as an encoding of the date value. 4633

Working from left to right, read the first 7 bits as unsigned binary integer y, then convert to a base 4634
10 value YY, padding to the left with a single '0' digit if the initial result after conversion to base 10 4635
was in the range 0-9. 4636

Read the next 4 bits as unsigned binary integer m, then convert to a base 10 value MM, padding to 4637
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4638

Read the next 5 bits as unsigned binary integer d, then convert to a base 10 value DD, padding to 4639
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4640

Check that MM is within the range 01-12 and that DD is within the range 00-31 and does not exceed 4641
the number of days in the month for the month indicated by MM. Otherwise decoding fails. 4642

Concatenate YY MM and DD in sequence as the output value YYMMDD. 4643

14.5.9 "10-digit date+time YYMMDDhhmm" 4644

GS1 Application Identifiers (4324), (4325), (7003) use a 10-digit numeric string to express a date 4645
format YYMMDDhhmm in which YY represents the year, MM represents the month, DD represents 4646
the day of the month, hh represents the hour of the day and mm represents the minutes. Such a 4647
numeric string value can be efficiently encoded using 27 bits as shown in the figure below, using 7 4648
bits to encode YY, 4 bits to encode MM, 5 bits to encode DD, 5 bits to encode hh and 6 bits to 4649
encode mm: 4650

Figure 14-10 Encoding of YYMMDDhhmm date time value using 27 bits 4651

 4652

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 151 of 315

14.5.9.1 Encoding 4653

Input: 4654

The input to the encoding method is a 10-digit numeric string representing a date value in the 4655
format YYMMDDhhmm, as expected in the GS1 General Specifications. 4656

Validity Test: 4657

The 10-digit numeric string must only consist of digits 0-9 and is further constrained to be a 4658
plausible date+time value, meaning that the third and fourth digits are always in the range 01-12 4659
and the fifth and sixth digits are always in the range 00-31 and do not indicate a day-of-month 4660
value that is greater than the number of days in the month indicated by the third and fourth Digits. 4661
e.g. if the third and fourth digits are "09" then a value of "31" for the fifth and sixth digits would be 4662
invalid because September can only contain 30 days. The seventh and eight digits must be in the 4663
range 00-24, while the ninth and tenth digits must be in the range 00-59. 4664

Output: 4665

Create an empty binary string buffer to receive the output. 4666

Consider the input string as pairs of digits in which the first two digits are YY, the next two digits are 4667
MM, followed by two digits DD, a further two digits hh and a final two digits mm. 4668

Convert YY to a decimal integer (e.g. '22' 22) and convert this to an unsigned binary value, then 4669
if the resulting binary string for YY is less than seven bits in length, pad to the left with bits set to '0' 4670
to reach a total of seven bits. Append these seven bits to the binary string buffer. 4671

Convert MM to a decimal integer (e.g. '05' 5) and convert this to an unsigned binary value, then 4672
if the resulting binary string for MM is less than four bits in length, pad to the left with bits set to '0' 4673
to reach a total of four bits. Append these four bits to the binary string buffer. 4674

Convert DD to a decimal integer (e.g. '31' 31) and convert this to an unsigned binary value, then 4675
if the resulting binary string for DD is less than five bits in length, pad to the left with bits set to '0' 4676
to reach a total of five bits. Append these five bits to the binary string buffer. 4677

Convert hh to a decimal integer (e.g. '07' 7) and convert this to an unsigned binary value, then if 4678
the resulting binary string for hh is less than five bits in length, pad to the left with bits set to '0' to 4679
reach a total of five bits. Append these five bits to the binary string buffer. 4680

Convert mm to a decimal integer (e.g. '59' 59) and convert this to an unsigned binary value, 4681
then if the resulting binary string for mm is less than six bits in length, pad to the left with bits set 4682
to '0' to reach a total of six bits. Append these six bits to the binary string buffer. 4683

The binary string buffer should now consist of a total of 27 bits and should be considered as the 4684
output of this encoding method. 4685

14.5.9.2 Decoding 4686

Input: 4687

The input to the decoding method is a binary string of 27 bits. 4688

Validity Test: 4689

The sixteen bits will be decoded as a 10-digit numeric string representing a date formatted as 4690
YYMMDDhhmm. After decoding, the third and fourth digits must always be in the range 01-12 and 4691
the fifth and sixth digits must always be in the range 00-31 and must not indicate a day-of-month 4692
value that is greater than the number of days in the month indicated by the third and fourth Digits. 4693
e.g. if the third and fourth digits are "09" then a value of "31" for the fifth and sixth digits would be 4694
invalid because September can only contain 30 days. The seventh and eight digits must be in the 4695
range 00-24, while the ninth and tenth digits must be in the range 00-59. 4696

Output: 4697

Create an empty string buffer to receive the ten-digit output value YYMMDDhhmm. 4698

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 152 of 315

Treat the 27 bits as an encoding of the date+time value. 4699

Working from left to right, read the first 7 bits as unsigned binary integer y, then convert to a base 4700
10 value YY, padding to the left with a single '0' digit if the initial result after conversion to base 10 4701
was in the range 0-9. 4702

Read the next 4 bits as unsigned binary integer m, then convert to a base 10 value MM, padding to 4703
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4704

Read the next 5 bits as unsigned binary integer d, then convert to a base 10 value DD, padding to 4705
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4706

Read the next 5 bits as unsigned binary integer h, then convert to a base 10 value hh, padding to 4707
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4708

Read the next 6 bits as unsigned binary integer n, then convert to a base 10 value mm, padding to 4709
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4710

Check that MM is within the range 01-12 and that DD is within the range 00-31 and does not exceed 4711
the number of days in the month for the month indicated by MM. Otherwise decoding fails. 4712

Check that hh is within the range 00-24 and that mm is within the range 00-59. If hh is '24' then 4713
mm must be '00' otherwise decoding fails 4714

Concatenate YY MM DD hh mm in sequence as the output value YYMMDDhhmm. 4715

14.5.10 "Variable-format date / date range" 4716

GS1 Application Identifier (7007) expresses either a harvest date or a harvest date range (indicating 4717
a start date then an end date). A single YYMMDD date value can be efficiently encoded using 16 4718
bits, whereas a date range consisting of a start date and end date will require 32 bits. In order to 4719
distinguish between these two possibilities, this method uses a single bit format indicator as shown 4720
in the figure below. If that single bit format indicator is set to 0, a single date value YYMMDD is 4721
expected. If the single bit format indicator is set to 1, a pair of date values YYMMDD YYMMDD is 4722
expected, to express a date range. 4723

Figure 14-11 Encoding of "Variable-format date / date range" 4724

 4725

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 153 of 315

14.5.10.1 Encoding 4726

Input: 4727

The input to the encoding method is either a 6-digit numeric string representing a date value in the 4728
format YYMMDD, or a 12 digit numeric string representing a date range in the format 4729
YYMMDDYYMMDD as expected in the GS1 General Specifications. 4730

Validity Test: 4731

A 6-digit numeric string must only consist of digits 0-9 and is further constrained to be a plausible 4732
date value, meaning that the third and fourth digits are always in the range 01-12 and the fifth and 4733
sixth digits are always in the range 00-31 and do not indicate a day-of-month value that is greater 4734
than the number of days in the month indicated by the third and fourth Digits. e.g. if the third and 4735
fourth digits are "09" then a value of "31" for the fifth and sixth digits would be invalid because 4736
September can only contain 30 days. A 12-digit numeric string must only consist of digits 0-9 and 4737
both the first six digits and last six digits are further constrained to be a plausible date value, as 4738
previously explained. 4739

Output: 4740

Create an empty binary string buffer to receive the output. 4741

If the input is a 6-digit string in the format YYMMDD, append a single bit of '0' to the binary string 4742
buffer. If the input is a 12-digit string in the format YYMMDD, append a single bit of '1' to the 4743
binary string buffer. 4744

Perform the following procedure once if the input is a 6-digit string YYMMDD or perform it twice, 4745
with each set of six digits YYMMDD for the date range if the input is a 12-digit string 4746
YYMMDDYYMMDD. 4747

Consider the input string as pairs of digits in which the first two digits are YY, the next two digits are 4748
MM and the final two digits are DD. 4749

Convert YY to a decimal integer (e.g. '22' 22) and convert this to an unsigned binary value, then 4750
if the resulting binary string for YY is less than seven bits in length, pad to the left with bits set to '0' 4751
to reach a total of seven bits. Append these seven bits to the binary string buffer. 4752

Convert MM to a decimal integer (e.g. '05' 5) and convert this to an unsigned binary value, then 4753
if the resulting binary string for MM is less than four bits in length, pad to the left with bits set to '0' 4754
to reach a total of four bits. Append these four bits to the binary string buffer. 4755

Convert DD to a decimal integer (e.g. '31' 31) and convert this to an unsigned binary value, then 4756
if the resulting binary string for DD is less than five bits in length, pad to the left with bits set to '0' 4757
to reach a total of five bits. Append these five bits to the binary string buffer. 4758

The binary string buffer should now consist of a total of 17 bits (for a 6-digit input of YYMMDD) or 4759
33 bits (for a 12-digit input of YYMMDDYYMMDD) and should be considered as the output of this 4760
encoding method. 4761

14.5.10.2 Decoding 4762

Input: 4763

The input to the decoding method is a binary string of 17 bits or 33 bits, of which the first bit is a 4764
date format indicator, where '0' indicates that 16 bits follow, to be decoded as a 6-digit date string 4765
YYMMDD, whereas '1' indicates that 32 bits follow, to be decoded as a 12-digit date range string 4766
YYMMDDYYMMDD. 4767

Validity Test: 4768

Each set of sixteen bits will be decoded as a 6-digit numeric string representing a date formatted as 4769
YYMMDD. After decoding, the third and fourth digits must always be in the range 01-12 and the 4770
fifth and sixth digits must always be in the range 00-31 and must not indicate a day-of-month value 4771
that is greater than the number of days in the month indicated by the third and fourth Digits. e.g. if 4772

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 154 of 315

the third and fourth digits are "09" then a value of "31" for the fifth and sixth digits would be invalid 4773
because September can only contain 30 days. 4774

Output: 4775

Create an empty string buffer to receive the six-digit output value YYMMDD or the twelve-digit 4776
output value YYMMDDYYMMDD. 4777

Read the left-most bit of the binary input string and move the cursor beyond it, to begin reading 4778
data. If the single bit value is '0', perform the following procedure once. If the single bit value is 4779
'1', perform the following procedure twice. 4780

Treat the next sixteen bits as an encoding of a date value. 4781

Working from left to right, read the first 7 bits as unsigned binary integer y, then convert to a base 4782
10 value YY, padding to the left with a single '0' digit if the initial result after conversion to base 10 4783
was in the range 0-9. 4784

Read the next 4 bits as unsigned binary integer m, then convert to a base 10 value MM, padding to 4785
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4786

Read the next 5 bits as unsigned binary integer d, then convert to a base 10 value DD, padding to 4787
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4788

Check that MM is within the range 01-12 and that DD is within the range 00-31 and does not exceed 4789
the number of days in the month for the month indicated by MM. Otherwise decoding fails. 4790

Concatenate YY MM and DD in sequence as the output value YYMMDD and append this to the output 4791
string buffer. 4792

If the initial bit of the binary input string was set to '1', ensure that the procedure above has been 4793
performed twice, for both the start date and the end date, both formatted as YYMMDD. 4794

The output string buffer should now consist of either a 6-digit numeric string representing a date 4795
formatted as YYMMDD or a 12-digit numeric string representing a date range formatted as 4796
YYMMDDYYMMDD. This is the output of this decoding method. 4797

14.5.11 "Variable-precision date+time" 4798

GS1 Application Identifier (8008) expresses a production date and time with a choice of three 4799
formats that differ in the precision of the time value,either hours, hours and minutes or hours, 4800
minutes and seconds, as shown in the figure below. 4801

GS1 Application Identifier (7011) expresses a test-by date, either as a date in YYMMDD format or as 4802
a date-time that also expresses hours and minutes, 4803

A numeric string representing a date formatted as YYMMDD can be encoded in 16 bits. 4804
A numeric string representing a date+hours formatted as YYMMDDhh can be encoded in 21 bits. 4805
A numeric string representing a date+hours+minutes formatted as YYMMDDhhmm can be encoded 4806
in 27 bits. 4807
A numeric string representing a date+hours+minutes+seconds formatted as YYMMDDhhmmss can 4808
be encoded in 33 bits. 4809

To distinguish between these four alternatives, the binary encoding begins with a two-bit format 4810
indicator whose value is '00' for YYMMDDhh, '01' for YYMMDDhhmm, '10' for YYMMDDhhmmss or 4811
'11' for YYMMDD. 4812

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 155 of 315

Figure 14-12 Encoding of "Variable-precision date+time" 4813

 4814

14.5.11.1 Encoding 4815

Input: 4816

The input to the encoding method is either a 6-digit numeric string representing a date in the format 4817
YYMMDD, a 8-digit numeric string representing a date+time value in the format YYMMDDhh, a 10-4818
digit numeric string representing a date+time value in the format YYMMDDhhmm or a 12-digit 4819
numeric string representing a date+time value in the format YYMMDDhhmmss, as expected in the 4820
GS1 General Specifications. 4821

Validity Test: 4822

The numeric string must only consist of digits 0-9 and is further constrained to be a plausible date 4823
or date+time value, meaning that the third and fourth digits are always in the range 01-12 and the 4824
fifth and sixth digits are always in the range 00-31 and do not indicate a day-of-month value that is 4825
greater than the number of days in the month indicated by the third and fourth Digits. e.g. if the 4826
third and fourth digits are "09" then a value of "31" for the fifth and sixth digits would be invalid 4827
because September can only contain 30 days. The seventh and eight digits (if present) must be in 4828
the range 00-24, while the ninth and tenth digits (if present) must be in the range 00-59 and the 4829
eleventh and twelfth digits (if present) must also be in the range 00-59. 4830

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 156 of 315

Output: 4831

Create an empty binary string buffer to receive the output. 4832

If the input string was a 6-digit numeric string formatted as YYMMDD, append '11' to the binary 4833
string buffer. If the input string was a 8-digit numeric string formatted as YYMMDDhh, append '00' 4834
to the binary string buffer. If the input string was 10-digit numeric string formatted as 4835
YYMMDDhhmm, append '01' to the binary string buffer. If the input string was 12-digit numeric 4836
string formatted as YYMMDDhhmmss, append '10' to the binary string buffer. 4837

Consider the input string as pairs of digits in which the first two digits are YY, the next two digits are 4838
MM, followed by two digits DD, then (if present) a further two digits hh and (if present) two digits 4839
mm and (if present) two digits ss. 4840

Convert YY to a decimal integer (e.g. '22' 22) and convert this to an unsigned binary value, then 4841
if the resulting binary string for YY is less than seven bits in length, pad to the left with bits set to '0' 4842
to reach a total of seven bits. Append these seven bits to the binary string buffer. 4843

Convert MM to a decimal integer (e.g. '05' 5) and convert this to an unsigned binary value, then 4844
if the resulting binary string for MM is less than four bits in length, pad to the left with bits set to '0' 4845
to reach a total of four bits. Append these four bits to the binary string buffer. 4846

Convert DD to a decimal integer (e.g. '31' 31) and convert this to an unsigned binary value, then 4847
if the resulting binary string for DD is less than five bits in length, pad to the left with bits set to '0' 4848
to reach a total of five bits. Append these five bits to the binary string buffer. 4849

If present, convert hh to a decimal integer (e.g. '07' 7) and convert this to an unsigned binary 4850
value, then if the resulting binary string for hh is less than five bits in length, pad to the left with 4851
bits set to '0' to reach a total of five bits. Append these five bits to the binary string buffer. 4852

If present, convert mm to a decimal integer (e.g. '59' 59) and convert this to an unsigned binary 4853
value, then if the resulting binary string for mmis less than six bits in length, pad to the left with 4854
bits set to '0' to reach a total of six bits. Append these six bits to the binary string buffer. 4855

If present, convert ss to a decimal integer (e.g. '59' 59) and convert this to an unsigned binary 4856
value, then if the resulting binary string for ss is less than six bits in length, pad to the left with bits 4857
set to '0' to reach a total of six bits. Append these six bits to the binary string buffer. 4858

The binary string buffer should now consist of a total of either 18 bits (for a 6-digit input YYMMDD) 4859
or 23 bits (for an 8-digit input YYMMDDhh) or 29 bits (for a 10-digit input YYMMDDhhmm) or 35 bits 4860
(for a 12-digit input YYMMDDhhmmss) and should be considered as the output of this encoding 4861
method. 4862

14.5.11.2 Decoding 4863

Input: 4864

The input to the decoding method is a binary string of either 18, 23, 29 or 35 bits. 4865

Validity Test: 4866

The leftmost two bits are a date+time format indicator. As shown in Figure 14-12, the value of 4867
these two bits determine how many further bits should be read and how they should be interpreted. 4868

In all situations, the next 16 bits will be decoded as a 6-digit numeric string representing a date 4869
formatted as YYMMDD, using 7 bit for YY, followed by 4 bits for MM, then 5 bits for DD If the initial 4870
two bits for the date+time format indicator have a value other than '11', further groups of bits shall 4871
be read and interpreted as follows, in sequence: 5 bits for hh, 6 bits for mm and 6 bits for ss. 4872

After decoding the initial 16 bits after the two-bit indicator, the third and fourth digits must always 4873
be in the range 01-12 for MM and the fifth and sixth digits must always be in the range 00-31 for 4874
DD and must not indicate a day-of-month value that is greater than the number of days in the 4875
month indicated by the third and fourth digits. e.g. if the third and fourth digits are "09" then a 4876
value of "31" for the fifth and sixth digits would be invalid because September can only contain 30 4877
days. The seventh and eight digits (if present) must be in the range 00-24 for hh, while the ninth 4878
and tenth digits (if present) must be in the range 00-59 for mm and the eleventh and twelfth digits 4879
(if present) must also be in the range 00-59 for ss. 4880

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 157 of 315

Output: 4881

Create an empty string buffer to receive the output value. 4882

Read the leftmost two bits of the binary input string and move the cursor beyond those initial two 4883
bits. If the value is '00', the next 21 bits will be decoded to an 8-digit numeric string YYMMDDhh. 4884
If the value is '01', the next 27 bits will be decoded to a 10-digit numeric string YYMMDDhhmm. 4885
If the value is '10', the next 33 bits will be decoded to a 12-digit numeric string YYMMDDhhmmss. 4886
If the value is '11', the next 16 bits will be decoded to a 6-digit numeric string YYMMDD. 4887

Working from left to right, read the first 7 bits as unsigned binary integer y, then convert to a base 4888
10 value YY, padding to the left with a single '0' digit if the initial result after conversion to base 10 4889
was in the range 0-9. 4890

Read the next 4 bits as unsigned binary integer m, then convert to a base 10 value MM, padding to 4891
the left with a single '0' digit if the initial result after conversion to base 10 was in the range 0-9. 4892

If present, read the next 5 bits as unsigned binary integer d, then convert to a base 10 value DD, 4893
padding to the left with a single '0' digit if the initial result after conversion to base 10 was in the 4894
range 0-9. 4895

If present, read the next 5 bits as unsigned binary integer h, then convert to a base 10 value hh, 4896
padding to the left with a single '0' digit if the initial result after conversion to base 10 was in the 4897
range 0-9. 4898

If present, read the next 6 bits as unsigned binary integer n, then convert to a base 10 value mm, 4899
padding to the left with a single '0' digit if the initial result after conversion to base 10 was in the 4900
range 0-9. 4901

If present, read the next 6 bits as unsigned binary integer s, then convert to a base 10 value ss, 4902
padding to the left with a single '0' digit if the initial result after conversion to base 10 was in the 4903
range 0-9. 4904

Check that MM is within the range 01-12 and that DD is within the range 00-31 and does not exceed 4905
the number of days in the month for the month indicated by MM. Otherwise decoding fails. 4906

Check that hh (if present) is within the range 00-24 and that mm (if present) is within the range 00-4907
59 and that ss (if present) is also within the range 00-59. If hh is '24' then both mm and ss (if 4908
present) must be '00', otherwise decoding fails. 4909

If the initial two-bit date indicator was '00', concatenate YY MM DD hh in sequence as the output 4910
value YYMMDDhh. 4911

If the initial two-bit date indicator was '01', concatenate YY MM DD hh mm in sequence as the 4912
output value YYMMDDhhmm. 4913

If the initial two-bit date indicator was '10', concatenate YY MM DD hh mm ss in sequence as the 4914
output value YYMMDDhhmmss. 4915

If the initial two-bit date indicator was '11', concatenate YY MM DD in sequence as the output value 4916
YYMMDD. 4917

 4918

14.5.12 "Country code (ISO 3166-1 alpha-2)" 4919

The Country code (ISO 3166-1 alpha-2) encoding method is used to encode two-letter strings of 4920
upper case letters A-Z using 6 bits per character, using the file-safe URI-safe base64 alphabet for 4921
the binary encoding of each letter. 4922

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 158 of 315

Figure 14-13 ISO 3166-1 alpha-2 country code encoded as file-safe URI base 64 4923

 4924
 4925

Table 14-10 Encoding table for "Country code (ISO 3166-1 alpha-2)" 4926

Character 6-bit binary string Character 6-bit binary
string

A 000000 N 001101

B 000001 O 001110

C 000010 P 001111

D 000011 Q 010000

E 000100 R 010001

F 000101 S 010010

G 000110 T 010011

H 000111 U 010100

I 001000 V 010101

J 001001 W 010110

K 001010 X 010111

L 001011 Y 011000

M 001100 Z 011001

14.5.12.1 Encoding 4927

Input: 4928

The input to the encoding method is a string of two upper case letters A-Z. 4929

Validity Test: 4930

If the input string contains characters other than upper case letters A-Z or is not exactly two 4931
characters in length, encoding fails. 4932

Output: 4933

Create an empty binary string buffer to receive the output. 4934

Lookup the first character in the table above and append the corresponding set of six bits to the 4935
binary string buffer. 4936

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 159 of 315

Lookup the second character in the table above and append the corresponding set of six bits to the 4937
binary string buffer. 4938

The contents of the binary string buffer is now the binary output of this encoding method. 4939

14.5.12.2 Decoding 4940

Input: 4941

The input to the encoding method is a binary string of 12 bits. 4942

Validity Test: 4943

If the output string contains characters other than upper case letters A-Z, decoding fails. 4944

Output: 4945

Create an empty string buffer to receive the output. 4946

Read the first six bits from the binary input string. Lookup the six bits in the table above and 4947
append the corresponding character to the output string buffer. 4948

Read the next (final) six bits from the binary input string. Lookup the six bits in the table above and 4949
append the corresponding character to the output string buffer. 4950

The contents of the output string buffer is the output of this decoding method. 4951

14.5.13 "Variable-length numeric string without encoding indicator" 4952

The 'Variable-length numeric string without encoding indicator' encoding method is used to encode 4953
variable-length numeric strings as unsigned binary integers using the minimum number of bits. 4954

It is very similar to the method " (§14.5.6.1) option within "Variable-length alphanumeric (§14.5.6) 4955
but is used in situations where the value is defined within the GS1 General Specifications to be 4956
strictly numeric rather than alphanumeric, so no encoding indicator is used within this method. 4957

It preserves leading zeros, since the decoding method is required to left-pad the decoded integer to 4958
the number of digits indicated by the length indicator that was encoded. This method requires 4959
knowledge of L, the length of the string to be encoded, as well as Lmax, the maximum permitted 4960
length for such a string. 4961

Note: this is also similar to the "Fixed-Bit-Length Numeric String"method (§14.5.2) except that the 4962
length is not fixed and the binary value is appended after an appropriate length indicator (but no 4963
encoding indicator). 4964

14.5.13.1 Encoding 4965

Input: 4966

The input to the encoding method is a numeric string of length L consisting only of digits 0-9. 4967

Validity Test: 4968

If the input string contains characters other than digits 0-9 or length L > Lmax, encoding fails. 4969

Output: 4970

Create an empty binary string buffer to receive the output. 4971

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4972

Convert the actual length L from a base 10 integer to a binary value, then if necessary, pad to the 4973
left with bits of '0' to reach a total length bLI for the binary string representing the length indicator. 4974

If Lmax = 1, the binary string representing the length indicator is empty, of zero length. 4975

Append the binary string representing the length indicator to the binary string buffer. 4976

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 160 of 315

Convert the input string of L digits 0-9 to a base 10 integer then convert this to an unsigned binary 4977
integer, v. 4978

Calculate bv, the number of bits for expressing the value either via a lookup of L in table B and 4979
reading the value in the column titled 'Integer encoding' or using the following formula: 4980
 4981
bv = ceiling(L*log(10)/log(2)) 4982

If necessary, pad the binary string v with bits of '0' to reach a total length bv for the binary string 4983
representing the numeric string value. 4984

After any necessary padding, append binary string v (of length bv) to the binary string buffer. 4985

The contents of the binary string buffer is now the binary output of this encoding method. 4986

14.5.13.2 Decoding 4987

Input: 4988

The input to the decoding method is a binary string. 4989

Validity Test: 4990

If the output string contains characters other than digits 0-9 or if length L > Lmax, decoding fails. 4991

Output: 4992

Create an empty binary string buffer to receive the output. 4993

Lookup bLI, the number of bits for expressing the length indicator in Table F. 4994

Read the next bLI bits of the binary input string as the length indicator and convert this binary value 4995
to an unsigned base 10 integer L, the number of characters that are encoded. Within the binary 4996
input string, move the cursor past the bLI length indicator bits to begin decoding the actual value. 4997

Calculate bv, the number of bits for expressing the value either via a lookup of L in table B and 4998
reading the value in the column titled 'Integer encoding' or using the following formula: 4999
 5000
bv = ceiling(L*log(10)/log(2)) 5001

Read the next bv bits from the binary string and convert this to an unsigned base 10 integer V. 5002

Convert V to a numeric string. If V is fewer than L digits in length, left-pad V with digits of '0' to 5003
reach a total of L digits. The resulting L-digit numeric string value V (with any necessary left-5004
padding) is the output of this decoding method. 5005

14.5.14 "Optional minus sign in 1 bit" 5006

GS1 Application Identifiers (4330), (4331), (4332), (4333) express a 6 digit value for 5007
maximum/minimum temperature in hundredths of degrees Celsius or Fahrenheit and use an 5008
optional trailing minus sign to indicate if the temperature is negative. 5009

To support efficient encoding of the optional trailing minus sign, this method uses a single bit value 5010
in which '0' indicates an empty string (used for positive temperature values in the Celsius and 5011
Fahrenheit scales), whereas '1' indicates the presence of a trailing minus sign (used for negative 5012
temperature values in the Celsius and Fahrenheit scales). 5013

14.5.14.1 Encoding 5014

Input: 5015

The input to the encoding method is a string, either the empty string "" or a single minus/hyphen 5016
character "-". The empty string will be mapped to a single bit with value 0. The single 5017
minus/hyphen character will be mapped to a single bit with value 1 5018

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 161 of 315

Validity Test: 5019

The input must consist of either the empty string "" or a single minus/hyphen character "-" 5020

Output: 5021

The output is a single bit, 0 or 1. 5022

If the input is the empty string "", the output shall be a single bit set to value 0. 5023

If the input is a single minus/hyphen character "-", the output shall be a single bit set to value 1. 5024

14.5.14.2 Decoding 5025

Input: 5026

The input to the encoding method is a single bit, 0 or 1. 5027

Validity Test: 5028

The input must consist of exactly one bit, otherwise the encoding fails. 5029

Output: 5030

If the single bit is 0, it is decoded as an empty string "". 5031

If the single bit is 1, it is decoded as a single minus/hyphen character "-". 5032

 5033

14.5.15 "Sequence indicator" 5034

GS1 Application Identifier (7258) expresses a 3 character value for baby birth sequence indicator 5035
using the format of a single digit, followed by a literal forward slash or solidus, followed by a final 5036
single digit. For example, a value of "1/3" indicates the first of three triplets. 5037

To support efficient encoding of this value format, this method encodes the value as two single 5038
digits without encoding the literal forward slash or solidus. Upon decoding from binary, the literal 5039
forward slash or solidus is reinstated. Each digit is encoded as a fixed-length binary sequence of 5040
four bits. 5041

14.5.15.1 Encoding 5042

Input: 5043

The input to the encoding method is a string of the format "n/m" where n and m are digit characters 5044
in the range 1-9 only, separated by a literal forward slash or solidus character. 5045

Validity Test: 5046

The input must consist of a string of the format "n/m" where n and m are digit characters in the 5047
range 1-9 only, separated by a literal forward slash or solidus character. 5048

Output: 5049

Create an empty binary string buffer 5050

Extract the first digit character, n, convert to a base 10 integer in the range 1-9 then convert that to 5051
binary, padding to the left with bits of '0' to reach a total of four bits, then append this to the binary 5052
string buffer. For example, if the first digit character is "1", the sequence "0001" should be 5053
appended to the buffer. If the first digit character is "9", the sequence "1001" should be appended 5054
to the buffer. 5055

Extract the third digit character, m, convert to a base 10 integer in the range 1-9 then convert that 5056
to binary, padding to the left with bits of '0' to reach a total of four bits, then append this to the 5057
binary string buffer. For example, if the third digit character is "3", the sequence "0011" should be 5058

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 162 of 315

appended to the buffer. If the third digit character is "9", the sequence "1001" should be appended 5059
to the buffer. 5060

The binary string buffer should now consist of eight bits. These should be returned as the output. 5061

14.5.15.2 Decoding 5062

Input: 5063

The input to the encoding method is a sequence of eight bits. 5064

Validity Test: 5065

The input must consist of exactly eight bits, otherwise the decoding fails. 5066

Furthermore, treating the eight bits as two concatenated groups of four bits, the corresponding base 5067
10 integer value for each group should be in the range 1-9, otherwise the decoding fails. 5068

Output: 5069

Create an empty string buffer for the output. 5070

Extract the first four bits from the input and convert these to a base 10 integer value in the range 1-5071
9, then convert this to a single string digit character in the range "1" – "9" and append this to the 5072
output buffer. 5073

Append the forward slash or solidus character "/" to the output buffer. 5074

Extract the final four bits from the input and convert these to a base 10 integer value in the range 5075
1-9, then convert this to a single string digit character in the range "1" – "9" and append this to the 5076
output buffer. 5077

Return the output buffer as a 3-character string of the format "n/m" where n and m are digit 5078
characters in the range "1"-"9". 5079

 5080

14.6 EPC Binary coding tables 5081

This section specifies coding tables for use with the encoding procedure of Section 14.3 and the 5082
decoding procedure of Section 14.3.4. 5083

For EPC schemes defined before TDS 2.0. the "Bit Position" row of each coding table illustrates the 5084
relative bit positions of segments within each binary encoding. Before TDS 2.0, the "Bit Position" 5085
row only took a 'counting down' approach, in which the highest subscript indicates the most 5086
significant bit, and subscript 0 indicates the least significant bit. Note that this is opposite to the way 5087
RFID tag memory bank bit addresses are normally indicated, where address 0 is the most significant 5088
bit. In TDS 2.0, for the older EPC schemes, two "Bit Position" rows are shown, one taking the 5089
previous 'counting down' approach, from most significant bit to least significant bit, with the bit 5090
count decreasing from left to right, as well as separate row using the 'counting up' approach, in 5091
which b0 is the left-most bit and b0-b7 always correspond to the EPC header bits, with the bit count 5092
increasing from left to right. 5093

For new EPC schemes defined in TDS 2.0 (those whose name ends with '+', e.g. SGTIN+), because 5094
many of these involve variable-length components and multiple alternative encodings and the 5095
possibility of additional +AIDC data appended after the EPC, the "Bit Position" row of each new EPC 5096
coding table is shown only with a 'counting up' approach from left to right, in which b0 is the left-5097
most bit and b0-b7 bits always correspond to the EPC header bits. Note that this 'counting up' 5098
approach is different from the 'counting down' approach taken for the older EPC schemes because 5099
the total bit count for most of the new EPC schemes is variable, typically depending on the length 5100
and character set used in the actual value being encoded for the serial component, so for most of 5101
the new EPC schemes introduced in TDS 2.0, 'counting down' from the most significant bit at the left 5102
to least significant bit at the right cannot even provide a consistent formula or expression for the 5103
numbering the bits that correspond to the header, +AIDC toggle bit, filter bit or primary GS1 5104
identification key. 5105

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 163 of 315

14.6.1 Serialised Global Trade Item Number (SGTIN) 5106

Two coding schemes for the SGTIN are specified, a 96-bit encoding (SGTIN-96) and a 198-bit 5107
encoding (SGTIN-198). The SGTIN-198 encoding allows for the full range of serial numbers up to 20 5108
alphanumeric characters as specified in [GS1GS]. The SGTIN-96 encoding allows for numeric-only 5109
serial numbers, without leading zeros, whose value is less than 238 (that is, from 0 through 5110
274,877,906,943, inclusive). 5111

Both SGTIN coding schemes make reference to the following partition table. 5112

Table 14-11 SGTIN Partition Table 5113

Partition Value (P) GS1 Company Prefix Indicator/Pad Digit and Item Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

14.6.1.1 SGTIN-96 coding table 5114

Table 14-12 SGTIN-96 coding table 5115

Scheme SGTIN-96

URI
Template

urn:epc:tag:sgtin-96:F.C.I.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix (*)

Indicator
(**) / Item
Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 38

Logical
Segment
Character
Count

 1 digit (0-7) 1 digit
(6-0)

6-12 digits 7-1 digits up to 12
digits in
range
0 –
274,877,906
,943
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter GTIN Serial

URI portion F C.I S

Coding
Segment
Bit Count

8 3 47 38

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 164 of 315

Scheme SGTIN-96

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…b95

Coding
Method

00110000 Integer
§14.3.1
§14.4.1

Partition Table 14-11
§14.3.3
§14.4.3

Integer
§14.3.1
§14.4.1

 (*) See Section 7.3.2 for the case of an SGTIN derived from a GTIN-8. 5116

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit takes 5117
the place of the Indicator Digit. In all cases, see Section 7.2.3 for the definition of how the Indicator 5118
Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 5119

14.6.1.2 SGTIN-198 coding table 5120

Table 14-13 SGTIN-198 coding table 5121

Scheme SGTIN-198

URI
Template

urn:epc:tag:sgtin-198:F.C.I.S

Total Bits 198

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix (*)

Indicator
(**) / Item
Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 140

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 7-1 digits up to 20
characters

Coding
Segment

EPC Header Filter GTIN Serial

URI
portion

 F C.I S

Coding
Segment
Bit Count

8 3 47 140

Bit
Position
(counting
down)

b197b196…b190 b189b188b187 b186b185…b140 b139b138…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…b197

Coding
Method

00110110 Integer
§14.3.1
§14.4.1

Partition Table 14-11
§14.3.3
§14.4.3

String
§14.3.2
§14.4.2

(*) See Section 7.3.2 for the case of an SGTIN derived from a GTIN-8. 5122

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit takes 5123
the place of the Indicator Digit. In all cases, see Section 7.2.3 for the definition of how the Indicator 5124
Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 5125

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 165 of 315

14.6.1.3 SGTIN+ 5126

The SGTIN+ coding scheme uses the following coding table. 5127

Table 14-5 SGTIN+ coding table 5128

Scheme SGTIN+

GS1 Digital
Link URI
syntax

https://id.gs1.org/01/{gtin}/21/{serial}

Total Bits Up to 216 bits

Logical
Segment

EPC Header +Data
Toggle

Filter GTIN Serial Number

Corresponding
GS1 AI

 (01) (21)

Logical
Segment Bit
Count

8 1 3 56 3 bit encoding indicator +
5 bit length indicator +
up to 140 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

14 digits up to 20 characters

Bit Position
(counting
up)*

b0b1…b7 b8 b9b10b11 b12b13…b67 b68b69b70…

Coding
Method

11110111 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length
Numeric
§14.5.4

Variable-length alphanumeric
§14.5.6

* Note that for the SGTIN+ and all other EPC schemes new to TDS 2.0, the "Bit Position" row of 5129
each new EPC coding table is shown only with a 'counting up' approach from left to right, 5130
in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5131

14.6.1.4 DSGTIN+ 5132

The DSGTIN+ coding scheme uses the following coding table. 5133

Table 14-6 DSGTIN+ coding table 5134

Scheme DSGTIN+

GS1 Digital
Link URI
syntax

https://id.gs1.org/01/{gtin}/21/{serial}

Total Bits Up to 236 bits

Logical
Segment

EPC
Header

+Data
Toggle

Filter Date GTIN Serial Number

Correspondin
g
GS1 AI

 One of
(11),(13),(15),(16),
(17),(7006),(7007)
as indicated

(01) (21)

Logical
Segment
Bit Count

8 1 3 4 bit date type indicator +
16 bit date value

56 3 bit encoding
indicator +
5 bit length
indicator +
up to 140 bits

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 166 of 315

Scheme DSGTIN+

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

date type indicator and 6-
digit date YYMMDD

14 digits up to 20
characters

Bit Position
(counting
up)*

b0b1…b7 b8 b9b10b11 b12b13…b30b31 b32b33…b87 b88b89b90…

Coding
Method

111110
11

+AIDC
Data
Toggle
Bit
§14.5.1

Fixed-
Bit-
Length
Numeri
c String
§14.5.2

Prioritised Date
§14.5.3

Fixed-Length
Numeric
§14.5.4

Variable-length
alphanumeric
§14.5.6

* Note that for the DSGTIN+ and all other EPC schemes new to TDS 2.0, the "Bit Position" row 5135
of each new EPC coding table is shown only with a 'counting up' approach from left to 5136
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5137

14.6.2 Serial Shipping Container Code (SSCC) 5138

Two coding schemes for the SSCC are specified: 5139

■ SSCC-96 (TDS 1.x) is fixed at 96 bits length, is GCP-partitioned, and allows for the full range of 5140
SSCCs as specified in [GS1GS]. 5141

■ SSCC+ is fixed at 84 bits length, is not GCP-partitioned, and allows for simplified 5142
interoperability with the full range of SSCCs in their GS1 element string form, as specified in 5143
[GS1GS]. 5144

14.6.2.1 SSCC-96 5145

The SSCC-96 coding scheme uses the following partition table. 5146

Table 14-7 SSCC Partition Table 5147

Partition Value
(P)

GS1 Company Prefix Extension Digit and Serial Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

The SSCC-96 coding scheme uses the following coding table. 5148

Table 14-8 SSCC-96 coding table 5149

Scheme SSCC-96

URI
Template

urn:epc:tag:sscc-96:F.C.S

Total Bits 96

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 167 of 315

Scheme SSCC-96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Extension /
Serial
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 11-5 digits

Coding
Segment

EPC Header Filter SSCC (Reserved)

URI portion F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b24 b23b36…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b71 b72b73…b95

Coding
Method

00110001 Integer
§14.3.1
§14.4.1

Partition Table 14-7
§14.3.3
§14.4.3

00…0 (24
zero bits)

14.6.2.2 SSCC+ 5150

The SSCC+ coding scheme uses the following coding table. 5151

Table 14-9 SSCC+ coding table 5152

Scheme SSCC+

GS1 Digital Link
URI syntax

https://id.gs1.org/00/{sscc}

Total Bits 84

Logical Segment EPC Header +Data
Toggle

Filter SSCC

Corresponding
GS1 AI

 (00)

Logical Segment
Bit Count

8 1 3 72

Logical Segment
Character Count

 1 digit
(0 or 1)

1 digit
(0-7)

18 digits

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b83

Coding Method 11111001 +AIDC Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length Numeric
§14.5.4

* Note that for the SSCC+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5153
of each new EPC coding table is shown only with a 'counting up' approach from left to 5154
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5155

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 168 of 315

14.6.3 Global Location Number with or without Extension (SGLN) 5156

Two coding schemes for the SGLN are specified, a 96-bit encoding (SGLN-96) and a 195-bit 5157
encoding (SGLN-195). The SGLN-195 encoding allows for the full range of GLN extensions up to 20 5158
alphanumeric characters as specified in [GS1GS]. The SGLN-96 encoding allows for numeric-only 5159
GLN extensions, without leading zeros, whose value is less than 241 (that is, from 0 through 5160
2,199,023,255,551, inclusive). Note that an extension value of 0 is reserved to indicate that the 5161
SGLN is equivalent to the GLN indicated by the GS1 Company Prefix and location reference; this 5162
value is available in both the SGLN-96 and the SGLN-195 encodings. 5163

Both SGLN coding schemes make reference to the following partition table. 5164

Table 14-10 SGLN Partition Table 5165

Partition Value
(P)

GS1 Company Prefix Location Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

14.6.3.1 SGLN-96 coding table 5166

Table 14-11 SGLN-96 coding table 5167

Scheme SGLN-96

URI
Template

urn:epc:tag:sgln-96:F.C.L.E

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 13
digits in
range 0 –
2,199,023,2
55,551
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter GLN Extension

URI portion F C.L E

Coding
Segment
Bit Count

8 3 44 41

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 169 of 315

Scheme SGLN-96

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b95

Coding
Method

00110010 Integer
§14.3.1
§14.4.1

Partition Table 14-10
§14.3.3
§14.4.3

Integer
§14.3.1
§14.4.1

14.6.3.2 SGLN-195 coding table 5168

Table 14-12 SGLN-195 coding table 5169

Scheme SGLN-195

URI
Template

urn:epc:tag:sgln-195:F.C.L.E

Total Bits 195

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit Count

8 3 3 20-40 21-1 140

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits up to 20
characters

Coding
Segment

EPC Header Filter GLN Extension

URI
portion

 F C.L E

Coding
Segment
Bit Count

8 3 44 140

Bit
Position
(counting
down)

b194b193…b187 b186b185b184 b183b182…b140 b139b138…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b194

Coding
Method

00111001 Integer
§14.3.1
§14.4.1

Partition Table 14-10
§14.3.3
§14.4.3

String
§14.3.2
§14.4.2

14.6.3.3 SGLN+ 5170

The SGLN+ coding scheme uses the following coding table. 5171

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 170 of 315

Table 14-13 SGLN+ coding table 5172

Scheme SGLN+

GS1 Digital
Link URI
syntax

https://id.gs1.org/414/{gln}/254/{glnextension}

Total Bits Up to 212 bits

Logical
Segment

EPC Header +Data
Toggle

Filter GLN GLN Extension

Corresponding
GS1 AI

 (414) (254)

Logical
Segment Bit
Count

8 1 3 52 3 bit encoding indicator +
5 bit length indicator +
up to 140 bits for GLN
Extension

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

13 digits up to 20 characters

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b63 b64b65b66…

Coding
Method

11110010 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-Length
Numeric String
§14.5.2

Fixed-
Length
Numeric
§14.5.4

Variable-length
alphanumeric
§14.5.6

* Note that for the SGLN+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5173
of each new EPC coding table is shown only with a 'counting up' approach from left to 5174
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5175

14.6.4 Global Returnable Asset Identifier (GRAI) 5176

Two coding schemes for the GRAI are specified, a 96-bit encoding (GRAI-96) and a 170-bit encoding 5177
(GRAI-170). The GRAI-170 encoding allows for the full range of serial numbers up to 16 5178
alphanumeric characters as specified in [GS1GS]. The GRAI-96 encoding allows for numeric-only 5179
serial numbers, without leading zeros, whose value is less than 238 (that is, from 0 through 5180
274,877,906,943, inclusive). 5181

Only GRAIs that include the optional serial number may be represented as EPCs. A GRAI without a 5182
serial number represents an asset class, rather than a specific instance, and therefore may not be 5183
used as an EPC (just as a non-serialised GTIN may not be used as an EPC). 5184

Both GRAI coding schemes make reference to the following partition table. 5185

Table 14-14 GRAI Partition Table 5186

Partition Value
(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 0

1 37 11 7 1

2 34 10 10 2

3 30 9 14 3

4 27 8 17 4

5 24 7 20 5

6 20 6 24 6

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 171 of 315

14.6.4.1 GRAI-96 coding table 5187

Table 14-15 GRAI-96 coding table 5188

Scheme GRAI-96

URI
Template

urn:epc:tag:grai-96:F.C.A.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Asset Type Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 38

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digit 6-0 digits Up to 12
digits in
range
0 –
274,877,906
,943
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter Partition + Company Prefix + Asset Type Serial

URI portion F C.A S

Coding
Segment
Bit Count

8 3 47 38

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…b95

Coding
Method

00110011 Integer
§14.3.1
§14.4.1

Partition Table 14-14
§14.3.3
§14.4.3

Integer
§14.3.1
§14.4.1

14.6.4.2 GRAI-170 coding table 5189

Table 14-15 GRAI-170 coding table 5190

Scheme GRAI-170

URI
Template

urn:epc:tag:grai-170:F.C.A.S

Total Bits 170

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Asset
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 112

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 172 of 315

Scheme GRAI-170

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 16
characters

Coding
Segment

EPC Header Filter Partition + Company Prefix + Asset Type Serial

URI portion F C.A S

Coding
Segment
Bit Count

8 3 47 112

Bit Position
(counting
down)

b169b168…b162 b161b160b159 b158b157…b112 b111b110…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…b169

Coding
Method

00110111 Integer
§14.3.1
§14.4.1

Partition Table 14-14
§14.3.3
§14.4.3

String
§14.3.2
§14.4.2

14.6.4.3 GRAI+ 5191

The GRAI+ coding scheme uses the following coding table. 5192

Table 14-16 GRAI+ coding table 5193

Scheme GRAI+

GS1 Digital
Link URI
syntax

https://id.gs1.org/8003/{grai}

Total Bits Up to 188 bits

Logical
Segment

EPC Header +Data
Toggle

Filter Leading pad '0'
then 13-digit
GRAI

GRAI
Serial
Component

Corresponding
GS1 AI

 (8003)

Logical
Segment Bit
Count

8 1 3 56 3 bit encoding
indicator +
5 bit length
indicator +
up to 112 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

14 digits Up to 16
characters

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b67 b68b69b70…

Coding Method 11110001 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length
Numeric
§14.5.4

Variable-length
alphanumeric
§14.5.6

* Note that for the GRAI+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5194
of each new EPC coding table is shown only with a 'counting up' approach from left to 5195
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5196

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 173 of 315

14.6.5 Global Individual Asset Identifier (GIAI) 5197

Two coding schemes for the GIAI are specified, a 96-bit encoding (GIAI-96) and a 202-bit encoding 5198
(GIAI-202). The GIAI-202 encoding allows for the full range of serial numbers up to 24 5199
alphanumeric characters as specified in [GS1GS]. The GIAI-96 encoding allows for numeric-only 5200
serial numbers, without leading zeros, whose value is, up to a limit that varies with the length of the 5201
GS1 Company Prefix. 5202

Each GIAI coding schemes make reference to a different partition table, specified alongside the 5203
corresponding coding table in the subsections below. 5204

14.6.5.1 GIAI-96 Partition Table and coding table 5205

The GIAI-96 coding scheme makes use of the following partition table. 5206

Table 14-17 GIAI-96 Partition Table 5207

Partition Value
(P)

Company Prefix Individual Asset Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Max Digits (K)

0 40 12 42 13

1 37 11 45 14

2 34 10 48 15

3 30 9 52 16

4 27 8 55 17

5 24 7 58 18

6 20 6 62 19

Table 14-18 GIAI-96 coding table 5208

Scheme GIAI-96

URI
Template

urn:epc:tag:giai-96:F.C.A

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1 Company
Prefix

Individual Asset
Reference

Logical
Segment Bit
Count

8 3 3 20-40 62–42

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 19-13 digits
without preservation of
leading zeros

Coding
Segment

EPC Header Filter GIAI

URI portion F C.A

Coding
Segment Bit
Count

8 3 85

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b0

Bit Position
(counting up)

b0b1…b7 b8b9b10 b11b12…b95

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 174 of 315

Scheme GIAI-96

Coding
Method

00110100 Integer
§14.3.1
§14.4.1

Unpadded Partition Table 14-17
§14.3.4
§14.4.4

14.6.5.2 GIAI-202 Partition Table and coding table 5209

The GIAI-202 coding scheme makes use of the following partition table. 5210

Table 14-20 GIAI-202 Partition Table 5211

Partition Value
(P)

Company Prefix Individual Asset Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Maximum
Characters

0 40 12 148 18

1 37 11 151 19

2 34 10 154 20

3 30 9 158 21

4 27 8 161 22

5 24 7 164 23

6 20 6 168 24

Table 14-21 GIAI-202 coding table 5212

Scheme GIAI-202

URI
Template

urn:epc:tag:giai-202:F.C.A

Total Bits 202

Logical
Segment

EPC Header Filter Partition GS1 Company
Prefix

Individual Asset
Reference

Logical
Segment Bit
Count

8 3 3 20-40 168–148

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 24-18 characters

Coding
Segment

EPC Header Filter GIAI

URI portion F C.A

Coding
Segment Bit
Count

8 3 191

Bit Position
(counting
down)

b201b200…b194 b193b192b191 b190b189…b0

Bit Position
(counting up)

b0b1…b7 b8b9b10 b11b12…b201

Coding
Method

00111000 Integer
§14.3.1
§14.4.1

String Partition Table 14-20
§14.3.5
§14.4.5

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 175 of 315

14.6.5.3 GIAI+ Coding table 5213

The GIAI+ coding scheme makes use of the following coding table. 5214

Table 14-22 GIAI+ coding table 5215

Scheme GIAI+

GS1 Digital Link
URI syntax

https://id.gs1.org/8004/{giai}

Total Bits Up to 222 bits (assuming shortest initial all-numeric sequence to be 4 digits)

Logical
Segment

EPC Header +Data
Toggle

Filter GIAI

Corresponding
GS1 AI

 (8004)

Logical
Segment Bit
Count

8 1 3 4n (for initial n digits) + 4 bit
terminator
 OR
4n (for initial n digits) + 4 bit
delimiter
+ 3 bit encoding indicator +
5 bit length indicator +
up to (210-7n) bits

Logical
Segment
Character Count

 1 digit
(0 or 1)

1 digit
(0-7)

Up to 30 characters

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…

Coding Method 11111010 +AIDC
Data
Toggle
Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Delimited/terminated Numeric
(§14.5.5)
(followed by Variable-length
alphanumeric (§14.5.6) for any
characters after the initial n digits)

* Note that for the GIAI+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row of 5216
each new EPC coding table is shown only with a 'counting up' approach from left to right, 5217
in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5218

14.6.6 Global Service Relation Number - Recipient (GSRN) 5219

Two encoding schemes for the GSRN are specified: 5220

• GSRN-96 (TDS 1.x) is fixed at 96 bits length, is GCP-partitioned, and allows for the full 5221
range of "Recipient" GSRNs corresponding to AI (8018), as specified in [GS1GS]. 5222

• GSRN+ is fixed at 84 bits length, is not GCP-partitioned, and allows for simplified 5223
interoperability with the full range of "Recipient" GSRNs corresponding to AI (8018), in their 5224
GS1 element string form, as specified in [GS1GS]. 5225

14.6.6.1 GSRN-96 5226

The GSRN-96 coding scheme uses the following partition table. 5227

Table 14-23 GSRN Partition Table 5228

Partition Value
(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 176 of 315

Partition Value
(P)

Company Prefix Service Reference

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

The GSRN-96 coding scheme uses the following coding table. 5229

Table 14-24 GSRN-96 coding table 5230

Scheme GSRN-96

URI
Template

urn:epc:tag:gsrn-96:F.C.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Service
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 11-5 digits

Coding
Segment

EPC Header Filter GSRN (Reserved)

URI portion F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b24 b23b22…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b71 b72b73…b95

Coding
Method

00101101 Integer
§14.3.1
§14.4.1

Partition Table 14-23
§14.3.3
§14.4.3

00…0
(24 zero bits)

14.6.6.2 GSRN+ 5231

The GSRN+ coding scheme uses the following coding table. 5232

Table 14-25 GSRN+ coding table 5233

Scheme GSRN+

GS1 Digital
Link URI
syntax

https://id.gs1.org/8018/{gsrn}

Total Bits 84

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 177 of 315

Scheme GSRN+

Logical
Segment

EPC
Header

+Data
Toggle

Filter GSRN

Corresponding
GS1 AI

 8018

Logical
Segment Bit
Count

8 1 3 72

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

18 digits

Bit Position
(counting
up)*

b0b1…b7 b8 b9b10b11 b12b13…b83

Coding
Method

1111010
0

+AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length Numeric
§14.5.4

* Note that for the GSRN+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5234
of each new EPC coding table is shown only with a 'counting up' approach from left to 5235
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5236

14.6.7 Global Service Relation Number - Provider (GSRNP) 5237

Two encoding schemes for the GSRNP are specified: 5238

■ GSRNP-96 (TDS 1.x) is fixed at 96 bits length, is GCP-partitioned, and allows for the full range 5239
of "Provider" GSRNs corresponding to AI (8017), as specified in [GS1GS]. 5240

■ GSRNP+ is fixed at 84 bits length, is not GCP-partitioned, and allows for simplified 5241
interoperability with the full range of "Provider" GSRNs corresponding to AI (8018), in their GS1 5242
element string form, as specified in [GS1GS]. 5243

14.6.7.1 GSRNP-96 5244

The GSRNP-96 coding scheme uses the following partition table. 5245

Table 14-26 GSRNP Partition Table 5246

Partition Value
(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

The GSRNP-96 coding scheme uses the following coding table. 5247

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 178 of 315

Table 14-27 GSRNP-96 coding table 5248

Scheme GSRNP-96

URI
Template

urn:epc:tag:gsrnp-96:F.C.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Service
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 11-5 digits

Coding
Segment

EPC Header Filter GSRN (Reserved)

URI portion F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b24 b23b22…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b71 b72b73…b95

Coding
Method

00101110 Integer
§14.3.1
§14.4.1

Partition Table 14-23
§14.3.3
§14.4.3

00…0
(24 zero bits)

14.6.7.2 GSRNP+ 5249

The GSRNP+ coding scheme uses the following coding table. 5250

Table 14-28 GSRNP+ coding table 5251

Scheme GSRNP+

GS1 Digital Link
URI syntax

https://id.gs1.org/8017/{gsrnp}

Total Bits 84

Logical
Segment

EPC Header +Data
Toggle

Filter GSRN

Corresponding
GS1 AI

 8017

Logical
Segment Bit
Count

8 1 3 72

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

18 digits

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b83

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 179 of 315

Scheme GSRNP+

Coding Method 11110101 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length Numeric
§14.5.4

* Note that for the GSRNP+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5252
of each new EPC coding table is shown only with a 'counting up' approach from left to 5253
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5254

14.6.8 Global Document Type Identifier (GDTI) 5255

Three coding schemes for the GDTI specified, a 96-bit encoding (GDTI-96), a 113-bit encoding 5256
(GDTI-113, DEPRECATED as of TDS 1.9), and a 174-bit encoding (GDTI-174). The GDTI-174 5257
encoding allows for the full range of document serialisation up to 17 alphanumeric characters, as 5258
specified in [GS1GS]. The deprecated GDTI-113 encoding allows for a reduced range of document 5259
serial numbers up to 17 numeric characters (including leading zeros) as originally specified in 5260
[GS1GS]. The GDTI-96 encoding allows for document serial numbers without leading zeros whose 5261
value is less than 241 (that is, from 0 through 2,199,023,255,551, inclusive). 5262

Only GDTIs that include the optional serial number may be represented as EPCs. A GDTI without a 5263
serial number represents a document class, rather than a specific document, and therefore may not 5264
be used as an EPC (just as a non-serialised GTIN may not be used as an EPC). 5265

Both GDTI coding schemes make reference to the following partition table. 5266

Table 14-29 GDTI Partition Table 5267

Partition Value
(P)

Company Prefix Document Type

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

14.6.8.1 GDTI-96 coding table 5268

Table 14-30 GDTI-96 coding table 5269

Scheme GDTI-96

URI
Template

urn:epc:tag:gdti-96:F.C.D.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 180 of 315

Scheme GDTI-96

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 13
digits in
range
0 –
2,199,023,2
55,551
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter Partition + Company Prefix + Document Type Serial

URI portion F C.D S

Coding
Segment
Bit Count

8 3 44 41

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b95

Coding
Method

00101100 Integer
§14.3.1
§14.4.1

Partition Table 14-29
§14.3.3
§14.4.3

Integer
§14.3.1
§14.4.1

14.6.8.2 GDTI-113 coding table 5270

Table 14-31 GDTI-113 coding table 5271

Scheme GDTI-113

URI
Template

urn:epc:tag:gdti-113:F.C.D.S

Total Bits 113

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 21-1 58

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 17
digits
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter Partition + Company Prefix + Document
Type

Serial

URI
portion

 F C.D S

Coding
Segment
Bit Count

8 3 44 58

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 181 of 315

Scheme GDTI-113

Bit Position
(counting
down)

b112b111…b105 b104b103b102 b101b100…b58 b57b56…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b112

Coding
Method

00111010 Integer
§14.3.1
§14.4.1

Partition Table 14-29 Numeric
String
§14.3.6

14.6.8.3 GDTI-174 coding table 5272

Table 14-32 GDTI-174 coding table 5273

Scheme GDTI-174

URI
Template

urn:epc:tag:gdti-174:F.C.A.S

Total Bits 174

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 21-1 119

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 17
characters

Coding
Segment

EPC Header Filter Partition + Company Prefix + Asset
Type

Serial

URI
portion

 F C.A S

Coding
Segment
Bit Count

8 3 44 119

Bit
Position
(counting
down)

b173b172…b166 b165b164b163 b162b161…b119 b118b117…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b173

Coding
Method

00111110 Integer
§14.3.1
§14.4.1

Partition Table 14-29
§14.3.3
§14.4.3

String
§14.3.2
§14.4.2

14.6.8.4 GDTI+ 5274

The GDTI+ coding scheme uses the following coding table. 5275

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 182 of 315

Table 14-33 GDTI+ coding table 5276

Scheme GDTI+

GS1 Digital Link
URI syntax

https://id.gs1.org/253/{gdti}

Total Bits Up to 191 bits

Logical
Segment

EPC Header +Data
Toggle

Filter GDTI GDTI
Serial Component

Corresponding
GS1 AI

 (253)

Logical
Segment Bit
Count

8 1 3 52 3 bit encoding
indicator +
5 bit length
indicator +
up to 119 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

13 digits Up to 17
characters

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b63 b64b65… b(B-1)

Coding Method 11110110 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length
Numeric
§14.5.4

Variable-length
alphanumeric
§14.5.6

* Note that for the GDTI+ and other EPC schemes new to TDS 2.0, the "Bit Position" row of 5277
each new EPC coding table is shown only with a 'counting up' approach from left to right, 5278
in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5279

14.6.9 CPI Identifier (CPI) 5280

Two coding schemes for the CPI identifier are specified: the 96-bit scheme CPI-96 and the variable-5281
length encoding CPI-var. CPI-96 makes use of Partition Table 14-34 and CPI-var makes use of 5282
Partition Table 14-35. 5283

Table 14-34 CPI-96 Partition Table 5284

Partition Value
(P)

GS1 Company Prefix Component/Part Reference

 Bits
(M)

Digits (L) Bits
(N)

Maximum Digits

0 40 12 11 3

1 37 11 14 4

2 34 10 17 5

3 30 9 21 6

4 27 8 24 7

5 24 7 27 8

6 20 6 31 9

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 183 of 315

Table 14-35 CPI-var Partition Table 5285

Partition Value
(P)

GS1 Company Prefix Component/Part Reference

 Bits
(M)

Digits (L) Maximum Bits **
(N)

Maximum
Characters

0 40 12 114 18

1 37 11 120 19

2 34 10 126 20

3 30 9 132 21

4 27 8 138 22

5 24 7 144 23

6 20 6 150 24

** The number of bits depends on the number of characters in the Component/Part Reference; see 5286
Sections 14.3.9 and 14.4.9. 5287

14.6.9.1 CPI-96 coding table 5288

Table 14-19 CPI-96 coding table 5289

Scheme CPI-96

URI
Template

urn:epc:tag:cpi-96:F.C.P.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Component /
Part Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 31-11 31

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 9-3 digits
without
preservation of
leading zeros

Up to 10 digits
in range
0 -
2,147,483,647
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter Component/Part Identifier Component /
Part Serial
Number

URI
portion

 F C.P S

Coding
Segment
Bit Count

8 3 54 31

Bit
Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b31 b30b29…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b64 b65b67…b95

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 184 of 315

Scheme CPI-96

Coding
Method

00111100 Integer
§14.3.1
§14.4.1

Unpadded Partition Table 14-34
§14.3.4
§14.4.4

Integer
§14.3.1
§14.4.1

14.6.9.2 CPI-var coding table 5290

Table 14-20 CPI-var coding table 5291

Scheme CPI-var

URI
Template

urn:epc:tag:cpi-var:F.C.P.S

Total Bits Variable: between 86 and 224 bits (inclusive)

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Component /
Part
Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 12-150
(variable)

40 (fixed)

Logical
Segment
Character
Count

 1 digit (0-7) 1 digit
(6-0)

6-12 digits 24-18
characters

Up to 12 digits
without
preservation
of leading
zeros

Coding
Segment

EPC Header Filter Component/Part Identifier Component /
Part Serial
Number

URI
portion

 F C.P S

Coding
Segment
Bit Count

8 3 Up to 173 bits 40

Bit
Position
(counting
down)

bB-1bB-2…
bB-8

bB-9bB-10bB-11 bB-12bB-13…b40 b39b38…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11bB-13…b(B-41) b(B-40)b(B-39)

…b(B-1)

Coding
Method

00111101 Integer
§14.3.1
§14.4.1

6-Bit Variable String Partition Table
14-35
§14.3.9
14.4.9

Integer
§14.3.1
§14.4.1

14.6.9.3 CPI+ coding table 5292

Table 14-21 CPI+ coding table 5293

Scheme CPI+

GS1 Digital
Link URI
syntax

https://id.gs1.org/8010/{cpi}/8011/{cpi_serial}

Total Bits Up to 266 bits (if at least first 4 characters of CPI are all-numeric)

Logical
Segment

EPC Header +Data Toggle Filter CPI CPI Serial

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 185 of 315

Scheme CPI+

Corresponding
GS1 AI

 (8010) (8011)

Logical
Segment Bit
Count

8 1 3 4n (for initial n
digits) + 4 bit
terminator
 OR
4n (for initial n
digits) + 4 bit
delimiter
+ 3 bit encoding
indicator +
5 bit length
indicator +
up to (210-7n)
bits

4 bit length
indicator +
up to 40 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit (0-7) Up to 30
characters
with
preservation of
leading zeros

Up to 12 digits
with preservation
of leading zeros

Bit Position
(counting
up)*

b0b1…b7 b8 b9b10b11 b12b13… ..b(B-2)b(B-1)

Coding
Method

11110000 +AIDC Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Delimited/termi
nated Numeric
(§14.5.5)
(followed by
Variable-length
alphanumeric
(§14.5.6) for
any characters
after the initial
n digits)

Variable-length
numeric string
without encoding
indicator
§14.5.13
(using 4-bit length
indicator, bLI = 4)

* Note that for the CPI+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row of 5294
each new EPC coding table is shown only with a 'counting up' approach from left to right, 5295
in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5296

14.6.10 Global Coupon Number (SGCN) 5297

A lone, 96-bit coding scheme (SGCN-96) is specified for the SGCN, allowing for the full range of 5298
coupon serial component numbers up to 12 numeric characters (including leading zeros) as specified 5299
in [GS1GS]. Only SGCNs that include the serial number may be represented as EPCs. A GCN without 5300
a serial number represents a coupon class, rather than a specific coupon, and therefore may not be 5301
used as an EPC (just as a non-serialised GTIN may not be used as an EPC). 5302

The SGCN coding scheme makes reference to the following partition table. 5303

Table 14-39 SGCN Partition Table 5304

Partition Value
(P)

Company Prefix Coupon Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 186 of 315

Partition Value
(P)

Company Prefix Coupon Reference

5 24 7 17 5

6 20 6 21 6

14.6.10.1 SGCN-96 coding table 5305

Table 14-40 SGCN-96 coding table 5306

Scheme SGCN-96

URI
Template

urn:epc:tag:sgcn-96:F.C.D.S

Total Bits 96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Coupon
Reference

Serial Component

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(6-0)

6-12 digits 6-0 digits Up to 12 digits
with preservation
of leading zeros

Coding
Segment

EPC Header Filter Partition + Company Prefix + Coupon
Reference

Serial

URI
portion

 F C.D S

Coding
Segment
Bit Count

8 3 44 41

Bit Position
(counting
down)

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Bit Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b54 b55b56…b95

Coding
Method

00111111 Integer
§14.3.1
§14.4.1

Partition Table 14-39
§14.3.3
§14.4.3

Numeric String
§14.3.6
§14.4.6

14.6.10.2 SGCN+ 5307

The SGCN+ coding scheme uses the following coding table. 5308

Table 14-41 SGCN+ coding table 5309

Scheme SGLN+

GS1 Digital Link
URI syntax

https://id.gs1.org/255/{gcn}

Total Bits Up to 108 bits

Logical
Segment

EPC Header +Data
Toggle

Filter GCN without
optional serial
component

GCN serial
component

Corresponding
GS1 AI

 (255)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 187 of 315

Scheme SGLN+

Logical
Segment Bit
Count

8 1 3 52 4 bit length
indicator +
up to 40 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

13 digits Up to 12 digits

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b63 b64b65b66…

Coding Method 11111000 +AIDC
Data
Toggle Bit
§14.5.1

Fixed-Bit-
Length
Numeric
String
§14.5.2

Fixed-Length
Numeric
§14.5.4

Variable-length
numeric string
without encoding
indicator
§14.5.13
(using 4-bit
length indicator,
bLI = 4)

* Note that for the SGCN+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row 5310
of each new EPC coding table is shown only with a 'counting up' approach from left to 5311
right, in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5312

14.6.11 Individual Trade Item Piece (ITIP) 5313

Two coding schemes for the ITIP are specified, a 110-bit encoding (ITIP-110) and a 212-bit 5314
encoding (ITIP-212). The ITIP-212 encoding allows for the full range of serial numbers up to 20 5315
alphanumeric characters as specified in [GS1GS]. The ITIP-110 encoding allows for numeric-only 5316
serial numbers, without leading zeros, whose value is less than 238 (that is, from 0 through 5317
274,877,906,943, inclusive). 5318

Both ITIP coding schemes make reference to the following partition table. 5319

Table 14-42 ITIP Partition Table 5320

Partition Value (P) GS1 Company Prefix Indicator/Pad Digit and Item Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

14.6.11.1 ITIP-110 coding table 5321

Table 14-43 ITIP-110 coding table 5322

Scheme ITIP-110

URI
Template

urn:epc:tag:itip-110:F.C.I.PT.S

Total Bits 110

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 188 of 315

Scheme ITIP-110

Logical
Segment

EPC
Header

Filter Partiti
on

GS1
Compa
ny
Prefix
(*)

Indicato
r (**) /
Item
Referen
ce

Piece Total Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 7 7 38

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(0-6)

6-12
digits

7-1
digits

2 digits 2 digits up to 12
digits in
range
0 –
274,877,90
6,943
without
preservation
of leading
zeros

Coding
Segment

EPC
Header

Filter GTIN Piece Total Serial

URI
portion

 F C.I P T S

Coding
Segment
Bit Count

8 3 47 7 7 38

Bit
Position
(counting
down)

b109b108

…b102
b101b100b99 b98b97…b52 b51b50…

b45
b44b43…b38 b37b36…b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…
b64

b65b66…b71 b72b73…b109

Coding
Method

010000
00

Integer
§14.3.1
§14.4.1

Partition Table 14-11
§14.3.3
§14.4.3

Fixed
Width
Integer
§14.3.1
0
§14.4.1
0

Fixed Width
Integer
§14.3.10
§14.4.10

Integer
§14.3.1
§14.4.1

 (*) See Section 7.3.2 for the case of an SGTIN derived from a GTIN-8. 5323

(**) Note that in the case of an ITIP derived from a GTIN-12 or GTIN-13, a zero pad digit takes the 5324
place of the Indicator Digit. In all cases, see Section 7.2.3 for the definition of how the Indicator 5325
Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 5326

14.6.11.2 ITIP-212 coding table 5327

Table 14-44 ITIP-212 coding table 5328

Scheme ITIP-212

URI
Templat
e

urn:epc:tag:itip-212:F.C.I.PT.S

Total
Bits

212

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 189 of 315

Scheme ITIP-212

Logical
Segment

EPC
Header

Filter Partitio
n

GS1
Compan
y Prefix
(*)

Indicator
(**) /
Item
Referenc
e

Piece Total Serial

Logical
Segment
Bit
Count

8 3 3 20-40 24-4 7 7 140

Logical
Segment
Character
Count

 1 digit
(0-7)

1 digit
(0-6)

6-12
digits

7-1
digits

2 digits 2 digits up to 20
character
s
with
preservati
on of
leading
zeros

Coding
Segment

EPC
Header

Filter GTIN Piece Total Serial

URI
portion

 F C.I P T S

Coding
Segment
Bit
Count

8 3 47 7 7 140

Bit
Position
(counting
down)

b211b210…b2

04
b203b202b2

01
b200b199…b154 b153b152…b1

47
b146b145…b1

40
b139b138…
b0

Bit
Position
(counting
up)

b0b1…b7 b8b9b10 b11b12…b57 b58b59…b64 b65b66…b71 b72b73…b2

11

Coding
Method

01000001 Integer
§14.3.1
§14.4.1

Partition Table 14-11
§14.3.3
§14.4.3

Fixed
Width
Integer
§14.3.10
§14.4.10

Fixed
Width
Integer
§14.3.10
§14.4.10

String
§14.3.2
§14.4.2

(*) See Section 7.3.2 for the case of an SGTIN derived from a GTIN-8. 5329

(**) Note that in the case of an ITIP derived from a GTIN-12 or GTIN-13, a zero pad digit takes the 5330
place of the Indicator Digit. In all cases, see Section 7.2.3 for the definition of how the Indicator 5331
Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 5332

14.6.11.3 ITIP+ 5333

The ITIP+ coding scheme uses the following coding table. 5334

Table 14-45 ITIP+ coding table 5335

Scheme ITIP+

GS1 Digital
Link URI
syntax

https://id.gs1.org/8006/{itip}/21/{serial}

Total Bits Up to 232 bits

Logical
Segment

EPC Header +Data
Toggle

Filter ITIP Serial Number

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 190 of 315

Scheme ITIP+

Corresponding
GS1 AI

 (8006) (21)

Logical
Segment Bit
Count

8 1 3 72 3 bit encoding
indicator +
5 bit length
indicator +
up to 140 bits

Logical
Segment
Character
Count

 1 digit
(0 or 1)

1 digit
(0-7)

18 digits up to 20
characters
with
preservation of
leading zeros

Bit Position
(counting up)*

b0b1…b7 b8 b9b10b11 b12b13…b83 b84b85b86…

Coding Method 11110011 +AIDC
Data
Toggle
Bit
§14.5.1

Fixed-
Bit-
Length
Numeric
String
§14.5.2

Fixed-
Length
Numeric
§14.5.4

Variable-
length
alphanumeric
§14.5.6

* Note that for the ITIP+ and other other EPC schemes new to TDS 2.0, the "Bit Position" row of 5336
each new EPC coding table is shown only with a 'counting up' approach from left to right, 5337
in which b0 is the left-most bit and b0-b7 bits always correspond to the EPC header bits. 5338

14.6.12 General Identifier (GID) 5339

One coding scheme for the GID is specified: the 96-bit encoding GID-96. No partition table is 5340
required. 5341

14.6.12.1 GID-96 coding table 5342

Table 14-22 GID-96 coding table 5343

Scheme GID-96

URI Template urn:epc:tag:gid-96:M.C.S

Total Bits 96

Logical Segment EPC Header General Manager
Number3

Object Class Serial Number

Logical Segment
Bit Count

8 28 24 36

Coding Segment EPC Header General Manager
Number

Object Class Serial Number

URI portion M C S

Coding Segment
Bit Count

8 28 24 36

Bit Position
(counting down)

b95b94…b88 b87b86…b60 b59b58…b36 b35b34…b0

Bit Position
(counting up)

b0b1…b7 b8b9…b35 b36b37…b59 b60b61…b95

3 NOTE that General Manager Number issuance has been discontinued, effective June 2023.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 191 of 315

Scheme GID-96

Coding Method 00110101 Integer
§14.3.1
§14.4.1

Integer
§14.3.1
§14.4.1

Integer
§14.3.1
§14.4.1

14.6.13 DoD Identifier 5344

At the time of this writing, the details of the DoD encoding is explained in a document titled "United 5345
States Department of Defense Supplier's Passive RFID Information Guide" that can be obtained at 5346
the United States Department of Defense's web site 5347
(https://www.dla.mil/Portals/104/Documents/TroopSupport/CloTex/CT_RFID_GUIDE_2011.pdf). 5348

14.6.14 ADI Identifier (ADI) 5349

One coding scheme for the ADI identifier is specified: the variable-length encoding ADI-var. No 5350
partition table is required. 5351

14.6.14.1 ADI-var coding table 5352

Table 14-23 ADI-var coding table 5353

Scheme ADI-var

URI
Template

urn:epc:tag:adi-var:F.D.P.S

Total Bits Variable: between 68 and 434 bits (inclusive)

Logical
Segment

EPC Header Filter CAGE/ DoDAAC Part Number Serial
Number

Logical
Segment Bit
Count

8 6 36 Variable Variable

Logical
Segment
Character
Count

 6 characters 1-33
characters

2-31
characters

Coding
Segment

EPC Header Filter CAGE/ DoDAAC Part Number Serial
Number

URI Portion F D P S

Coding
Segment Bit
Count

8 6 36 Variable (6 –
198)

Variable
(12 – 186)

Bit Position
(counting
down)

bB-1bB-2…bB-8 bB-9bB-10…bB-14 bB-15bB-16…bB-50 bB-51bB-52… …b1b0

Bit Position
(counting up)

b0..b7 b8..b13 b14..b49 b50 b51… …bB-2bB-1

Coding
Method

00111011 Integer
§14.3.1
§14.4.1

6-bit CAGE/
DoDAAC
§14.3.7
§14.4.7

6-bit Variable
String
§14.3.8
§14.4.8

6-bit
Variable
String
§14.3.8
§14.4.8

Notes: 5354

The number of characters in the Part Number segment must be greater than or equal to zero and 5355
less than or equal to 32. In the binary encoding, a 6-bit zero terminator is always present. 5356

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 192 of 315

The number of characters in the Serial Number segment must be greater than or equal to one and 5357
less than or equal to 30. In the binary encoding, a 6-bit zero terminator is always present. 5358

The "#" character (represented in the URI by the escape sequence %23) may appear as the first 5359
character of the Serial Number segment, but otherwise may not appear in the Part Number segment 5360
or elsewhere in the Serial Number segment. 5361

15 EPC Memory Bank contents 5362

This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary contents of 5363
the EPC memory bank of a Gen 2 Tag, and vice versa. 5364

15.1 Encoding procedures 5365

This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary contents of 5366
the EPC memory bank of a Gen 2 Tag. 5367

15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank 5368

Given: 5369

■ An EPC Tag URI beginning with urn:epc:tag: 5370

Encoding procedure: 5371

1. If the URI is not syntactically valid according to Section 12.4, stop: this URI cannot be encoded. 5372

2. Apply the encoding procedure of Section 14.3 to the URI. The result is a binary string of N bits. 5373
If the encoding procedure fails, stop: this URI cannot be encoded. 5374

3. Fill in the Gen 2 EPC Memory Bank according to the following table: 5375

Table 15-1 Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI 5376

Bits Field Contents

00h – 0Fh CRC CRC code calculated from the remainder of the memory bank. (Normally, this is
calculated automatically by the reader, and so software that implements this
procedure need not be concerned with it.)

10h – 14h Length The number of bits, N, in the EPC binary encoding determined in Step 2 above,
divided by 16, and rounded up to the next higher integer if N was not a multiple
of 16.

15h User Memory
Indicator

If the EPC Tag URI includes a control field [umi=1], a one bit.

If the EPC Tag URI includes a control field [umi=0] or does not contain a umi
control field, a zero bit.
Note that certain Gen 2 Tags may ignore the value written to this bit, and
instead calculate the value of the bit from the contents of user memory. See
[UHFC1G2].

16h XPC Indicator This bit is calculated by the tag and ignored by the tag when the tag is written,
and so is disregarded by this encoding procedure.

17h Toggle 0, indicating that the EPC bank contains an EPC

18h – 1Fh Attribute Bits If the EPC Tag URI includes a control field [att=xNN], the value NN
considered as an 8-bit hexadecimal number.
If the EPC Tag URI does not contain such a control field, zero.

20h – ? EPC/UII The N bits obtained from the EPC binary encoding procedure in Step 2 above,
followed by enough zero bits to bring the total number of bits to a multiple of
16 (0 – 15 extra zero bits)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 193 of 315

15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank 5377

Given: 5378

■ An EPC Raw URI beginning with urn:epc:raw:. Such a URI has one of the following three forms: 5379

urn:epc:raw:OptionalControlFields:Length.xHexPayload 5380

urn:epc:raw:OptionalControlFields:Length.xAFI.xHexPayload 5381

urn:epc:raw:OptionalControlFields:Length.DecimalPayload 5382

Encoding procedure: 5383

1. If the URI is not syntactically valid according to the grammar in Section 12.4, stop: this URI 5384
cannot be encoded. 5385

2. Extract the leftmost NonZeroComponent according to the grammar (the Length field in the 5386
templates above). This component immediately follows the rightmost colon (:) character. 5387
Consider this as a decimal integer, N. This is the number of bits in the raw payload. 5388

3. Determine the toggle bit and AFI (if any): 5389

a. If the body of the URI matches the DecimalRawURIBody or HexRawURIBody production of 5390
the grammar (the first and third templates above), the toggle bit is zero. 5391

b. If the body of the URI matches the AFIRawURIBody production of the grammar (the second 5392
template above), the toggle bit is one. The AFI is the value of the leftmost HexComponent 5393
within the AFIRawURIBody (the AFI field in the template above), considered as an 8-bit 5394
unsigned hexadecimal integer. If the value of the HexComponent is greater than or equal to 5395
256, stop: this URI cannot be encoded. 5396

4. Determine the EPC/UII payload: 5397

c. If the body of the URI matches the HexRawURIBody production of the grammar (first 5398
template above) or AFIRawURIBody production of the grammar (second template above), 5399
the payload is the rightmost HexComponent within the body (the HexPayload field in the 5400
templates above), considered as an N-bit unsigned hexadecimal integer, where N is as 5401
determined in Step 2 above. If the value of this HexComponent greater than or equal to 2N, 5402
stop: this URI cannot be encoded. 5403

d. If the body of the URI matches the DecimalRawURIBody production of the grammar (third 5404
template above), the payload is the rightmost NumericComponent within the body (the 5405
DecimalPayload field in the template above), considered as an N-bit unsigned decimal 5406
integer, where N is as determined in Step 2 above. If the value of this NumericComponent 5407
greater than or equal to 2N, stop: this URI cannot be encoded. 5408

5. Fill in the Gen 2 EPC Memory Bank according to the following table: 5409

Table 15-2 Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI 5410

Bits Field Contents

00h – 0Fh CRC CRC code calculated from the remainder of the memory bank. (Normally, this is
calculated automatically by the reader, and so software that implements this
procedure need not be concerned with it.)

10h – 14h Length The number of bits, N, in the EPC binary encoding determined in Step 2 above,
divided by 16, and rounded up to the next higher integer if N was not a multiple
of 16.

15h User Memory
Indicator

This bit is calculated by the tag and ignored by the tag when the tag is written,
and so is disregarded by this encoding procedure.

16h XPC Indicator This bit is calculated by the tag and ignored by the tag when the tag is written,
and so is disregarded by this encoding procedure.

17h Toggle The value determined in Step 3, above.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 194 of 315

Bits Field Contents

18h – 1Fh AFI / Attribute
Bits

If the toggle determined in Step 3 is one, the value of the AFI determined in
Step 3.2. Otherwise,
If the URI includes a control field [att=xNN], the value NN considered as an
8-bit hexadecimal number.
If the URI does not contain such a control field, zero.

20h – ? EPC/UII The N bits determined in Step 4 above, followed by enough zero bits to bring
the total number of bits to a multiple of 16 (0 – 15 extra zero bits)

15.2 Decoding procedures 5411

This section specifies how to translate the binary contents of the EPC memory bank of a Gen 2 Tag 5412
into the EPC Tag URI and EPC Raw URI. 5413

15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI 5414

Given: 5415

■ The contents of the EPC Memory Bank of a Gen 2 tag 5416

Procedure: 5417

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 5418

2. Calculate N = 16L. 5419

3. If bit 17h is set to one, extract bits 18h – 1Fh and consider them to be an unsigned integer A. 5420
Construct a string consisting of the letter "x", followed by A as a 2-digit hexadecimal numeral 5421
(using digits and uppercase letters only), followed by a period ("."). 5422

4. Apply the decoding procedure of Section 15.2.4 to decode control fields. 5423

5. Extract N bits beginning at bit 20h and consider them to be an unsigned integer V. Construct a 5424
string consisting of the letter "x" followed by V as a (N/4)-digit hexadecimal numeral (using 5425
digits and uppercase letters only). 5426

6. Construct a string consisting of "urn:epc:raw:", followed by the result from Step 4 (if not 5427
empty), followed by N as a decimal numeral without leading zeros, followed by a period ("."), 5428
followed by the result from Step 3 (if not empty), followed by the result from Step 5. This is the 5429
final EPC Raw URI. 5430

15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI 5431

This procedure decodes the contents of a Gen 2 EPC Memory bank into an EPC Tag URI beginning 5432
with urn:epc:tag: if the memory contains a valid EPC, or into an EPC Raw URI beginning 5433
urn:epc:raw: otherwise. 5434

Given: 5435

■ The contents of the EPC Memory Bank of a Gen 2 tag 5436

Procedure: 5437

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 5438

2. Calculate N = 16L. 5439

3. Extract N bits beginning at bit 20h. Apply the decoding procedure of Section 14.3.9, passing the 5440
N bits as the input to that procedure. 5441

4. If the decoding procedure of Section 14.3.9 fails, continue with the decoding procedure of 5442
Section 15.2.1 to compute an EPC Raw URI. Otherwise, the decoding procedure of 5443
Section 14.3.9 yielded an EPC Tag URI beginning urn:epc:tag:. Continue to the next step. 5444

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 195 of 315

5. Apply the decoding procedure of Section 15.2.4 to decode control fields. 5445

6. Insert the result from Section 15.2.4 (including any trailing colon) into the EPC Tag URI 5446
obtained in Step 4, immediately following the urn:epc:tag: prefix. (If Section 15.2.4 yielded 5447
an empty string, this result is identical to what was obtained in Step 4.) The result is the final 5448
EPC Tag URI. 5449

15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI 5450

This procedure decodes the contents of a Gen 2 EPC Memory bank into a Pure Identity EPC URI 5451
beginning with urn:epc:id: if the memory contains a valid EPC, or into an EPC Raw URI beginning 5452
urn:epc:raw: otherwise. 5453

Given: 5454

■ The contents of the EPC Memory Bank of a Gen 2 tag 5455

Procedure: 5456

1. Apply the decoding procedure of Section 15.2.2 to obtain either an EPC Tag URI or an EPC Raw 5457
URI. If an EPC Raw URI is obtained, this is the final result. 5458

2. Otherwise, apply the procedure of Section 12.3.3 to the EPC Tag URI from Step 1 to obtain a 5459
Pure Identity EPC URI. This is the final result. 5460

15.2.4 Decoding of control information 5461

This procedure is used as a subroutine by the decoding procedures in Sections 15.2.1 and 15.2.2. It 5462
calculates a string that is inserted immediately following the urn:epc:tag: or urn:epc:raw: 5463
prefix, containing the values of all non-zero control information fields (apart from the filter value). If 5464
all such fields are zero, this procedure returns an empty string, in which case nothing additional is 5465
inserted after the urn:epc:tag: or urn:epc:raw: prefix. 5466

Given: 5467

■ The contents of the EPC Memory Bank of a Gen 2 tag 5468

Procedure: 5469

1. If bit 17h is zero, extract bits 18h – 1Fh and consider them to be an unsigned integer A. If A is 5470
non-zero, append the string [att=xAA] (square brackets included) to CF, where AA is the value 5471
of A as a two-digit hexadecimal numeral. 5472

2. If bit 15h is non-zero, append the string [umi=1] (square brackets included) to CF. 5473

3. If bit 16h is non-zero, extract bits 210h – 21Fh and consider them to be an unsigned integer X. 5474
Append the string [xpc-w1=xXXXX] (square brackets included) to CF, where XXXX is the value 5475
of X as a four-digit hexadecimal numeral. Note that in the Gen 2 air interface, bits 210h – 21Fh 5476
are inserted into the backscattered inventory data immediately following bit 1Fh, when bit 16h is 5477
non-zero. See [UHFC1G2]. If bit 210h is non-zero, extract bits 220h – 22Fh and consider them to 5478
be an unsigned integer Y. Append the string [xpc=xXXXXYYYY] (square brackets included) to 5479
CF, where YYYY is the value of Y as a four-digit hexadecimal numeral. Note that in the Gen 2 air 5480
interface, bits 220h – 22Fh are inserted into the backscattered inventory data immediately 5481
following bit 21Fh, when bit 210h is non-zero. See [UHFC1G2]. 5482

4. Return the resulting string (which may be empty). 5483

15.3 '+AIDC data' following new EPC schemes in the EPC/UII memory bank 5484

All of the new EPC schemes introduced in TDS 2.0 (DSGTIN+, SGTIN+ etc.) support appending of a 5485
AIDC data beyond the end of the EPC within the EPC/UII memory bank. 5486

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 196 of 315

A single bit that follows immediately after the 8-bit EPC header of the new EPC schemes serves as a 5487
toggle bit for '+AIDC data'. If this bit is set 1, additional AIDC data is expected after the EPC. If this 5488
bit is set to 0 no additional AIDC data is expected. 5489

This is illustrated in the figure below: 5490
Figure 15-1 Example of '+AIDC data' in EPC/UII memory 5491

 5492
Each set of additional AIDC data begins with an 8-bit AIDC data header, which is interpreted as two 5493
4-bit hexadecimal characters. If either or both of these characters are in the range A-F, these 5494
indicate a special header typically used for optimisation purposes or reserved for future use. 5495
Otherwise, if both of these characters are in the range 0 to 9, they should be interpreted as the first 5496
two digits of a GS1 Application Identifier key. GS1 Application Identifier keys consists of two, three 5497
or four digits, such as (01), (414), (8003). By consulting Figure 7.8.1-2 within the GS1 General 5498
Specifications, it is possible to determine whether additional digits need to be read for GS1 5499
Application Identifier keys that are three or four digits in length. 5500

For example, in Figure 7.8.1-2 within the GS1 General Specifications, 41 is always the start of a 3-5501
digit key 41n, while 80 is always the start of a 4-digit key, 80nn. Table K is derived from GS1 Gen 5502
Specs Figure 7.8.1-2, adding an additional column to indicate how many additional bits need to be 5503
read beyond the initial eight bits of the data header. 5504

 5505

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 197 of 315

Table K is shown in full below. It is derived from Figure 7.8.1-2 of the GS1 General Specifications 5506
and includes an extra column that indicates the number of additional bits to be read. 5507
 5508

First two
digits GS1 AI length

Additional
bits to read

 First two
digits GS1 AI length

Additional
bits to read

00 2 0 37 2 0

01 2 0 39 4 8

02 2 0 40 3 4

10 2 0 41 3 4

11 2 0 42 3 4

12 2 0 43 4 8

13 2 0 70 4 8

15 2 0 71 3 4

16 2 0 72 4 8

17 2 0 80 4 8

20 2 0 81 4 8

21 2 0 82 4 8

22 2 0 90 2 0

23 3 4 91 2 0

24 3 4 92 2 0

25 3 4 93 2 0

31 4 8 94 2 0

32 4 8 95 2 0

33 4 8 96 2 0

34 4 8 97 2 0

35 4 8 98 2 0

36 4 8 99 2 0

If the first two digits are not shown in Table K, no GS1 Application Identifier key begins with those 5509
two digits. 5510

If a 2-digit key is indicated, no additional bits must be read – the 8-bit data header is interpreted as 5511
a two-digit GS1 Application Identifier key. 5512

If a 3-digit key is indicated, four additional bits must be read beyond the 8-bit data header and 5513
interpreted as the third digit of the GS1 Application Identifier key. 5514
If a 4-digit key is indicated, a further eight bits must be read after the 8-bit data header and 5515

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 198 of 315

interpreted as the third and fourth digits of the GS1 Application Identifier key. This is illustrated in 5516
the Figure below: 5517

Figure 15-2 Reading and interpreting additional bits after the 8-bit data header 5518

 5519
After determining the GS1 Application Identifier key (whether 2,3 or 4 digits), a lookup in column a 5520
of Table F explains how the corresponding value is to be encoded. Most values consist of a single 5521
component which is either numeric or alphanumeric and may be fixed length or variable length. 5522

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 199 of 315

However, a small number of values consist of two components where the second component is 5523
typically variable-length and maybe alphanumeric or numeric, while the first component is typically 5524
fixed length. 5525

Locate the row containing GS1 Application Identifier key in column a of Table F, then read column b 5526
to determine the encoding for the first component of the value. 5527

 5528

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 200 of 315

If the first component is fixed-length, the number of characters is shown in column d and the number of bits is shown in column e. For the examples 5529
shown in the figure above, the extract of Table F is shown below: 5530

If the value is variable-length, column h indicates the maximum number of characters permitted for the first component and column g specifies the 5531
number of bits for the length indicator. 5532

Table F is shown in full below. Note that a small number of GS1 Application Identifiers have a second component in Table F, shown as values in columns 5533
i-o, which are analogous to columns b-h but apply to the second component that is encoded in binary immediately after the first component. The GS1 5534
Application Identifiers that use a second component are the following: 5535
(253), (255), (3910)-(3919), (3930)-(3939), (421), (4330)-(4333), (7030)-(7039), (7040), (8003). 5536

 5537
Table F – GS1 Application Identifiers and details about the format of their values and encoding of their values in binary 5538

a b d e f g h i k l m n o

AI First component Second component

Format Fi
xe

d
le

ng
th

#

ch
r

Fi
xe

d
le

ng
th

#

bi
ts

En
co

di
ng

in

di
ca

to
r

#
bi

ts

Le
ng

th

in
di

ca
to

r
#

bi
ts

re

qu
ir
ed

M

ax
.

Le
ng

th

(c
hr

s)

Format Fi
xe

d
le

ng
th

#

ch
r

Fi
xe

d
le

ng
th

#

bi
ts

En
co

di
ng

in

di
ca

to
r

#
bi

ts

Le
ng

th

in
di

ca
to

r
#

bi
ts

re

qu
ir
ed

M
ax

.
Le

ng
th

(c

hr
s)

 L bLI Lmax L bLI Lmax

00 Fixed-length numeric
§14.5.4

18 72

01 Fixed-length numeric
§14.5.4

14 56

02 Fixed-length numeric
§14.5.4

14 56

10 Variable-length
alphanumeric §14.5.6

 3 5 20

11 6-digit date YYMMDD
§14.5.8

6 16

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 201 of 315

12 6-digit date YYMMDD
§14.5.8

6 16

13 6-digit date YYMMDD
§14.5.8

6 16

15 6-digit date YYMMDD
§14.5.8

6 16

16 6-digit date YYMMDD
§14.5.8

6 16

17 6-digit date YYMMDD
§14.5.8

6 16

20 Fixed-Bit-Length
Numeric String §14.5.2

2 7

21 Variable-length
alphanumeric §14.5.6

 3 5 20

22 Variable-length
alphanumeric §14.5.6

 3 5 20

235 Variable-length
alphanumeric §14.5.6

 3 5 28

240 Variable-length
alphanumeric §14.5.6

 3 5 30

241 Variable-length
alphanumeric §14.5.6

 3 5 30

242 Variable-length numeric
string without encoding
indicator §14.5.13

 3 6

243 Variable-length
alphanumeric §14.5.6

 3 5 20

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 202 of 315

250 Variable-length
alphanumeric §14.5.6

 3 5 30

251 Variable-length
alphanumeric §14.5.6

 3 5 30

253 Fixed-length numeric
§14.5.4

13 52 Variable-
length
alphanume
ric §14.5.6

 3 5 17

254 Variable-length
alphanumeric §14.5.6

 3 5 20

255 Fixed-length numeric
§14.5.4

13 52 Variable-
length
numeric
string
without
encoding
indicator
§14.5.13

 4 12

30 Variable-length numeric
string without encoding
indicator §14.5.13

 4 8

3100
-3105

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3110
-3115

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3120
-3125

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3130
-3135

Fixed-Bit-Length
Numeric String §14.5.2

6 20

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 203 of 315

3140
-3145

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3150
-3155

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3160
-3165

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3200
-3205

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3210
-3215

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3220
-3225

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3230
-3235

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3240
-3245

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3250
-3255

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3260
-3265

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3270
-3275

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3280
-3285

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3290
-3295

Fixed-Bit-Length
Numeric String §14.5.2

6 20

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 204 of 315

3300
-3305

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3310
-3315

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3320
-3325

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3330
-3335

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3340
-3345

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3350
-3355

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3360
-3365

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3370
-3375

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3400
-3405

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3410
-3415

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3420
-3425

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3430
-3435

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3440
-3445

Fixed-Bit-Length
Numeric String §14.5.2

6 20

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 205 of 315

3450
-3455

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3460
-3465

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3470
-3475

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3480
-3485

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3490
-3495

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3500
-3505

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3510
-3515

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3520
-3525

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3530
-3535

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3540
-3545

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3550
-3555

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3560
-3565

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3570
-3575

Fixed-Bit-Length
Numeric String §14.5.2

6 20

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 206 of 315

3600
-3605

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3610
-3615

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3620
-3625

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3630
-3635

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3640
-3645

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3650
-3655

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3660
-3665

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3670
-3675

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3680
-3685

Fixed-Bit-Length
Numeric String §14.5.2

6 20

3690
-3695

Fixed-Bit-Length
Numeric String §14.5.2

6 20

37 Variable-length numeric
string without encoding
indicator §14.5.13

 4 8

3900
-3909

Variable-length numeric
string without encoding
indicator §14.5.13

 4 15

3910
-3919

Fixed-Bit-Length
Numeric String §14.5.2

3 10 Variable-
length

 4 15

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 207 of 315

numeric
string
without
encoding
indicator
§14.5.13

3920
-3929

Variable-length numeric
string without encoding
indicator §14.5.13

 4 15

3930
-3939

Fixed-Bit-Length
Numeric String §14.5.2

3 10 Variable-
length
numeric
string
without
encoding
indicator
§14.5.13

 4 15

3940
-3943

Fixed-Bit-Length
Numeric String §14.5.2

4 14

3950
-3953

Fixed-Bit-Length
Numeric String §14.5.2

6 20

400 Variable-length
alphanumeric §14.5.6

 3 5 30

401 Variable-length
alphanumeric §14.5.6

 3 5 30

402 Fixed-Bit-Length
Numeric String §14.5.2

17 57

403 Variable-length
alphanumeric §14.5.6

 3 5 30

410
- 417

Fixed-length numeric
§14.5.4

13 52

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 208 of 315

420 Variable-length
alphanumeric §14.5.6

 3 5 20

421 Fixed-Bit-Length
Numeric String §14.5.2

3 10 Variable-
length
alphanume
ric §14.5.6

 3 4 9

422 Fixed-Bit-Length
Numeric String §14.5.2

3 10

423 Variable-length numeric
string without encoding
indicator §14.5.13

 4 15

424 Fixed-Bit-Length
Numeric String §14.5.2

3 10

425 Variable-length numeric
string without encoding
indicator §14.5.13

 4 15

426 Fixed-Bit-Length
Numeric String §14.5.2

3 10

427 Variable-length
alphanumeric §14.5.6

 3 2 3

4300 Variable-length
alphanumeric §14.5.6

 3 6 35

4301 Variable-length
alphanumeric §14.5.6

 3 6 35

4302 Variable-length
alphanumeric §14.5.6

 3 7 70

4303 Variable-length
alphanumeric §14.5.6

 3 7 70

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 209 of 315

4304 Variable-length
alphanumeric §14.5.6

 3 7 70

4305 Variable-length
alphanumeric §14.5.6

 3 7 70

4306 Variable-length
alphanumeric §14.5.6

 3 7 70

4307 Country code
(ISO 3166-1 alpha-2)
§14.5.12

2 12

4308 Variable-length
alphanumeric §14.5.6

 3 5 30

4309 Fixed-Bit-Length
Numeric String §14.5.2

20 67

4310 Variable-length
alphanumeric §14.5.6

 3 6 35

4311 Variable-length
alphanumeric §14.5.6

 3 6 35

4312 Variable-length
alphanumeric §14.5.6

 3 7 70

4313 Variable-length
alphanumeric §14.5.6

 3 7 70

4314 Variable-length
alphanumeric §14.5.6

 3 7 70

4315 Variable-length
alphanumeric §14.5.6

 3 7 70

4316 Variable-length
alphanumeric §14.5.6

 3 7 70

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 210 of 315

4317 Country code
(ISO 3166-1 alpha-2)
§14.5.12

2 12

4318 Variable-length
alphanumeric §14.5.6

 3 5 20

4319 Variable-length
alphanumeric §14.5.6

 3 5 30

4320 Variable-length
alphanumeric §14.5.6

 3 6 35

4321 Single data bit
§14.5.7

1 1

4322 Single data bit
§14.5.7

1 1

4323 Single data bit
§14.5.7

1 1

4324 10-digit date+time
YYMMDDhhmm §14.5.9

10 27

4325 10-digit date+time
YYMMDDhhmm §14.5.9

10 27

4326 6-digit date YYMMDD
§14.5.8

6 16

4330 Fixed-Bit-Length
Numeric String §14.5.2

6 20 Optional
minus sign
in 1 bit
(§14.5.14)

 1 1

4331 Fixed-Bit-Length
Numeric String §14.5.2

6 20 Optional
minus sign
in 1 bit
(§14.5.14)

 1 1

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 211 of 315

4332 Fixed-Bit-Length
Numeric String §14.5.2

6 20 Optional
minus sign
in 1 bit
(§14.5.14)

 1 1

4333 Fixed-Bit-Length
Numeric String §14.5.2

6 20 Optional
minus sign
in 1 bit
(§14.5.14)

 1 1

7001 Fixed-Bit-Length
Numeric String §14.5.2

13 44

7002 Variable-length
alphanumeric §14.5.6

 3 5 30

7003 10-digit date+time
YYMMDDhhmm §14.5.9

10 27

7004 Variable-length numeric
string without encoding
indicator §14.5.13

 3 4

7005 Variable-length
alphanumeric §14.5.6

 3 4 12

7006 6-digit date YYMMDD
§14.5.8

6 16

7007 Variable-format date /
date range §14.5.10

7008 Variable-length
alphanumeric §14.5.6

 3 2 3

7009 Variable-length
alphanumeric §14.5.6

 3 4 10

7010 Variable-length
alphanumeric §14.5.6

 3 2 2

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 212 of 315

7011 Variable-precision
date+time §14.5.11

7020 Variable-length
alphanumeric §14.5.6

 3 5 20

7021 Variable-length
alphanumeric §14.5.6

 3 5 20

7022 Variable-length
alphanumeric §14.5.6

 3 5 20

7023 Delimited/terminated
numeric §14.5.5

 3 5 30

7030
-7039

Fixed-Bit-Length
Numeric String §14.5.2

3 10 Variable-
length
alphanume
ric §14.5.6

 3 5 27

7040 Variable-length
alphanumeric §14.5.6

 3 3 4

7041 Variable-length
alphanumeric §14.5.6

 3 3 4

710
- 716

Variable-length
alphanumeric §14.5.6

 3 5 20

7230
-7239

Variable-length
alphanumeric §14.5.6

 3 5 30

7240 Variable-length
alphanumeric §14.5.6

 3 5 20

7241 Fixed-length numeric
§14.5.4

2 8

7242 Variable-length
alphanumeric §14.5.6

 3 5 25

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 213 of 315

7250 Fixed-Bit-Length
Numeric String §14.5.2

8 27

7251 Fixed-Bit-Length
Numeric String §14.5.2

12 40

7252 Fixed-Bit-Length
Numeric String §14.5.2

1 4

7253 Variable-length
alphanumeric §14.5.6

 3 6 40

7254 Variable-length
alphanumeric §14.5.6

 3 6 30

7255 Variable-length
alphanumeric §14.5.6

 3 4 10

7256 Variable-length
alphanumeric §14.5.6

 3 7 90

7257 Variable-length
alphanumeric §14.5.6

 3 7 70

7258 Sequence indicator
§14.5.15

3 8

7259 Variable-length
alphanumeric §14.5.6

 3 6 40

8001 Fixed-Bit-Length
Numeric String §14.5.2

14 47

8002 Variable-length
alphanumeric §14.5.6

 3 5 20

8003 Fixed-length numeric
§14.5.4

14 56 Variable-
length
alphanume
ric §14.5.6

 3 5 16

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 214 of 315

8004 Delimited/terminated
numeric §14.5.5

 3 5 30

8005 Fixed-Bit-Length
Numeric String §14.5.2

6 20

8006 Fixed-length numeric
§14.5.4

18 72

8007 Variable-length
alphanumeric §14.5.6

 3 5 24

8008 Variable-precision
date+time §14.5.11

8009 Variable-length
alphanumeric §14.5.6

 3 6 50

8010 Delimited/terminated
numeric §14.5.5

 3 5 30

8011 Variable-length numeric
string without encoding
indicator §14.5.13

 4 12

8012 Variable-length
alphanumeric §14.5.6

 3 5 20

8013 Variable-length
alphanumeric §14.5.6

 3 5 25

8017 Fixed-length numeric
§14.5.4

18 72

8018 Fixed-length numeric
§14.5.4

18 72

8019 Variable-length numeric
string without encoding
indicator §14.5.13

 4 10

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2025 GS1 AISBL Page 215 of 315

8020 Variable-length
alphanumeric §14.5.6

 3 5 25

8026 Fixed-length numeric
§14.5.4

18 72

8030 Variable-length
alphanumeric §14.5.6

 3 7 90

8110 Variable-length
alphanumeric §14.5.6

 3 7 70

8111 Fixed-Bit-Length
Numeric String §14.5.2

4 14

8112 Variable-length
alphanumeric §14.5.6

 3 7 70

8200 Variable-length
alphanumeric §14.5.6

 3 7 70

90 Variable-length
alphanumeric §14.5.6

 3 5 30

91-99 Variable-length
alphanumeric §14.5.6

 3 7 90

 5539

Note that the following data attributes are intentionally omitted: 5540

Identification of a Made-to-order (MtO) trade item (GTIN) [AI (03)] and Highly Individualised Device Registration Identifier (HIDRI) [AI (8014)] are 5541
defined for the Master Unique Device Identifiers – Device Identifier (M-UDI-DI) restricted application, and as such are not permitted for use in an 5542
EPC/RFID data carrier. 5543

 5544

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 216 of 315

Table E (see Section 14.5.6) lists the permitted values for encoding indicator together with the 5545
encoding methods and the character ranges supported by each method. 5546

Note that variable-length numeric values do not use an encoding indicator but typically do use a 5547
length indicator. The exception to the statement above is for the GIAI and CPI, which use the 5548
'terminated/delimited' encoding method, in which a delimiter or terminator character marks the end 5549
of an initial all-numeric sequence. If the remainder is an alphanumeric sequence, the delimiter 5550
character is followed by an encoding indicator, length indicator and the encoding of the 5551
alphanumeric sequence. 5552

Where present, the length indicator always indicates the total number of characters or digits for that 5553
value or component. For example a value 00101 indicates a length of 5 characters. 5554

The figure below shows two examples for encoding a batch/lot number, one all-numeric, the other 5555
alphanumeric. The two examples illustrate different values of encoding indicator and length 5556
indicator, as well as the corresponding bit layouts. Note that because the first example is all-5557
numeric, integer encoding at 3.32bits per digit can be used, whereas the second example is mixed 5558
case alphanumeric, but because it is not using any symbol characters, we can use file-safe URI-safe 5559
base64 encoding at 6 bits per character. 5560

 5561
Figure 15-3 Examples of encoding all-numeric and alphanumeric batch/lot number 5562

 5563
The number of bits required for the length indicator depends on the maximum permitted length for 5564
the value (or the value of the first / second component shown in Table F). Columns g and n of 5565
Table F indicate the number of bits to be used for the length indicator (where present), for the first 5566
and second components respectively. 5567

Date values and date-time values use particularly optimised encodings to save bits and column b of 5568
Table F indicates dedicated methods for efficiently encoding/decoding date value or date+time 5569
values. 5570

It is possible to encode more than one AIDC data value after the EPC by repeating the procedure 5571
and adding further data headers for each successive GS1 Application Identifier and its value. This is 5572
illustrated in the following figure. All remaining bits up to the next 16-bit word boundary SHALL be 5573
set to '0'. 5574

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 217 of 315

Figure 15-4 Encoding more than one AIDC data value after the EPC 5575

 5576
When decoding +AIDC data encoded after the EPC, the decoding procedure should be repeated if 5577
the number of 16-bit words indicated by the Gen 2 Protocol Control bits 10h – 14h indicate that 5578
further bits have been encoded. If fewer than 8 bits remain before the indicated word count is 5579
reached, there can be no further +AIDC data. Otherwise, if at least 8 further bits remain, consider 5580
the following three options: 5581

■ If the next 8-bits are not '00000000', repeat the procedure, considering those 8 bits as the next 5582
+AIDC data header. 5583

■ If the next 8 bit are '00000000' and at least 72 bits remain, consider those 8 bits as a +AIDC 5584
data header for an SSCC (00) and decode the following 72 bits using the Fixed-length Numeric 5585
method described in §14.5.4. 5586

■ If the next 8 bit are '00000000' and fewer than 72 bits remain, stop, since this cannot be 5587
decoded as an SSCC (00). 5588

All additional AIDC data expressed within the EPC/UII memory bank SHALL observe the rules 5589
regarding mandatory associations and invalid pairs of GS1 Application Identifiers, defined in the GS1 5590
General Specifications and considering the GS1 Application Identifiers that are effectively already 5591
expressed by the EPC identifier itself, e.g. (01) and (21) in the case of SGTIN+. 5592

The non-binary values decoded for AIDC data expressed within the EPC/UII memory bank SHALL 5593
observe the rules regarding format and content that are defined for the corresponding GS1 5594
Application Identifier within the GS1 General Specifications. 5595

Table B (shown below) calculates the number of bits required to encode the value of a string of 5596
length L depending on the encoding method selected. This table may be used to avoid the need for 5597
floating-point arithmetic calculations. 5598

 Encoding
indicator
000

Encoding
indicator
001 or 010

Encoding
indicator
101

Encoding
indicator
011

Encoding
indicator
100

L = Number of digits
or characters

Integer
encoding

@ ≈ 3.32
bits / digit

Numeric
string
encoding

@ 4 bits /
digit

URN Code
40 encoding

@ 16 bits
per 3
characters

File-safe
base 64
encoding

@ 6 bits
per
character

Truncated
ASCII
encoding

@7 bits per
character

1 4 4 16 6 7

2 7 8 16 12 14

3 10 12 16 18 21

4 14 16 32 24 28

5 17 20 32 30 35

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 218 of 315

 Encoding
indicator
000

Encoding
indicator
001 or 010

Encoding
indicator
101

Encoding
indicator
011

Encoding
indicator
100

6 20 24 32 36 42

7 24 28 48 42 49

8 27 32 48 48 56

9 30 36 48 54 63

10 34 40 64 60 70

11 37 44 64 66 77

12 40 48 64 72 84

13 44 52 80 78 91

14 47 56 80 84 98

15 50 60 80 90 105

16 54 64 96 96 112

17 57 68 96 102 119

18 60 72 96 108 126

19 64 76 112 114 133

20 67 80 112 120 140

21 70 84 112 126 147

22 74 88 128 132 154

23 77 92 128 138 161

24 80 96 128 144 168

25 84 100 144 150 175

26 87 104 144 156 182

27 90 108 144 162 189

28 94 112 160 168 196

29 97 116 160 174 203

30 100 120 160 180 210

31 103 124 176 186 217

32 107 128 176 192 224

33 110 132 176 198 231

34 113 136 192 204 238

35 117 140 192 210 245

36 120 144 192 216 252

37 123 148 208 222 259

38 127 152 208 228 266

39 130 156 208 234 273

40 133 160 224 240 280

41 137 164 224 246 287

42 140 168 224 252 294

43 143 172 240 258 301

44 147 176 240 264 308

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 219 of 315

 Encoding
indicator
000

Encoding
indicator
001 or 010

Encoding
indicator
101

Encoding
indicator
011

Encoding
indicator
100

45 150 180 240 270 315

46 153 184 256 276 322

47 157 188 256 282 329

48 160 192 256 288 336

49 163 196 272 294 343

50 167 200 272 300 350

51 170 204 272 306 357

52 173 208 288 312 364

53 177 212 288 318 371

54 180 216 288 324 378

55 183 220 304 330 385

56 187 224 304 336 392

57 190 228 304 342 399

58 193 232 320 348 406

59 196 236 320 354 413

60 200 240 320 360 420

61 203 244 336 366 427

62 206 248 336 372 434

63 210 252 336 378 441

64 213 256 352 384 448

65 216 260 352 390 455

66 220 264 352 396 462

67 223 268 368 402 469

68 226 272 368 408 476

69 230 276 368 414 483

70 233 280 384 420 490

71 236 284 384 426 497

72 240 288 384 432 504

73 243 292 400 438 511

74 246 296 400 444 518

75 250 300 400 450 525

76 253 304 416 456 532

77 256 308 416 462 539

78 260 312 416 468 546

79 263 316 432 474 553

80 266 320 432 480 560

81 270 324 432 486 567

82 273 328 448 492 574

83 276 332 448 498 581

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 220 of 315

 Encoding
indicator
000

Encoding
indicator
001 or 010

Encoding
indicator
101

Encoding
indicator
011

Encoding
indicator
100

84 280 336 448 504 588

85 283 340 464 510 595

86 286 344 464 516 602

87 290 348 464 522 609

88 293 352 480 528 616

89 296 356 480 534 623

90 299 360 480 540 630

 5599

16 Tag Identification (TID) Memory Bank Contents 5600

To conform to this specification, the Tag Identification memory bank (bank 10) SHALL contain an 8 5601
bit ISO/IEC 15963 [ISO15963] allocation class identifier of E2h at memory locations 00h to 07h. TID 5602
memory above location 07h SHALL be configured as follows: 5603

■ 08h: XTID (X) indicator (whether a Tag implements Extended Tag Identification, XTID) 5604

■ 09h: Security (S) indicator (whether a Tag supports the Authenticate and/or Challenge commands) 5605

■ 0Ah: File (F) indicator (whether a Tag supports the FileOpen command) 5606

■ 0Bh to 13h: a 9-bit mask-designer identifier (MDID) available from GS1 5607

■ 14h to 1Fh: a 12-bit, Tag-manufacturer-defined Tag Model Number (TMN) 5608

■ above 1Fh: as defined in section 16.2 below 5609

The Tag model number (TMN) may be assigned any value by the holder of a given MDID. However, 5610
[UHFC1G2] states "TID memory locations above 07h shall be defined according to the registration 5611
authority defined by this class identifier value and shall contain, at a minimum, sufficient identifying 5612
information for an Interrogator to uniquely identify the custom commands and/or optional features 5613
that a Tag supports." For the allocation class identifier of E2h this information is the MDID and TMN, 5614
regardless of whether the extended TID is present or not. If two tags differ in custom commands 5615
and/or optional features, they must be assigned different MDID/TMN combinations. In particular, if 5616
two tags contain an extended TID and the values in their respective extended TIDs differ in any 5617
value other than the value of the serial number, they must be assigned a different MDID/TMN 5618
combination. (The serial number by definition must be different for any two tags having the same 5619
MDID and TMN, so that the Serialised Tag Identification specified in Section 16.2.6 is globally 5620
unique.) For tags that do not contain an extended TID, it should be possible in principle to use the 5621
MDID and TMN to look up the same information that would be encoded in the extended TID were it 5622
actually present on the tag, and so again a different MDID/TMN combination must be used if two 5623
tags differ in the capabilities as they would be described by the extended TID, were it actually 5624
present. 5625

TID memory locations 00h to 1Fh SHALL be permalocked at time of manufacture. If the Tag 5626
implements an XTID then the entire XTID SHALL also be permalocked at time of manufacture. 5627

As of Gen2v3, tags with allocation class identifier E2h SHALL support a serialised TID by 5628
using a unique serial number, as defined in section 16.2.2 below. 5629

16.1 Short Tag Identification (TID) 5630

If the XTID indicator ("X" bit 08h of the TID bank) is set to zero, the TID bank only contains the 5631
allocation class identifier, XTID ("X"), Security ("S") and File ("F") indicators, the mask designer 5632
identifier (MDID), and Tag model number (TMN), as specified above. Readers and applications that 5633
are not configured to handle the extended TID will treat all TIDs as short tag identification, 5634
regardless of whether the XTID indicator is zero or one. 5635

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 221 of 315

 Note: The memory maps depicted in this document are identical to how they are depicted in 5636
[UHFC1G2]. The lowest word address starts at the bottom of the map and increases as you 5637
go up the map. The bit address reads from left to right starting with bit zero and ending with 5638
bit fifteen. The fields (MDID, TMN, etc) described in the document put their most significant 5639
bit (highest bit number) into the lowest bit address in memory and the least significant bit (bit 5640
zero) into the highest bit address in memory. Take the ISO/IEC 15963 [ISO15963] allocation 5641
class identifier of E2h = 111000102 as an example. The most significant bit of this field is a 5642
one and it resides at address 00h of the TID memory bank. The least significant bit value is a 5643
zero and it resides at address 07h of the TID memory bank. When tags backscatter data in 5644
response to a read command they transmit each word starting from bit address zero and 5645
ending with bit address fifteen. 5646

Table 16-1 Short TID format 5647

TID MEM
BANK BIT
ADDRESS

BIT ADDRESS WITHIN WORD (In Hexadecimal)

0 1 2 3 4 5 6 7 8 9 A B C D E F

10h-1Fh MDID[3:0] TAG MODEL NUMBER[11:0]

00h-0Fh E2h X S F MDID [8:4]

16.2 Extended Tag identification (XTID) 5648

The XTID is intended to provide more information to end users about the capabilities of tags that 5649
are observed in their RFID applications. The XTID extends the format by adding support for 5650
serialisation and information about key features implemented by the tag. 5651

If the XTID bit (bit 08h of the TID bank) is set to one, the TID bank SHALL contain the allocation 5652
class identifier, mask designer identifier (MDID), and Tag model number (TMN) as specified above, 5653
and SHALL also contain additional information as specified in this section. 5654

If the XTID bit as defined above is one, TID memory locations 20h to 2Fh SHALL contain a 16-bit 5655
XTID header as specified in Section 16.2.1. The values in the XTID header specify what additional 5656
information is present in memory locations 30h and above. TID memory locations 00h through 2Fh 5657
are the only fixed location fields in the extended TID; all fields following the XTID header can vary in 5658
their location in memory depending on the values in the XTID header. 5659

The information in the XTID following the XTID header SHALL consist of zero or more multi-word 5660
"segments," each segment being divided into one or more "fields," each field providing certain 5661
information about the tag as specified below. The XTID header indicates which of the XTID 5662
segments the tag mask-designer has chosen to include. The order of the XTID segments in the TID 5663
bank shall follow the order that they are listed in the XTID header from most significant bit to least 5664
significant bit. If an XTID segment is not present then segments at less significant bits in the XTID 5665
header shall move to lower TID memory addresses to keep the XTID memory structure contiguous. 5666
In this way a minimum amount of memory is used to provide a serial number and/or describe the 5667
features of the tag. A fully populated XTID is shown in the table below. 5668

 Non-Normative: The XTID header corresponding to this memory map would be 5669
00111100000000002 . If the tag only contained a 48 bit serial number the XTID header would 5670
be 00100000000000002 . The serial number would start at bit address 30h and end at bit 5671
address 5Fh. If the tag contained just the BlockWrite and BlockErase segment and the User 5672
Memory and BlockPermaLock segment the XTID header would be 00001100000000002 . The 5673
BlockWrite and BlockErase segment would start at bit address 30h and end at bit address 6Fh. 5674
The User Memory and BlockPermaLock segment would start at bit address 70h and end at bit 5675
address 8Fh. 5676

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 222 of 315

Table 16-2 Non-Normative example: Extended Tag Identification (XTID) format for the TID 5677
memory bank 5678

TDS
Reference
Section

TID MEM
BANK BIT
ADDRESS

BIT ADDRESS WITHIN WORD (In Hexadecimal)

0 1 2 3 4 5 6 7 8 9 A B C D E F

16.2.5 C0h-CFh User Memory and BlockPermaLock Segment [15:0]

B0h-BFh User Memory and BlockPermaLock Segment [31:16]

16.2.4 A0h-AFh BlockWrite and BlockErase Segment [15:0]

90h-9Fh BlockWrite and BlockErase Segment [31:16]

80h-8Fh BlockWrite and BlockErase Segment [47:32]

70h-7Fh BlockWrite and BlockErase Segment [63:48]

16.2.3 60h-6Fh Optional Command Support Segment [15:0]

16.2.2 50h-5Fh Serial Number Segment [15:0]

40h-4Fh Serial Number Segment [31:16]

30h-3Fh Serial Number Segment [47:32]

16.2.1 20h-2Fh XTID Header Segment [15:0]

16.1 10h-1Fh Refer to Table 16-1

00h-0Fh

Note that this example depicts the memory mapping when the serialisation bits in the XTID header 5679
(see Table 16-3), are set to 001, indicating the XTID Serial Number is 48 bits long. Other settings of 5680
the serialisation bits in the XTID header will shift the addresses of the Optional Command Support 5681
Segment, the BlockWrite and BlockErase Segment and the User Memory and BlockPermaLock 5682
Segment. 5683

16.2.1 XTID Header 5684

The XTID header is shown in Table 16-3. It contains defined and reserved for future use (RFU) bits. 5685
The extended header bit and RFU bits (bits 9 through 0) shall be set to zero to comply with this 5686
version of the specification. Bits 15 through 13 of the XTID header word indicate the presence and 5687
size of serialisation on the tag. If they are set to zero then there is no serialisation in the XTID. If 5688
they are not zero then there is a tag serial number immediately following the header. The optional 5689
features currently in bits 12 through 10 are handled differently. A zero indicates the reader needs to 5690
perform a database look up or that the tag does not support the optional feature. A one indicates 5691
that the tag supports the optional feature and that the XTID contains the segment describing this 5692
feature. 5693

Note that the contents of the XTID header uniquely determine the overall length of the XTID as well 5694
as the starting address for each included XTID segment. 5695

Table 16-3 The XTID header 5696

Bit Position
in Word

Field Description

0 Extended Header
Present

If non-zero, specifies that additional XTID header bits are present beyond
the 16 XTID header bits specified herein. This provides a mechanism to
extend the XTID in future versions of the EPC Tag Data Standard. This bit
SHALL be set to zero to comply with this version of the EPC Tag Data
Standard.
If zero, specifies that the XTID header only contains the 16 bits defined
herein.

1 - 8 RFU Reserved for future use. These bits SHALL be zero to comply with this
version of the EPC Tag Data Standard

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 223 of 315

Bit Position
in Word

Field Description

9 Lock Bit Segment If non-zero, specifies that the XTID includes the Lock Bit segment
specified in Section 16.2.6.
If zero, specifies that the XTID does not include the Lock Bit segment
word.

10 User Memory and
Block Perma Lock
Segment Present

If non-zero, specifies that the XTID includes the User Memory and Block
PermaLock segment specified in Section 16.2.5.
If zero, specifies that the XTID does not include the User Memory and
Block PermaLock words.

11 BlockWrite and
BlockErase
Segment Present

If non-zero, specifies that the XTID includes the BlockWrite and
BlockErase segment specified in Section 16.2.4.
If zero, specifies that the XTID does not include the BlockWrite and
BlockErase words.

12 Optional Command
Support Segment
Present

If non-zero, specifies that the XTID includes the Optional Command
Support segment specified in Section 16.2.3.
If zero, specifies that the XTID does not include the Optional Command
Support word.

13 – 15 Serialisation If non-zero, specifies that the XTID includes a unique serial number,
whose length in bits is 48 + 16(N – 1), where N is the value of this field.
If zero, specifies that the XTID does not include a unique serial number.
As of Gen2v3, tags with allocation class identifier E2h SHALL support a
serialised TID by using a unique serial number.
Bit 15 is the MSB; bit 13 is the LSB.

16.2.2 XTID Serialisation 5697

The length of the XTID serialisation is specified in the XTID header. The managing entity specified 5698
by the tag mask designer ID is responsible for assigning unique serial numbers for each tag model 5699
number. The length of the serial number uses the following algorithm: 5700

0: Indicates no serialisation 5701

1-7: Length in bits = 48 + ((Value-1) * 16) 5702

16.2.3 Optional Command Support segment 5703

If bit twelve is set in the XTID header then the following word is added to the XTID. Bit fields that 5704
are left as zero indicate that the tag does not support that feature. The description of the features is 5705
as follows. 5706

Table 16-4 Optional Command Support XTID Word 5707

Bit Position
in Segment

Field Description

0-4 Max EPC Size This five bit field shall indicate the maximum size that can be programmed
into the first five bits of the PC.

5 Recom Support If this bit is set, the tag supports recommissioning as specified in
[UHFC1G2].

6 Access If this bit is set, it indicates that the tag supports the access command.

7 Separate
Lockbits

If this bit is set, it means that the tag supports lock bits for each memory
bank rather than the simplest implementation of a single lock bit for the
entire tag.

8 Auto UMI
Support

If this bit is set, it means that the tag automatically sets its user memory
indicator bit in the PC word.

9 PJM Support If this bit is set, it indicates that the tag supports phase jitter modulation.
This is an optional modulation mode supported only in Gen 2 HF tags.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 224 of 315

Bit Position
in Segment

Field Description

10 BlockErase
Supported

If set, this indicates that the tag supports the BlockErase command. How
the tag supports the BlockErase command is described in Section 16.2.4.
A manufacture may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs further explanation
through a database lookup.

11 BlockWrite
Supported

If set, this indicates that the tag supports the BlockWrite command. How
the tag supports the BlockErase command is described in Section 16.2.4.
A manufacture may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs further explanation
through a database lookup.

12 BlockPermaLock
Supported

If set, this indicates that the tag supports the BlockPermaLock command.
How the tag supports the BlockPermaLock command is described in
Section 16.2.5. A manufacture may choose to set this bit, but not include
the BlockPermaLock and User Memory field if how to use the command
needs further explanation through a database lookup.

13-15 [RFU] These bits are RFU and should be set to zero.

16.2.4 BlockWrite and BlockErase segment 5708

If bit eleven of the XTID header is set then the XTID shall include the four-word BlockWrite and 5709
BlockErase segment. To indicate that a command is not supported, the tag shall have all fields 5710
related to that command set to zero. This SHALL always be the case when the Optional Command 5711
Support Segment (Section 16.2.3) is present and it indicates that BlockWrite or BlockErase is not 5712
supported. The descriptions of the fields are as follows. 5713

Table 16-5 XTID Block Write and Block Erase Information 5714

Bit Position
in Segment

Field Description

0-7 Block Write Size Max block size that the tag supports for the BlockWrite command. This
value should be between 1-255 if the BlockWrite command is described in
this field.

8 Variable Size
Block Write

This bit is used to indicate if the tag supports BlockWrite commands with
variable sized blocks.
If the value is zero the tag only supports writing blocks exactly the
maximum block size indicated in bits [7-0].
If the value is one the tag supports writing blocks less than the maximum
block size indicated in bits [7-0].

9-16 Block Write EPC
Address Offset

This indicates the starting word address of the first full block that may be
written to using BlockWrite in the EPC memory bank.

17 No Block Write
EPC address
alignment

This bit is used to indicate if the tag memory architecture has hard block
boundaries in the EPC memory bank.
If the value is zero the tag has hard block boundaries in the EPC memory
bank. The tag will not accept BlockWrite commands that start in one block
and end in another block. These block boundaries are determined by the
max block size and the starting address of the first full block. All blocks have
the same maximum size.
If the value is one the tag has no block boundaries in the EPC memory
bank. It will accept all BlockWrite commands that are within the memory
bank.

18-25 Block Write
User Address
Offset

This indicates the starting word address of the first full block that may be
written to using BlockWrite in the User memory.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 225 of 315

Bit Position
in Segment

Field Description

26 No Block Write
User Address
Alignment

This bit is used to indicate if the tag memory architecture has hard block
boundaries in the USER memory bank.
If the value is zero the tag has hard block boundaries in the USER memory
bank. The tag will not accept BlockWrite commands that start in one block
and end in another block. These block boundaries are determined by the
max block size and the starting address of the first full block. All blocks have
the same maximum size.
If the value is one the tag has no block boundaries in the USER memory
bank. It will accept all BlockWrite commands that are within the memory
bank.

27-31 [RFU] These bits are RFU and should be set to zero.

32-39 Size of Block
Erase

Max block size that the tag supports for the BlockErase command. This
value should be between 1-255 if the BlockErase command is described in
this field.

40 Variable Size
Block Erase

This bit is used to indicate if the tag supports BlockErase commands with
variable sized blocks.
If the value is zero the tag only supports erasing blocks exactly the
maximum block size indicated in bits [39-32].
If the value is one the tag supports erasing blocks less than the maximum
block size indicated in bits [39-32].

41-48 Block Erase EPC
Address Offset

This indicates the starting address of the first full block that may be erased
in EPC memory bank.

49 No Block Erase
EPC Address
Alignment

This bit is used to indicate if the tag memory architecture has hard block
boundaries in the EPC memory bank.
If the value is zero the tag has hard block boundaries in the EPC memory
bank. The tag will not accept BlockErase commands that start in one block
and end in another block. These block boundaries are determined by the
max block size and the starting address of the first full block. All blocks have
the same maximum size.
If the value is one the tag has no block boundaries in the EPC memory
bank. It will accept all BlockErase commands that are within the memory
bank.

50-57 Block Erase
User Address
Offset

This indicates the starting address of the first full block that may be erased
in User memory bank.

58 No Block Erase
User Address
Alignment

Bit 58: This bit is used to indicate if the tag memory architecture has hard
block boundaries in the USER memory bank.
If the value is zero the tag has hard block boundaries in the USER memory
bank. The tag will not accept BlockErase commands that start in one block
and end in another block. These block boundaries are determined by the
max block size and the starting address of the first full block. All blocks have
the same maximum size.
If the value is one the tag has no block boundaries in the USER memory
bank. It will accept all BlockErase commands that are within the memory
bank.

59-63 [RFU] These bits are reserved for future use and should be set to zero.

16.2.5 User Memory and BlockPermaLock segment 5715

This two-word segment is present in the XTID if bit 10 of the XTID header is set. Bits 15-0 shall 5716
indicate the size of user memory in words. Bits 31-16 shall indicate the size of the blocks in the 5717
USER memory bank in words for the BlockPermaLock command. Note: These block sizes only apply 5718
to the BlockPermaLock command and are independent of the BlockWrite and BlockErase commands. 5719

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 226 of 315

Table 16-6 XTID Block PermaLock and User Memory Information 5720

Bit Position in
Segment

Field Description

0-15 User Memory Size Number of 16-bit words in user memory.

16-31 BlockPermaLock Block
Size

If non-zero, the size in words of each block that may be block
permalocked. That is, the block permalock feature allows
blocks of N*16 bits to be locked, where N is the value of this
field.
If zero, then the XTID does not describe the block size for the
BlockPermaLock feature. The tag may or may not support
block permalocking.
This field SHALL be zero if the Optional Command Support
Segment (Section 16.2.3) is present and its
BlockPermaLockSupported bit is zero.

16.2.6 Optional Lock Bit segment 5721

This one-word segment is present in the XTID if bit 9 of the XTID header is set. Bits 0-5 shall 5722
indicate the current lock bit settings for the memory banks on the tag. 5723

Table 16-7 Lock Bit Information 5724

Bit Position
in Segment

Field Description

0 File_0 memory (permalock) The lock bits are defined by the Lock command in the air
protocol specification available at
https://www.gs1.org/standards/epc-rfid/uhf-air-interface-
protocol

1 File_0 memory (pwd write)

2 TID memory (permalock)

3 TID memory (pwd write)

4 EPC memory (permalock)

5 EPC memory (pwd writ–)

6-15 [RFU] These bits are reserved for future use and should be set to
zero.

16.3 Serialised Tag Identification (STID) 5725

This section specifies a URI form for the serialisation encoded within an XTID, called the Serialised 5726
Tag Identifier (STID). The STID URI form may be used by business applications that use the 5727
serialised TID to uniquely identify the tag onto which an EPC has been programmed. The STID URI 5728
is intended to supplement, not replace, the EPC for those applications that make use of RFID tag 5729
serialisation in addition to the EPC that uniquely identifies the physical object to which the tag is 5730
affixed; e.g., in an application that uses the STID to help ensure a tag has not been counterfeited. 5731

16.3.1 STID URI grammar 5732

The syntax of the STID URI is specified by the following grammar: 5733

STID-URI = %s"urn:epc:stid:" 2(%s"x" HexComponent ".") %s"x" HexComponent 5734

where the first and second HexComponents SHALL consist of exactly three UpperHexChars and 5735
the third HexComponent SHALL consist of 12, 16, 20, 24, 28, 32, or 36 UpperHexChars. 5736

The first HexComponent is the value of bits 08h-13h. For tags using the Gen2 v1.x air interface, 5737
this consists of the 12-bit Tag Mask Designer ID (MDID); for tags using Gen2 v2 and later versions 5738
of the air interface, these twelve bits consist of the three X, S and F indicators (bits 08h-0Ah), 5739
followed by the 9-bit MDID (bits 0Bh-13h) as specified in Section 16.1. 5740

The second HexComponent is the value of the Tag Model Number as specified in Section 16.1. 5741

https://www.gs1.org/standards/epc-rfid/uhf-air-interface-protocol
https://www.gs1.org/standards/epc-rfid/uhf-air-interface-protocol

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 227 of 315

The third HexComponent is the value of the XTID serial number as specified in Sections 5742
16.2.1 and 16.2.2. The number of UpperHexChars in the third HexComponent is equal to the 5743
number of bits in the XTID serial number divided by four. 5744

16.3.2 Decoding procedure: TID Bank Contents to STID URI 5745

The following procedure specifies how to construct an STID URI given the contents of the TID bank 5746
of a Gen 2 Tag. 5747

Given: 5748

■ The contents of the TID memory bank of a Gen 2 Tag, as a bit string b0b1…bN-1, where the number of bits 5749
N is at least 48. 5750

Yields: 5751

■ An STID-URI 5752

Procedure: 5753

1. Bits b0…b7 should match the value 11100010. If not, stop: this TID bank contents does not 5754
contain a TDS-compliant XTID. 5755

2. Bit b8 should be set to one. If not, stop: this TID bank contents does not contain a TDS-5756
compliant XTID. 5757

3. Consider bits b8…b19 as a 12-bit unsigned integer. For tags using the Gen2 v1.x air interface, 5758
this consists of the 12-bit Tag Mask Designer ID (MDID); for tags using Gen2 v2 and later 5759
versions of the air interface, these twelve bits consist of the three X, S and F indicators 5760
(b8,b9,b10), followed by the 9-bit MDID (b11…b19). 5761

4. Consider bits b20…b31 as a 12-bit unsigned integer. This is the Tag Model Number. 5762

5. Consider bits b32…b34 as a 3-bit unsigned integer V. If V equals zero, stop: this TID bank 5763
contents does not contain a serial number. Otherwise, calculate the length of the serial number 5764
L = 4– + 16(V − 1). Consider bits b48b49…b48+L-1 as an L-bit unsigned integer. This is the serial 5765
number. 5766

6. Construct the STID-URI by concatenating the following strings: the prefix urn:epc:stid:, the 5767
lowercase letter x, the value of b8…b19 from Step 3 as a 3-character hexadecimal numeral, a dot 5768
(.) character, the lowercase letter x, the value of the Tag Model Number from Step 4 as a 3-5769
character hexadecimal numeral, a dot (.) character, the lowercase letter x, and the value of the 5770
serial number from Step 5 as a (L/4)-character hexadecimal numeral. Only uppercase letters A 5771
through F shall be used in constructing the hexadecimal numerals. 5772

17 User Memory Bank Contents 5773

The User Memory Bank provides a variable size memory to store additional data attributes related to 5774
the object identified in the EPC Memory Bank of the tag. 5775

User memory may or may not be present on a given tag. The User Memory Indicator (UMI), within 5776
the PC bits, is specified in section 9.3. 5777

To conform with this specification, the first eight bits of the User Memory Bank SHALL contain a 5778
Data Storage Format Identifier (DSFID) as specified in [ISO15962]. This maintains compatibility 5779
with other standards. The DSFID consists of three logical fields: Access Method, Extended Syntax 5780
Indicator, and Data Format. The Access Method is specified in the two most significant bits of the 5781
DSFID, and is encoded with the value "10" to designate the "Packed Objects" Access Method as 5782
specified in Annex I herein if the "Packed Objects" Access Method is employed, and is encoded with 5783
the value "00" to designate the "No-Directory" Access Method as specified in [ISO15962] if the "No-5784
Directory" Access Method is employed. The next bit is set to one if there is a second DSFID byte 5785
present. The five least significant bits specify the Data Format, which indicates what data system 5786
predominates in the memory contents. If GS1 Application Identifiers (AIs) predominate, the value of 5787
"01001" specifies the GS1 Data Format 9 as registered with ISO, which provides most efficient 5788

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 228 of 315

support for the use of AI data elements. Annex I through Annex M of this specification contain the 5789
complete specification of the "Packed Objects" Access Method; this content appears in ISO/IEC 5790
15962 [ISO15962] as Annex I through M, respectively,. A complete definition of the DSFID is 5791
specified in [ISO15962]. A complete definition of the table that governs the Packed Objects 5792
encoding of Application Identifiers (AIs) is specified by GS1 and registered with ISO under the 5793
procedures of [ISO15962], and is reproduced in E.3. This table is similar in format to the 5794
hypothetical example shown as Table L-1 in L, but with entries to accommodate encoding of all valid 5795
Application Identifiers. 5796

A tag whose User Memory Bank programming conforms to this specification SHALL be encoded 5797
using either the Packed Objects Access Method or the No-Directory Access Method, provided that if 5798
the No-Directory Access Method is used that the "application-defined" compaction mode as specified 5799
in [ISO15962] SHALL NOT be used. A tag whose User Memory Bank programming conforms to this 5800
specification MAY use any registered Data Format including Data Format 9. 5801

An ISO/IEC 20248 [ISO20248] digital signature (to authenticate the tag data) may be stored in 5802
User Memory encoded as GS1 AI (8030) using Packed Objects (Data Format 9) or natively and more 5803
efficiently using Data Format 17, since the CIDSnip is encoded as binary data. The CIDSnip 5804
corresponds to the value of AI (8030) and consists of the [ISO20248] Domain Authority Identifier 5805
(DAID – the party who is accountable for the digital signature), the Certificate Identifier (CID), 5806
signature, timestamp and optional client-specific data fields, though these are typically absent. In 5807
both cases the EPC is included in the signature using the [ISO20248] readmethod pragma. It is 5808
recommended to include the TID (using the readmethod pragma) in the digital signature to provide 5809
for tag data copy detection. The [ISO20248] Domain Authority Identifier (DAID – the party who is 5810
accountable for the digital signature) and the GS1 Party GLN (PGLN) -- corresponding to GS1 AI 5811
(417) -- are equivalent. Whenever a [ISO20248] digital signature is associated with a GS1 element 5812
string, the DAID SHALL use the PGLN. See [ISO20248] clause 7.5. 5813

An ISO/IEC 20248 DigSig construct expressed using GS1 Application Identifer (8030) can be most 5814
efficiently encoded in User Memory using Data Format 17 (rather than Packed Objects using Data 5815
Format 9) which is a total length of 352 bits when the signing period is one calendar year with a 5816
resolution of minutes. The length remains the same with any additional data signed, which is placed 5817
elsewhere, for example an authentication code printed in UV-fluorescent ink or embedded in an 5818
hologram or watermark. Such data is included in the signature, but not stored in the DigSig 5819
construct. 5820

Where the Packed Objects specification in I makes reference to Extensible Bit Vectors (EBVs), the 5821
format specified in Annex D SHALL be used. 5822

A hardware or software component that conforms to this specification for User Memory Bank 5823
reading and writing SHALL fully implement the Packed Objects Access Method as specified in 5824
Annexes I through M of this specification (implying support for all registered Data Formats), SHALL 5825
implement the No-Directory Access Method as specified in [ISO15962], and MAY implement other 5826
Access Methods defined in [ISO15962] and subsequent versions of that standard. A hardware or 5827
software component NEED NOT, however, implement the "application-defined" compaction mode of 5828
the No-Directory Access Method as specified in [ISO15962]. A hardware or software component 5829
whose intended function is only to initialise tags (e.g., a printer) may conform to a subset of this 5830
specification by implementing either the Packed Objects or the No-Directory access method, but in 5831
this case NEED NOT implement both. 5832

 Non-Normative: Explanation: This specification allows two methods of encoding data in user 5833
memory. The ISO/IEC 15962 "No-Directory" Access Method has an installed base owing to its 5834
longer history and acceptance within certain end user communities. The Packed Objects 5835
Access Method was developed to provide for more efficient reading and writing of tags, and 5836
less tag memory consumption. 5837

The "application-defined" compaction mode of the No-Directory Access Method is not allowed 5838
because it cannot be understood by a receiving system unless both sides have the same 5839
definition of how the compaction works. 5840

Note that the Packed Objects Access Method supports the encoding of data either with or 5841
without a directory-like structure for random access. The fact that the other access method is 5842

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 229 of 315

named "No-Directory" in [ISO15962] should not be taken to imply that the Packed Objects 5843
Access Method always includes a directory. 5844

18 Conformance 5845

TDS by its nature has an impact on many parts of the GS1 System Architecture. Unlike other 5846
standards that define a specific hardware or software interface, TDS defines data formats, along 5847
with procedures for converting between equivalent formats. Both the data formats and the 5848
conversion procedures are employed by a variety of hardware, software, and data components in 5849
any given system. 5850

This section defines what it means to conform to TDs. As noted above, there are many types of 5851
system components that have the potential to conform to various parts of the TDS, and these are 5852
enumerated below. 5853

18.1 Conformance of RFID Tag Data 5854

The data programmed on a Gen 2 RFID tag may be in conformance with TDS as specified below. 5855
Conformance may be assessed separately for the contents of each memory bank. 5856

Each memory bank may be in an "uninitialised" state or an "initialised" state. The uninitialised state 5857
indicates that the memory bank contains no data, and is typically only used between the time a tag 5858
is manufactured and the time it is first programmed for use by an application. The conformance 5859
requirements are given separately for each state, where applicable. 5860

18.1.1 Conformance of Reserved Memory Bank (Bank 00) 5861

The contents of the Reserved memory bank (Bank 00) of a Gen 2 tag is not subject to conformance 5862
to the EPC Tag Data Standard. The contents of the Reserved memory bank is specified in 5863
[UHFC1G2]. 5864

18.1.2 Conformance of EPC Memory Bank (Bank 01) 5865

The contents of the EPC memory bank (Bank 01) of a Gen 2 tag are subject to conformance to the 5866
EPC Tag Data Standard (TDS) as follows. 5867

The contents of the EPC memory bank conform to TDS in the uninitialised state if all of the following 5868
are true: 5869

■ Bit 17h SHALL be set to zero. 5870

■ Bits 18h through 1Fh (inclusive), the Attribute bits, SHALL be set to zero. 5871

■ Bits 20h through 27h (inclusive) SHALL be set to zero, indicating an uninitialised EPC Memory Bank. 5872

■ All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or [UHFC1G2], as 5873
applicable. 5874

The contents of the EPC memory bank conform to TDS in the initialised state if all of the following 5875
are true: 5876

■ Bit 17h SHALL be set to zero. 5877

■ Bits 18h through 1Fh (inclusive), the Attribute bits, SHALL be as specified in Sections 9.3 and 9.4. 5878

■ Bits 20h through 27h (inclusive) SHALL be set to a valid EPC header value as specified in Table 14-1 that 5879
is, a header value not marked as "reserved" or "unprogrammed tag" in the table. 5880

■ Let N be the value of the "encoding length" column of the row of Table 14-1 corresponding to the header 5881
value, and let M be equal to 20h + N – 1. Bits 20h through M SHALL be a valid EPC binary encoding; that 5882
is, the decoding procedure of Section 14.3.7 when applied to these bits SHALL NOT raise an exception. 5883

■ Bits M+1 through the end of the EPC memory bank or bit 20Fh (whichever occurs first) SHALL be set to 5884
zero. 5885

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 230 of 315

■ All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or [UHFC1G2], as 5886
applicable. 5887

 Non-Normative: Explanation: A consequence of the above requirements is that to conform 5888
to this specification, no additional application data (such as a second EPC) may be put in the 5889
EPC memory bank beyond the EPC that begins at bit 20h. 5890

18.1.3 Conformance of TID Memory Bank (Bank 10) 5891

The contents of the TID memory bank (Bank 10) of a Gen 2 tag is subject to conformance to TDS, 5892
as specified in Section 16. 5893

18.1.4 Conformance of User Memory Bank (Bank 11) 5894

The contents of the User memory bank (Bank 11) of a Gen 2 tag is subject to conformance to TDS, 5895
as specified in Section 17. 5896

18.2 Conformance of Hardware and Software Components 5897

Hardware and software components may process data that is read from or written to Gen 2 RFID 5898
tags. Hardware and software components may also manipulate Electronic Product Codes in various 5899
forms regardless of whether RFID tags are involved. All such uses may be subject to conformance to 5900
TDS as specified below. Exactly what is required to conform depends on what the intended or 5901
claimed function of the hardware or software component is. 5902

18.2.1 Conformance of hardware and software Components That Produce or Consume 5903
Gen 2 Memory Bank Contents 5904

This section specifies conformance of hardware and software components that produce and consume 5905
the contents of a memory bank of a Gen 2 tag. This includes components that interact directly with 5906
tags via the Gen 2 Air Interface as well as components that manipulate a software representation of 5907
raw memory contents 5908

Definitions: 5909

■ Bank X Consumer (where X is a specific memory bank of a Gen 2 tag): A hardware or software component 5910
that accepts as input via some external interface the contents of Bank X of a Gen 2 tag. This includes 5911
components that read tags via the Gen 2 Air Interface (i.e., readers), as well as components that manipulate 5912
a software representation of raw memory contents (e.g., "middleware" software that receives a 5913
hexadecimal-formatted image of tag memory from an interrogator as input). 5914

■ Bank X Producer (where X is a specific memory bank of a Gen 2 tag): A hardware or software component 5915
that outputs via some external interface the contents of Bank X of a Gen 2. This includes components that 5916
interact directly with tags via the Gen 2 Air Interface (i.e., write-capable interrogators and printers – the 5917
memory contents delivered to the tag is an output via the air interface), as well as components that 5918
manipulate a software representation of raw memory contents (e.g., software that outputs a "write" 5919
command to an interrogator, delivering a hexadecimal-formatted image of tag memory as part of the 5920
command). 5921

A hardware or software component that "passes through" the raw contents of tag memory Bank X 5922
from one external interface to another is simultaneously a Bank X Consumer and a Bank X Producer. 5923
For example, consider a reader device that accepts as input from an application via its network "wire 5924
protocol" a command to write EPC tag memory, where the command includes a hexadecimal-5925
formatted image of the tag memory that the application wishes to write, and then writes that image 5926
to a tag via the Gen 2 Air Interface. That device is a Bank 01 Consumer with respect to its "wire 5927
protocol," and a Bank 01 Producer with respect to the Gen 2 Air Interface. The conformance 5928
requirements below insure that such a device is capable of accepting from an application and writing 5929
to a tag any EPC bank contents that is valid according to this specification. 5930

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 231 of 315

The following conformance requirements apply to Bank X Consumers and Producers as defined 5931
above: 5932

■ A Bank 01 (EPC bank) Consumer SHALL accept as input any memory contents that conforms to this 5933
specification, as conformance is specified in Section 18.1.2. 5934

■ If a Bank 01 Consumer interprets the contents of the EPC memory bank received as input, it SHALL do so 5935
in a manner consistent with the definitions of EPC memory bank contents in this specification. 5936

■ A Bank 01 (EPC bank) Producer SHALL produce as output memory contents that conforms to this 5937
specification, as conformance is specified in Section 18.1.2, whenever the hardware or software 5938
component produces output for Bank 01 containing an EPC. A Bank 01 Producer MAY produce output 5939
containing a non-EPC if it sets bit 17h to one. 5940

■ If a Bank 01 Producer constructs the contents of the EPC memory bank from component parts, it SHALL 5941
do so in a manner consistent with this. 5942

■ A Bank 10 (TID Bank) Consumer SHALL accept as input any memory contents that conforms to this 5943
specification, as conformance is specified in Section 18.1.3. 5944

■ If a Bank 10 Consumer interprets the contents of the TID memory bank received as input, it SHALL do so 5945
in a manner consistent with the definitions of TID memory bank contents in this specification. 5946

■ A Bank 10 (TID bank) Producer SHALL produce as output memory contents that conforms to this 5947
specification, as conformance is specified in Section 18.1.3. 5948

■ If a Bank 10 Producer constructs the contents of the TID memory bank from component parts, it SHALL 5949
do so in a manner consistent with this specification. 5950

■ Conformance for hardware or software components that read or write the User memory bank (Bank 11) 5951
SHALL be as specified in Section 17. 5952

18.2.2 Conformance of hardware and software Components that Produce or Consume 5953
URI Forms of the EPC 5954

This section specifies conformance of hardware and software components that use URIs as specified 5955
herein as inputs or outputs. 5956

Definitions: 5957

■ EPC URI Consumer: A hardware or software component that accepts an EPC URI as input via some 5958
external interface. An EPC URI Consumer may be further classified as a Pure Identity URI EPC Consumer 5959
if it accepts an EPC Pure Identity URI as an input, or an EPC Tag/Raw URI Consumer if it accepts an EPC 5960
Tag URI or EPC Raw URI as input. 5961

■ EPC URI Producer: A hardware or software component that produces an EPC URI as output via some 5962
external interface. An EPC URI Producer may be further classified as a Pure Identity URI EPC Producer if it 5963
produces an EPC Pure Identity URI as an output, or an EPC Tag/Raw URI Producer if it produces an EPC 5964
Tag URI or EPC Raw URI as output. 5965

A given hardware or software component may satisfy more than one of the above definitions, in 5966
which case it is subject to all of the relevant conformance tests below. 5967

The following conformance requirements apply to Pure Identity URI EPC Consumers: 5968

■ A Pure Identity URI EPC Consumer SHALL accept as input any string that satisfies the grammar of 5969
Section 6, including all constraints on the number of characters in various components. 5970

■ A Pure Identity URI EPC Consumer SHALL reject as invalid any input string that begins with the 5971
characters urn:epc:id: that does not satisfy the grammar of Section 6, including all constraints on the 5972
number of characters in various components. 5973

■ If a Pure Identity URI EPC Consumer interprets the contents of a Pure Identity URI, it SHALL do so in a 5974
manner consistent with the definitions of the Pure Identity EPC URI in this specification and the 5975
specifications referenced herein (including the GS1 General Specifications). 5976

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 232 of 315

The following conformance requirements apply to Pure Identity URI EPC Producers: 5977

■ A Pure Identity EPC URI Producer SHALL produce as output strings that satisfy the grammar in Section 6, 5978
including all constraints on the number of characters in various components. 5979

■ A Pure Identity EPC URI Producer SHALL NOT produce as output a string that begins with the characters 5980
urn:epc:id: that does not satisfy the grammar of Section 6, including all constraints on the number of 5981
characters in various components. 5982

■ If a Pure Identity EPC URI Producer constructs a Pure Identity EPC URI from component parts, it SHALL 5983
do so in a manner consistent with this specification. 5984

The following conformance requirements apply to EPC Tag/Raw URI Consumers: 5985

■ An EPC Tag/Raw URI Consumer SHALL accept as input any string that satisfies the TagURI production of 5986
the grammar of Section 12.4, and that can be encoded according to Section 14.3 without causing an 5987
exception. 5988

■ An EPC Tag/Raw URI Consumer MAY accept as input any string that satisfies the RawURI production of 5989
the grammar of Section 12.4. 5990

■ An EPC Tag/Raw URI Consumer SHALL reject as invalid any input string that begins with the characters 5991
urn:epc:tag: that does not satisfy the grammar of Section 12.4, or that causes the encoding procedure 5992
of Section 14.3 to raise an exception. 5993

■ An EPC Tag/Raw URI Consumer that accepts EPC Raw URIs as input SHALL reject as invalid any input 5994
string that begins with the characters urn:epc:raw: that does not satisfy the grammar of Section 12.4. 5995

■ To the extent that an EPC Tag/Raw URI Consumer interprets the contents of an EPC Tag URI or EPC Raw 5996
URI, it SHALL do so in a manner consistent with the definitions of the EPC Tag URI and EPC Raw URI in 5997
this specification and the specifications referenced herein (including the GS1 General Specifications). 5998

The following conformance requirements apply to EPC Tag/Raw URI Producers: 5999

■ An EPC Tag/Raw URI Producer SHALL produce as output strings that satisfy the TagURI production or 6000
the RawURI production of the grammar of Section 12.4, provided that any output string that satisfies the 6001
TagURI production must be encodable according to the encoding procedure of Section 14.3 without 6002
raising an exception. 6003

■ An EPC Tag/Raw URI Producer SHALL NOT produce as output a string that begins with the characters 6004
urn:epc:tag: or urn:epc:raw: except as specified in the previous bullet. 6005

■ If an EPC Tag/Raw URI Producer constructs an EPC Tag URI or EPC Raw URI from component parts, it 6006
SHALL do so in a manner consistent with this specification. 6007

18.2.3 Conformance of hardware and software components that translate between EPC 6008
Forms 6009

This section specifies conformance for hardware and software components that translate between 6010
EPC forms, such as translating an EPC binary encoding to an EPC Tag URI, an EPC Tag URI to a Pure 6011
Identity EPC URI, a Pure Identity EPC URI to an EPC Tag URI, or an EPC Tag URI to the contents of 6012
the EPC memory bank of a Gen 2 tag. Any such component by definition accepts these forms as 6013
inputs or outputs, and is therefore also subject to the relevant parts of Sections 18.2.1 and 18.2.2. 6014

■ A hardware or software component that takes the contents of the EPC memory bank of a Gen 2 tag as 6015
input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL produce an output 6016
equivalent to applying the decoding procedure of Section 15.2.2 to the input. 6017

■ A hardware or software component that takes the contents of the EPC memory bank of a Gen 2 tag as 6018
input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL produce an output 6019
equivalent to applying the decoding procedure of Section 15.2.3 to the input. 6020

■ A hardware or software component that takes an EPC Tag URI as input and produces the corresponding 6021
Pure Identity EPC URI as output SHALL produce an output equivalent to applying the procedure of 6022
Section 12.3.3 to the input. 6023

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 233 of 315

■ A hardware or software component that takes an EPC Tag URI as input and produces the contents of the 6024
EPC memory bank of a Gen 2 tag as output (whether by actually writing a tag or by producing a software 6025
representation of raw memory contents as output) SHALL produce an output equivalent to applying the 6026
procedure of Section 15.1.1 to the input. 6027

18.3 Conformance of Human Readable Forms of the EPC and of EPC Memory 6028
Bank contents 6029

This section specifies conformance for human readable representations of an EPC. Human readable 6030
representations may be used on printed labels, in documents, etc. This section does not specify the 6031
conditions under which a human readable representation of an EPC or RFID tag contents shall or 6032
should be printed on any label, packaging, or other medium; it only specifies what is a conforming 6033
human readable representation when it is desired to include one. 6034

■ To conform to this specification, a human readable representation of an electronic product code SHALL be 6035
a Pure Identity EPC URI as specified in Section 6. 6036

■ To conform to this specification, a human readable representation of the entire contents of the EPC 6037
memory bank of a Gen 2 tag SHALL be an EPC Tag URI or an EPC Raw URI as specified in Section 12. An 6038
EPC Tag URI SHOULD be used when it is possible to do so (that is, when the memory bank contents 6039
contains a valid EPC). 6040

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 234 of 315

A Character Set for Alphanumeric Serial Numbers 6041

The following table specifies the characters that are permitted by the GS1 General Specifications 6042
[GS1GS] for use in alphanumeric serial numbers. The columns are as follows: 6043

■ Graphic symbol: The printed representation of the character as used in human-readable forms. 6044

■ Name: The common name for the character 6045

■ Hex Value: A hexadecimal numeral that gives the 7-bit binary value for the character as used in EPC 6046
binary encodings. This hexadecimal value is always equal to the ISO/IEC 646 [ISO646] (ASCII) code for 6047
the character. 6048

■ URI Form: The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This 6049
is either a single character whose ASCII code is equal to the value in the "hex value" column, or an 6050
escape triplet consisting of a percent character followed by two characters giving the hexadecimal value 6051
for the character. 6052

Table I.3.1-1 Characters Permitted in Alphanumeric Serial Numbers 6053

Graphic
symbol

Name Hex Value URI Form Graphic
symbol

Name Hex Value URI Form

! Exclamation
Mark

21 ! M Capital
Letter M

4D M

" Quotation Mark 22 %22 N Capital
Letter N

4E N

% Percent Sign 25 %25 O Capital
Letter O

4F O

& Ampersand 26 %26 P Capital
Letter P

50 P

' Apostrophe 27 ' Q Capital
Letter Q

51 Q

(Left
Parenthesis

28 (R Capital
Letter R

52 R

) Right
Parenthesis

29) S Capital
Letter S

53 S

* Asterisk 2A * T Capital
Letter T

54 T

+ Plus sign 2B + U Capital
Letter U

55 U

, Comma 2C , V Capital
Letter V

56 V

- Hyphen/ Minus 2D - W Capital
Letter W

57 W

. Full Stop 2E . X Capital
Letter X

58 X

/ Solidus 2F %2F Y Capital
Letter Y

59 Y

0 Digit Zero 30 0 Z Capital
Letter Z

5A Z

1 Digit One 31 1 _ Low Line 5F _

2 Digit Two 32 2 a Small
Letter a

61 a

3 Digit Three 33 3 b Small
Letter b

62 b

4 Digit Four 34 4 c Small
Letter c

63 c

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 235 of 315

Graphic
symbol

Name Hex Value URI Form Graphic
symbol

Name Hex Value URI Form

5 Digit Five 35 5 d Small
Letter d

64 d

6 Digit Six 36 6 e Small
Letter e

65 e

7 Digit Seven 37 7 f Small
Letter f

66 f

8 Digit Eight 38 8 g Small
Letter g

67 g

9 Digit Nine 39 9 h Small
Letter h

68 h

: Colon 3A : i Small
Letter i

69 i

; Semicolon 3B ; j Small
Letter j

6A j

< Less-than Sign 3C %3C k Small
Letter k

6B k

= Equals Sign 3D = l Small
Letter l

6C l

> Greater-than
Sign

3E %3E m Small
Letter m

6D m

? Question Mark 3F %3F n Small
Letter n

6E n

A Capital Letter A 41 A o Small
Letter o

6F o

B Capital Letter B 42 B p Small
Letter p

70 p

C Capital Letter C 43 C q Small
Letter q

71 q

D Capital Letter
D

44 D r Small
Letter r

72 r

E Capital Letter E 45 E s Small
Letter s

73 s

F Capital Letter F 46 F t Small
Letter t

74 t

G Capital Letter
G

47 G u Small
Letter u

75 u

H Capital Letter H 48 H v Small
Letter v

76 v

I Capital Letter I 49 I w Small
Letter w

77 w

J Capital Letter J 4A J x Small
Letter x

78 x

K Capital Letter K 4B K y Small
Letter y

79 y

L Capital Letter L 4C L z Small
Letter z

7A z

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 236 of 315

B Glossary (non-normative) 6054

Please refer to the www.gs1.org/glossary for the latest version of the glossary. 6055

Term Defined Where Meaning

Application
Identifier (AI)

[GS1GS] A numeric code that identifies a data element within a GS1 element
string.

Attribute Bits Sections 9.3
and 9.4

An 8-bit field of control information that is stored in the EPC Memory
Bank of a Gen 2 RFID Tag when the tag contains an EPC. The
Attribute Bits includes data that guides the handling of the object to
which the tag is affixed, for example a bit that indicates the presence
of hazardous material.

Barcode A data carrier that holds text data in the form of light and dark
markings which may be read by an optical reader device.

Control
Information

Section 9.1 Information that is used by data capture applications to help control
the process of interacting with RFID Tags. Control Information
includes data that helps a capturing application filter out tags from
large populations to increase read efficiency, special handling
information that affects the behaviour of capturing application,
information that controls tag security features, and so on. Control
Information is typically not passed directly to business applications,
though Control Information may influence how a capturing
application presents business data to the business application level.
Unlike Business Data, Control Information has no equivalent in bar
codes or other data carriers.

Data Carrier Generic term for a marking or device that is used to physically attach
data to a physical object. Examples of data carriers include Bar Codes
and RFID Tags.

Electronic Product
Code (EPC)

Section 4 A universal identifier for any physical object. The EPC is designed so
that every physical object of interest to information systems may be
given an EPC that is globally unique and persistent through time.
The primary representation of an EPC was previously in the form of a
Pure Identity EPC URI (q.v.), which is a unique string that may be
used in information systems, electronic messages, databases, and
other contexts. A secondary representation, the EPC Binary Encoding
(q.v.) is available for use in RFID Tags and other settings where a
compact binary representation is required.
Starting in TDS 2.0 and EPCIS 2.0 / CBV 2.0, there is now
recognition that a GS1 Digital Link URI (or a constrained subset of
these, specifically at instance-level granularity and without additional
data attributes) is an equivalent way to denote a specific physical
object within business applications and traceability data, with a
number of advantages, such as ease of linking/redirection to multiple
kinds of online information and services, making use of multiple link
types and the resolver infrastructure for GS1 Digital Link. GS1
Digital Link URIs can also be used as identifiers within machine-
interpretable Linked Data that expresses factual claims.

EPC Section 4 See Electronic Product Code

EPC Bank (of a
Gen 2 RFID Tag)

[UHFC1G2] Bank 01 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The EPC
Bank holds the EPC Binary Encoding of an EPC, together with
additional control information as specified in Section 7.11.

EPC Binary
Encoding

Section 13 A compact encoding of an Electronic Product Code, together with a
filter value (if the encoding scheme includes a filter value), into a
binary bit string that is suitable for storage in RFID Tags, including
the EPC Memory Bank of a Gen 2 RFID Tag. Owing to trade-offs
between data capacity and the number of bits in the encoded value,
more than one binary encoding scheme exists for certain EPC
schemes.

file://gs1november/gs1/Customer%20Service%20&%20Training/CS_PERSONAL%20FOLDERS/ilteris/Publications/GS1%20DataMatrix%202016/www.gs1.org/glossary

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 237 of 315

Term Defined Where Meaning

EPC Binary
Encoding Scheme

Section 13 A particular format for the encoding of an Electronic Product Code,
together with a Filter Value in some cases, into an EPC Binary
Encoding. Each EPC Scheme has at least one corresponding EPC
Binary Encoding Scheme. from a specified combination of data
elements. Owing to trade-offs between data capacity and the number
of bits in the encoded value, more than one binary encoding scheme
exists for certain EPC schemes. An EPC Binary Encoding begins with
an 8-bit header that identifies which binary encoding scheme is used
for that binary encoding; this serves to identify how the remainder of
the binary encoding is to be interpreted.

EPC Pure Identity
URI

Section 6 See Pure Identity EPC URI.

EPC Raw URI Section 12 A representation of the complete contents of the EPC Memory Bank
of a Gen 2 RFID Tag,

EPC Scheme Section 6 A particular format for the construction of an Electronic Product Code
from a specified combination of data elements. A Pure Identity EPC
URI begins with the name of the EPC Scheme used for that URI,
which both serves to ensure global uniqueness of the complete URI
as well as identify how the remainder of the URI is to be interpreted.
Each type of GS1 key has a corresponding EPC Scheme that allows
for the construction of an EPC that corresponds to the value of a GS1
key, under certain conditions. Other EPC Schemes exist that allow for
construction of EPCs not related to GS1 keys.

EPC Tag URI Section 12 A representation of the complete contents of the EPC Memory Bank
of a Gen 2 RFID Tag, in the form of an Internet Uniform Resource
Identifier that includes a decoded representation of EPC data fields,
usable when the EPC Memory Bank contains a valid EPC Binary
Encoding. Because the EPC Tag URI represents the complete contents
of the EPC Memory Bank, it includes control information in addition to
the EPC, in contrast to the Pure Identity EPC URI.

Extended Tag
Identification
(XTID)

Section 16 Information that may be included in the TID Bank of a Gen 2 RFID
Tag in addition to the make and model information. The XTID may
include a manufacturer-assigned unique serial number and may also
include other information that describes the capabilities of the tag.

Filter Value Section 10 A 3-bit field of control information that is stored in the EPC Memory
Bank of a Gen 2 RFID Tag when the tag contains certain types of
EPCs. The filter value makes it easier to read desired RFID Tags in an
environment where there may be other tags present, such as reading
a pallet tag in the presence of a large number of item-level tags.

Gen 2 RFID Tag Section 7.11 An RFID Tag that conforms to one of the EPCglobal Gen 2 family of
air interface protocols. This includes the UHF Class 1 Gen 2 Air
Interface [UHFC1G2], and other standards currently under
development within GS1.

GS1 Company
Prefix

[GS1GS] Part of the GS1 System identification number consisting of a GS1
Prefix and a Company Number, both of which are allocated by GS1
Member Organisations.

GS1 element
string

[GS1GS] The combination of a GS1 Application Identifier and GS1 Application
Identifier Data Field.

GS1 key [GS1GS] A generic term for identification keys defined in the GS1 General
Specifications [GS1GS], namely the GTIN, SSCC, GLN, GRAI, GIAI,
GSRN, GDTI, GSIN, GINC, CPID, GCN and GMN.

Pure Identity EPC
URI

Section 6 A concrete representation of an Electronic Product Code. The Pure
Identity EPC URI is an Internet Uniform Resource Identifier that
contains an Electronic Product Code and no other information.

Radio-Frequency
Identification
(RFID) Tag

 A data carrier that holds binary data, which may be affixed to a
physical object, and which communicates the data to a interrogator
("reader") device through radio.

Reserved Bank (of
a Gen 2 RFID Tag)

[UHFC1G2] Bank 00 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The
Reserved Bank holds the access password and the kill password.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 238 of 315

Term Defined Where Meaning

Tag Identification
(TID)

[UHFC1G2] Information that describes a Gen 2 RFID Tag itself, as opposed to
describing the physical object to which the tag is affixed. The TID
includes an indication of the make and model of the tag, and may
also include Extended TID (XTID) information.

TID Bank (of a
Gen 2 RFID Tag)

[UHFC1G2] Bank 10 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The TID
Bank holds the TID and XTID (q.v.).

Uniform Resource
Identifier (URI)

[RFC3986] A compact sequence of characters that identifies an abstract or
physical resource. A URI may be further classified as a Uniform
Resource Name (URN) or a Uniform Resource Locator (URL), q.v.

Uniform Resource
Locator (URL)

[RFC3986] A Uniform Resource Identifier (URI) that, in addition to identifying a
resource, provides a means of locating the resource by describing its
primary access mechanism (e.g., its network "location").

Uniform Resource
Name (URN)

[RFC3986],
[RFC2141]

A Uniform Resource Identifier (URI) that is part of the urn scheme
as specified by [RFC2141]. Such URIs refer to a specific resource
independent of its network location or other method of access, or
which may not have a network location at all. The term URN may also
refer to any other URI having similar properties.
Because an Electronic Product Code is a unique identifier for a
physical object that does not necessarily have a network location or
other method of access, URNs are used to represent EPCs.

User Memory Bank
(of a Gen 2 RFID
Tag)

[UHFC1G2] Bank 11 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The User
Memory may be used to hold additional business data elements
beyond the EPC.

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 239 of 315

C References 6056

[ASN.1] CCITT, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)", 6057
CCITT Recommendation X.209, January 1988. 6058

[EPCAF] F. Armenio et al, "EPCglobal Architecture Framework," Version 1.7, May 2015, 6059
https://www.gs1.org/id-keys-epcrfid-epcis/epc-rfid-architecture-framework/1-6 6060

[GS1Arch] "The GS1 System Architecture," GS1 technical document, 6061
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf 6062

[GS1DL] GS1 Digital Link Standard: https://www.gs1.org/standards/gs1-digital-link 6063

[GS1GS] "GS1 General Specifications", GS1, https://www.gs1.org/standards/barcodes-epcrfid-id-6064
keys/gs1-general-specifications. 6065

[ISO15961] ISO/IEC 15961, "Information technology – Radio frequency identification (RFID) for 6066
item management – Data protocol: application interface". 6067

[ISO15962] ISO/IEC 15962, "Information technology – Radio frequency identification (RFID) for 6068
item management – Data protocol: data encoding rules and logical memory functions". 6069

[ISO15963] ISO/IEC 15963, "Information technology — Radio frequency identification for item 6070
management — Unique identification for RF tags" 6071

[ISO18000-63] ISO/IEC 18000-63, "Information technology — Radio frequency identification for 6072
item management — Part 63: Parameters for air interface communications at 860 MHz to 960 MHz 6073
Type C" 6074

[ISO20248] ISO/IEC 20248, "Information technology — Automatic identification and data capture 6075
techniques — Digital signature data structure schema". 6076

[ISO646] ISO/IEC 646, "Information technology — ISO 7-bit coded character set for information 6077
interchange" 6078

[ISO8859-6] ISO/IEC 8859-6, "Information technology — 8-bit single-byte coded graphic character 6079
sets — Part 6: Latin/Arabic alphabet" 6080

[ISODir2] ISO, "Rules for the structure and drafting of International Standards (ISO/IEC Directives, 6081
Part 2, 2001, 4th edition)," July 2002. 6082

[RFC2141] R. Moats, "URN Syntax," RFC2141, May 1997, http://www.ietf.org/rfc/rfc2141. 6083

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifier (URI): Generic 6084
Syntax," RFC3986, January 2005, http://www.ietf.org/rfc/rfc3986. 6085

[RFC5234] D. Crocker, P. Overell, "Augmented BNF for Syntax Specifications: ABNF" RFC5234, 6086
January 2008, http://www.ietf.org/rfc/rfc5234. 6087

[RFC7405] P. Kyzivat, "Case-Sensitive String Support in ABNF" RFC7405, December 2014, 6088
http://www.ietf.org/rfc/rfc7405. 6089

[ONS] EPCglobal, "EPCglobal Object Naming Service (ONS), Version 1.0.1," EPCglobal Ratified 6090
Standard, May 2008, http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-6091
20080529.pdf. 6092

[SPEC2000] Air Transport Association, "Spec 2000 E-Business Specification for Materials 6093
Management," May 2009, http://www.spec2000.com. 6094

[UHFC1G2] EPCglobal, "EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID 6095
Protocol for Communications at 860 MHz – 960 MHz Version 1.2.0," EPCglobal Specification, May 6096
2008, http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf. 6097

[UID] "United States Department of Defense Guide to Uniquely Identifying Items" Version 3.0 6098
(December 2, 2014), 6099
https://dodprocurementtoolbox.com/cms/sites/default/files/resources/DoD%20Guide%20to%20Uni6100
quely%20Identify%20Items%20v3.0.pdf. 6101

[USDOD] "United States Department of Defense Suppliers’ Passive RFID Information Guide," 6102
https://www.acq.osd.mil/log/LOG/.AIT.html/DoD_Suppliers_Passive_RFID_Info_Guide_v15update.pdf 6103

https://www.gs1.org/id-keys-epcrfid-epcis/epc-rfid-architecture-framework/1-6
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf
https://www.gs1.org/standards/gs1-digital-link
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
http://www.ietf.org/rfc/rfc2141
http://www.ietf.org/rfc/rfc3986
http://www.ietf.org/rfc/rfc5234
http://www.ietf.org/rfc/rfc7405
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
http://www.spec2000.com/
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
https://dodprocurementtoolbox.com/cms/sites/default/files/resources/DoD%20Guide%20to%20Uniquely%20Identify%20Items%20v3.0.pdf
https://dodprocurementtoolbox.com/cms/sites/default/files/resources/DoD%20Guide%20to%20Uniquely%20Identify%20Items%20v3.0.pdf
https://www.acq.osd.mil/log/LOG/.AIT.html/DoD_Suppliers_Passive_RFID_Info_Guide_v15update.pdf

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 240 of 315

D Extensible Bit Vectors 6104

An Extensible Bit Vector (EBV) is a data structure with an extensible data range. 6105

An EBV is an array of blocks. Each block contains a single extension bit followed by a specific 6106
number of data bits. If B is the total number of bits in one block, then a block co–tains B − 1 data 6107
bits. The notation EBV-n used in this specification indicates an EBV with a block size of n; e.g., EBV-6108
8 denotes an EBV with B=8. 6109

The data value represented by an EBV is simply the bit string formed by the data bits as read from 6110
left to right, ignoring all extension bits. The last block of an EBV has an extension bit of zero, and all 6111
blocks of an EBV preceding the last block (if any) have an extension bit of one. 6112

The following table illustrates different values represented in EBV-6 format and EBV-8 format. 6113
Spaces are added to the EBVs for visual clarity. 6114

Value EBV-6 EBV-8

0 000000 00000000

1 000001 00000001

31 (25−1) 011111 00011111

32 (25) 100001 000000 00100000

33 (25+1) 100001 000001 00100001

127 (27−1) 100011 011111 01111111

128 (27) 100100 000000 10000001 00000000

129 (27+1) 100100 000001 10000001 00000001

16384 (214) 110000 100000 000000 10000001 10000000 00000000

The Packed Objects specification in I makes use of EBV-3, EBV-6, and EBV-8. 6115

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 241 of 315

E (non-normative) Examples: EPC encoding and decoding 6116

This section presents two detailed examples showing encoding and decoding between the Serialised 6117
Global Identification Number (SGTIN) and the EPC memory bank of a Gen 2 RFID tag, and summary 6118
examples showing various encodings of all EPC schemes. 6119

As these are merely illustrative examples, in all cases the indicated normative sections of this 6120
specification should be consulted for the definitive rules for encoding and decoding. The diagrams 6121
and accompanying notes in this section are not intended to be a complete specification for encoding 6122
or decoding, but instead serve only to illustrate the highlights of how the normative encoding and 6123
decoding procedures function. The procedures for encoding other types of identifiers are different in 6124
significant ways, and the appropriate sections of this specification should be consulted. 6125

E.1 Encoding a Serialised Global Trade Item Number (SGTIN) to SGTIN-96 6126

This example illustrates the encoding of a GS1 element string containing a Serialised Global Trade 6127
Item Number (SGTIN) into an EPC Gen 2 RFID tag using the SGTIN-96 EPC scheme, with 6128
intermediate steps including the EPC URI, the EPC Tag URI, and the EPC Binary Encoding. 6129

In some applications, only a part of this illustration is relevant. For example, an application may 6130
only need to transform a GS1 element string into an EPC URI, in which case only the top of the 6131
illustration is needed. 6132

The illustration below makes reference to the following notes: 6133

■ Note 1: The step of converting a GS1 element string into the EPC Pure Identity URI requires that the 6134
number of digits in the GS1 Company Prefix be determined; e.g., by reference to an external table of 6135
company prefixes. In this example, the GS1 Company Prefix is shown to be seven digits. 6136

■ Note 2: The check digit in GTIN as it appears in the GS1 element string is not included in the EPC Pure 6137
Identity URI. 6138

■ Note 3: The SGTIN-96 EPC scheme may only be used if the Serial Number meets certain constraints. 6139
Specifically, the serial number must (a) consist only of digit characters; (b) not begin with a zero digit 6140
(unless the entire serial number is the single digit ‘0’); and (c) correspond to a decimal numeral whose 6141
numeric value that is less than 238 (less than 274,877,906,944). For all other serial numbers, the SGTIN-6142
198 EPC scheme must be used. Note that the EPC URI is identical regardless of whether SGTIN-96 or 6143
SGTIN-198 is used in the RFID Tag. 6144

■ Note 4: EPC Binary Encoding header values are defined in Section 14.2. 6145

■ Note 5: The number of bits in the GS1 Company Prefix and Indicator/Item Reference fields in the EPC 6146
Binary Encoding depends on the number of digits in the GS1 Company Prefix portion of the EPC URI, and 6147
this is indicated by a code in the Partition field of the EPC Binary Encoding. See 14.2. (for the SGTIN EPC 6148
only). 6149

■ Note 6: The Serial field of the EPC Binary Encoding for SGTIN-96 is 38 bits. 6150

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 242 of 315

 6151

(01) 09506000134352(21)6789

(01) 0 95060001343 05 2 (21) 6789

urn:epc:id:sgtin: 95060001343 . 05 . 6789

urn:epc:id:sgtin:95060001343.05.6789

GS1 element string

GS1 element string to EPC
Pure Identity URI
(Section 7.2.3)

urn:epc:id:sgtin:95060001343.05.6789
EPC Pure Identity URI to
EPC Tag URI
(Section 12.3.2)

urn:epc:tag:sgtin-96:3.95060001343.05.6789

EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.95060001343.05.6789 EPC Tag URI

urn:epc:tag:sgtin-96:3.95060001343.05.6789
EPC Tag URI
to EPC Binary Encoding
(Section 14.3)

001100000110011011000100010000001001000001000111111000010100000000000
000000000000001101010000101

EPC Binary

00110000

Header

011

Filter

001

Partition

101100010001000000100100
0001000111111

GS1 Company Prefix

0000101

Indicator/Item Ref

0000000000000000000
0000001101010000101

Serial (38 bits)

EPC Binary Encoding
to Gen 2 memory
(Section 15.1) …

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

Note 1 Note 2

Note 5 Note 6

96-bit EPC
Scheme Selected

Note 3

Note 4

https://id.gs1.org/01/09506000134352/21/6789 GS1 Digital Link URI

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 243 of 315

E.2 Decoding an SGTIN-96 to a Serialised Global Trade Item Number (SGTIN) 6152

This example illustrates the decoding of an EPC Gen 2 RFID tag containing an SGTIN-96 EPC Binary 6153
Encoding into a GS1 element string containing a Serialised Global Trade Item Number (SGTIN), with 6154
intermediate steps including the EPC Binary Encoding, the EPC Tag URI, and the EPC URI. 6155

In some applications, only a part of this illustration is relevant. For example, an application may 6156
only need to convert an EPC binary encoding to an EPC URI, in which case only the top of the 6157
illustration is needed. 6158

The illustration below makes reference to the following notes: 6159

■ Note 1: The EPC Binary Encoding header indicates how to interpret the remainder of the binary data, and 6160
the EPC scheme name to be included in the EPC Tag URI. EPC Binary Encoding header values are defined 6161
in Section 14.2. 6162

■ Note 2: The Partition field of the EPC Binary Encoding contains a code that indicates the number of bits in 6163
the GS1 Company Prefix field and the Indicator/Item Reference field. The partition code also determines 6164
the number of decimal digits to be used for those fields in the EPC Tag URI (the decimal representation 6165
for those two fields is padded on the left with zero characters as necessary). See Section 14.2. (for the 6166
SGTIN EPC only). 6167

■ Note 3: For the SGTIN-96 EPC scheme, the Serial Number field is decoded by interpreting the bits as a 6168
binary integer and converting to a decimal numeral without leading zeros (unless all serial number bits 6169
are zero, which decodes as the string "0"). Serial numbers containing non-digit characters or that begin 6170
with leading zero characters may only be encoded in the SGTIN-198 EPC scheme. 6171

■ Note 4: The check digit in the GS1 element string is calculated from other digits in the EPC Pure Identity 6172
URI, as specified in Section 7.2.3. 6173

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 244 of 315

 6174

urn:epc:tag:sgtin-96:3.95060001343.05.6789

EPC Binary Encoding
to EPC Tag URI
(Section 14.3.7)

00110000

Header

011

Filter

001

Partition

101100010001000000100100
0001000111111

GS1 Company Prefix

0000101

Indicator/Item Ref

0000000000000000000
0000001101010000101

Serial (38 bits)

Gen 2 memory to
EPC Binary Enco-
ding (Section 15.2)

…

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

(01)09506000134352(21)6789

https://id.gs1.org/01/09506000134352/21/6789

GS1 element string

GS1 Digital Link URI

urn:epc:id:sgtin:9506000134305.05.6789 EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.9506000134305.6789 EPC Tag URI

001100000110011011000100010000001001000001000111111000010100000000000
000000000000001101010000101

EPC Binary

(01) 0 9506000134305 2 (21) 6789

EPC Pure Identity URI to
GS1 Element String
(Section 7.2.3)

Note 1

Note 2

96-bit EPC
Scheme Selected

urn:epc:id:sgtin:9506000134305.05.6789

EPC Tag URI to EPC Pure
Identity URI
(Section 12.3)

urn:epc:tag:sgtin-96:3.9506000134305.05.6789

urn:epc:id:sgtin:9506000134305.05.6789

Σ Note 4

Note 3

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 245 of 315

E.3 Summary Examples of All EPC schemes 6175

SGTIN-96

GS1 element string (01)09506000134352(21)123456789

GS1 Digital Link URI https://id.gs1.org/01/09506000134352/21/123456789

EPC URI urn:epc:id:sgtin:95060001343.05.1234567896789

EPC Tag URI urn:epc:tag:sgtin-96:3.95060001343.05.123456789

EPC Binary Encoding
(hex)

3066C4409047E140075BCD15

 6176

SGTIN-198

GS1 element
string

(01)09506000134352(21)32a/b

GS1 Digital Link
URI

https://id.gs1.org/01/09506000134352/21/32a%2Fb

EPC URI urn:epc:id:sgtin:95060001343.05.32a%2Fb

EPC Tag URI urn:epc:tag:sgtin-198:3.95060001343.05.32a%2Fb

EPC Binary
Encoding (hex)

3666C4409047E159B2C2BF100000000000000000000000000000

 6177

SGTIN+ (assuming filter value 3 and no +AIDC data)

GS1 element string (01)79521141123453(21)32a/b

GS1 Digital Link URI https://example.com/01/79521141123453/21/32a%2Fb

EPC Binary Encoding (hex) F73795211411234538566CB0AFC4

 6178

DSGTIN+ (assuming filter value 3 and no +AIDC data)

GS1 element string (01)79521141123453(21)32a/b(17)220630

GS1 Digital Link URI https://example.com/01/79521141123453/21/32a%2Fb?17=220630
(https://example.com/01/79521141123453/21/32a%2Fb in EPCIS)

EPC Binary Encoding (hex) FB342CDE795211411234538566CB0AFC4

 6179

SSCC-96

GS1 element string (00)095201234567891235

GS1 Digital Link URI https://example.com/00/095201234567891235

GCP length 6 (partition value "6")

EPC URI urn:epc:id:sscc:952012.03456789123

Filter value "All Others" (0)

EPC Tag URI urn:epc:tag:sscc-96:0.952012.03456789123

EPC Binary Encoding (hex) 311BA1B300CE0A6A83000000

 6180

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 246 of 315

SSCC+

GS1 element string (00)095201234567891235

GS1 Digital Link URI https://id.gs1.org/00/095201234567891235

+Data appended to EPC? no (0)

Filter value "All Others" (0)

EPC Binary Encoding (hex) F90095201234567891235

 6181

SGLN-96

GS1 element string (414)9521141123454(254)5678

GS1 Digital Link URI https://example.com/414/9521141123454/254/5678

EPC URI urn:epc:id:sgln:9521141.12345.5678

EPC Tag URI urn:epc:tag:sgln-96:3.9521141.12345.5678

EPC Binary Encoding (hex) 3276451FD46072000000162E

 6182

SGLN-195

GS1 element string (414)9521141123454(254)32a/b

GS1 Digital Link URI https://example.com/414/9521141123454/254/32a%2Fb

EPC URI urn:epc:id:sgln:9521141.12345.32a%2Fb

EPC Tag URI urn:epc:tag:sgln-195:3.9521141.12345.32a%2Fb

EPC Binary Encoding (hex) 3976451FD46072CD9615F8800000000000000000000000000000

 6183

SGLN+

GS1 element string (414)9521141123454(254)32a/b

GS1 Digital Link URI https://example.com/414/9521141123454/254/32a%2Fb

EPC Binary Encoding (hex) F2395211411234548566CB0AFC4

 6184

GRAI-96

GS1 element string (8003)095211411234545678

GS1 Digital Link URI https://example.com/8003/095211411234545678

EPC URI urn:epc:id:grai:9521141.12345.5678

EPC Tag URI urn:epc:tag:grai-96:3.9521141.12345.5678

EPC Binary Encoding (hex) 3376451FD40C0E400000162E

 6185

GRAI-170

GS1 element string (8003)0952114112345432a/b

GS1 Digital Link URI https://example.com/8003/0952114112345432a%2Fb

EPC URI urn:epc:id:grai:9521141.12345.32a%2Fb

EPC Tag URI urn:epc:tag:grai-170:3.9521141.12345.32a%2Fb

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 247 of 315

GRAI-170

EPC Binary Encoding (hex) 3776451FD40C0E59B2C2BF1000000000000000000000

 6186

GRAI+

GS1 element string (8003)0952114112345432a/b

GS1 Digital Link URI https://example.com/8003/0952114112345432a%2Fb

EPC Binary Encoding (hex) F13095211411234548566CB0AFC4

 6187

GIAI-96

GS1 element string (8004)95211415678

GS1 Digital Link URI https://example.com/8004/95211415678

EPC URI urn:epc:id:giai:9521141.5678

EPC Tag URI urn:epc:tag:giai-96:3.9521141.5678

EPC Binary Encoding (hex) 3476451FD40000000000162E

 6188

GIAI-202

GS1 element string (8004)952114132a/b

GS1 Digital Link URI https://example.com/8004/952114132a%2Fb

EPC URI urn:epc:id:giai:9521141.32a%2Fb

EPC Tag URI urn:epc:tag:giai-202:3.9521141.32a%2Fb

EPC Binary Encoding (hex) 3876451FD59B2C2BF10000000000000000000000000000000000

 6189

GIAI+

GS1 element string (8004)952114132a/b

GS1 Digital Link URI https://example.com/8004/952114132a%2Fb

EPC Binary Encoding (hex) FA3952114132E83C2BF10

 6190

GSRN-96

GS1 element string (8018)952114112345678906

GS1 Digital Link URI https://example.com/8018/952114112345678906

EPC URI urn:epc:id:gsrn:9521141.1234567890

EPC Tag URI urn:epc:tag:gsrn-96:3.9521141.1234567890

EPC Binary Encoding (hex) 2D76451FD4499602D2000000

 6191

GSRN+

GS1 element string (8018)952114112345678906

GS1 Digital Link URI https://example.com/8018/952114112345678906

EPC Binary Encoding (hex) F43952114112345678906

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 248 of 315

 6192

GSRNP-96

GS1 element string (8017)952114112345678906

GS1 Digital Link URI https://example.com/8017/952114112345678906

EPC URI urn:epc:id:gsrnp:9521141.1234567890

EPC Tag URI urn:epc:tag:gsrnp-96:3.9521141.1234567890

EPC Binary Encoding (hex) 2E76451FD4499602D2000000

 6193

GSRNP+

GS1 element string (8017)952114112345678906

GS1 Digital Link URI https://example.com/8017/952114112345678906

EPC Binary Encoding (hex) F53952114112345678906

 6194

GDTI-96

GS1 element string (253)95211411234545678

GS1 Digital Link URI https://example.com/253/95211411234545678

EPC URI urn:epc:id:gdti:9521141.12345.5678

EPC Tag URI urn:epc:tag:gdti-96:3.9521141.12345.5678

EPC Binary Encoding (hex) 2C76451FD46072000000162E

 6195

GDTI-174

GS1 element string (253)9521141987650ABCDefgh012345678

GS1 Digital Link URI https://example.com/253/9521141987650ABCDefgh012345678

EPC URI urn:epc:id:gdti:9521141.98765.ABCDefgh012345678

EPC Tag URI urn:epc:tag:gdti-174:3.9521141.98765.ABCDefgh012345678

EPC Binary Encoding (hex) 3E76451FD7039B061438997367D0C18B266D1AB66EE0

 6196

GDTI+

GS1 element string (253)95211411234545678

GS1 Digital Link URI https://example.com/253/95211411234545678

EPC Binary Encoding (hex) F6395211411234540458B8

 6197

CPI-96

GS1 element string (8010)952114198765(8011)12345

GS1 Digital Link URI https://example.com/8010/952114198765/8011/12345

EPC URI urn:epc:id:cpi:9521141.98765.12345

EPC Tag URI urn:epc:tag:cpi-96:3.9521141.98765.12345

EPC Binary Encoding (hex) 3C76451FD400C0E680003039

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 249 of 315

 6198

CPI-var

GS1 element string (8010)95211415PQ7/Z43(8011)12345

GS1 Digital Link URI https://example.com/8010/95211415PQ7%2FZ43/8011/12345

EPC URI urn:epc:id:cpi:9521141.5PQ7%2FZ43.12345

EPC Tag URI urn:epc:tag:cpi-var:3.9521141.5PQ7%2FZ43.12345

EPC Binary Encoding (hex) 3D76451FD75411DEF6B4CC00000003039000

 6199

CPI+

GS1 element string (8010)95211415PQ7/Z43(8011)12345

GS1 Digital Link URI https://example.com/8010/95211415PQ7%2FZ43/8011/12345

EPC Binary Encoding (hex) F0395211415E87A145BAFB4D19A8C0E4

 6200

SGCN-96

GS1 element string (255)952114167890904711

GS1 Digital Link URI https://example.com/255/952114167890904711

EPC URI urn:epc:id:sgcn:9521141.67890.04711

EPC Tag URI urn:epc:tag:sgcn-96:3.9521141.67890.04711

EPC Binary Encoding (hex) 3F76451FD612640000019907

 6201

SGCN+

GS1 element string (255)952114167890904711

GS1 Digital Link URI https://example.com/255/952114167890904711

EPC Binary Encoding (hex) F839521141678909509338

 6202

GID-96

EPC URI urn:epc:id:gid:952056.2718.1414

EPC Tag URI urn:epc:tag:gid-96:952056.2718.1414

EPC Binary Encoding (hex) 3500E86F8000A9E000000586

 6203

USDOD-96

EPC URI urn:epc:id:usdod:CAGEY.5678

EPC Tag URI urn:epc:tag:usdod-96:3.CAGEY.5678

EPC Binary Encoding (hex) 2F320434147455900000162E

 6204

ADI-var

EPC URI urn:epc:id:adi:35962.PQ7VZ4.M37GXB92

EPC Tag URI urn:epc:tag:adi-var:3.35962.PQ7VZ4.M37GXB92

EPC Binary Encoding (hex) 3B0E0CF5E76C9047759AD00373DC7602E7200

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 250 of 315

 6205

ITIP-110

GS1 element string (8006)095211411234540102(21)981

GS1 Digital Link URI https://example.com/8006/095211411234540102/21/981

EPC URI urn:epc:id:itip:9521141.012345.01.02.981

EPC Tag URI urn:epc:tag:itip-110:3.9521141.012345.01.02.981

EPC Binary Encoding (hex) 4076451FD40C0E40820000000F54

 6206

ITIP-212

GS1 element string (8006)095211411234540102(21)mw133

GS1 Digital Link URI https://example.com/8006/095211411234540102/21/mw133

EPC URI urn:epc:id:itip:9521141.012345.01.02.mw133

EPC Tag URI urn:epc:tag:itip-212:3.9521141.012345.01.02.mw133

EPC Binary Encoding (hex) 4176451FD40C0E4082DBDD8B36600000000000000000000000000000

 6207

ITIP+

GS1 element string (8006)095211411234540102(21)rif981

GS1 Digital Link URI https://example.com/8006/095211411234540102/21/rif981

EPC Binary Encoding (hex) F3309521141123454010266AE27FDF35

 6208

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 251 of 315

F Packed objects ID Table for Data Format 9 6209

This section provides the Packed Objects ID Table for Data Format 9, which defines Packed Objects 6210
ID values, OIDs, and format strings for GS1 Application Identifiers. 6211

Section F.1 is a non-normative listing of the content of the ID Table for Data Format 9, in a human 6212
readable, tabular format. Section F.2 is the normative table, in machine readable, comma-6213
separated-value format, as registered with ISO. As of TDS 2.1, Section F.2 is supplemented 6214
with an external, normative artefact in CSV format. 6215

Note that the following data attributes are intentionally omitted: 6216

Identification of a Made-to-order (MtO) trade item (GTIN) [AI (03)] and Highly Individualised Device 6217
Registration Identifier (HIDRI) [AI (8014)] are defined for the Master Unique Device Identifiers – 6218
Device Identifier (M-UDI-DI) restricted application, and as such are not permitted for use in an 6219
EPC/RFID data carrier. 6220

F.1 Tabular Format (non-normative) 6221

This section is a non-normative listing of the content of the ID Table for Data Format 9, in a human 6222
readable, tabular format. See Section F.2 for the normative, machine readable, comma-separated-6223
value format, as registered with ISO. 6224

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

K-Version = 1.00

K-ISO15434=05

K-Text = Primary Base Table

K-TableID = F9B0

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 90

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

00 1 0 00 SSCC (Serial
Shipping
Container Code)

SSCC 18n

01 2 1 01 Global Trade Item
Number

GTIN 14n

02 + 37 3 (2)(37) (02)(37) GTIN + Count of
trade items
contained in a
logistic unit

CONTENT +
COUNT

(14n)(1*8n)

10 4 10 10 Batch or lot
number

BATCH/LOT 1*20an

11 5 11 11 Production date
(YYMMDD)

PROD DATE 6n

12 6 12 12 Due date
(YYMMDD)

DUE DATE 6n

13 7 13 13 Packaging date
(YYMMDD)

PACK DATE 6n

15 8 15 15 Best before date
(YYMMDD)

BEST BEFORE OR
SELL BY

6n

17 9 17 17 Expiration date
(YYMMDD)

USE BY OR
EXPIRY

6n

20 10 20 20 Internal product
variant

VARIANT 2n

21 11 21 21 Serial number SERIAL 1*20an

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 252 of 315

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

22 12 22 22 Consumer product
variant

CPV 1*20an

240 13 240 240 Additional product
identification
assigned by the
manufacturer

ADDITIONAL ID 1*30an

241 14 241 241 Customer part
number

CUST. PART NO. 1*30an

242 15 242 242 Made-to-Order
Variation Number

VARIATION
NUMBER

1*6n

250 16 250 250 Secondary serial
number

SECONDARY
SERIAL

1*30an

251 17 251 251 Reference to
source entity

REF. TO SOURCE 1*30an

253 18 253 253 Global Document
Type Identifier

DOC. ID 13n 0*17an

30 19 30 30 Variable count of
items (Variable
Measure Trade
Item)

VAR. COUNT 1*8n

310n
320n etc

20 K-Secondary
= S00

 Net weight,
kilograms or
pounds or troy oz
(Variable Measure
Trade Item)

311n
321n etc

21 K-Secondary
= S01

 Length of first
dimension
(Variable Measure
Trade Item)

312n
324n etc

22 K-Secondary
= S02

 Width, diameter,
or second
dimension
(Variable Measure
Trade Item)

313n
327n etc

23 K-Secondary
= S03

 Depth, thickness,
height, or third
dimension
(Variable Measure
Trade Item)

314n
350n etc

24 K-Secondary
= S04

 Area (Variable
Measure Trade
Item)

315n
316n etc

25 K-Secondary
= S05

 Net volume
(Variable Measure
Trade Item)

330n or
340n

26 330%x30-36
/ 340%x30-
36

330%x30-
36 /
340%x30-
36

Logistic weight,
kilograms or
pounds

GROSS WEIGHT
(kg) or (lb)

6n / 6n

331n,
341n, etc

27 K-Secondary
= S09

 Length or first
dimension

332n,
344n, etc

28 K-Secondary
= S10

 Width, diameter,
or second
dimension

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 253 of 315

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

333n,
347n, etc

29 K-Secondary
= S11

 Depth, thickness,
height, or third
dimension

334n
353n etc

30 K-Secondary
= S07

 Logistic Area

335n
336n etc

31 K-Secondary
= S06

335%x30-
36

Logistic volume

337(***) 32 337%x30-36 337%x30-
36

Kilograms per
square metre

KG PER m^2 6n

390n or
391n

33 390%x30-39
/ 391%x30-
39

390%x30-
39 /
391%x30-
39

Amount payable -
single monetary
area or with ISO
currency code

AMOUNT 1*15n / 4*18n

392n or
393n

34 392%x30-39
/ 393%x30-
39

392%x30-
39 /
393%x30-
39

Amount payable
for Variable
Measure Trade
Item - single
monetary unit or
ISO cc

 PRICE 1*15n / 4*18n

400 35 400 400 Customer's
purchase order
number

ORDER NUMBER 1*30an

401 36 401 401 Global
Identification
Number for
Consignment

GINC 1*30an

402 37 402 402 Global Shipment
Identification
Number

GSIN 17n

403 38 403 403 Routing code ROUTE 1*30an

410 39 410 410 Ship to - Deliver
to Global Location
Number

SHIP TO LOC 13n

411 40 411 420 Bill to - Invoice to
Global Location
Number

BILL TO 13n

412 41 412 412 Purchased from
Global Location
Number

PURCHASE FROM 13n

413 42 413 413 Ship for - Deliver
for - Forward to
Global Location
Number

SHIP FOR LOC 13n

414 and
254

43 (414) [254] (414)
[254]

Identification of a
physical location
GLN, and optional
Extension

LOC No + GLN
EXTENSION

(13n) [1*20an]

415 and
8020

44 (415) (8020) (415)
(8020)

Global Location
Number of the
Invoicing Party
and Payment Slip
Reference
Number

PAY + REF No (13n) (1*25an)

420 or
421

45 (420/421) (420/421) Ship-to / Deliver-
to postal code

SHIP TO POST (1*20an / 3n
1*9an)

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 254 of 315

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

422 46 422 422 Country of origin
of a trade item

ORIGIN 3n

423 47 423 423 Country of initial
processing

COUNTRY -
INITIAL PROCESS

3*15n

424 48 424 424 Country of
processing

COUNTRY -
INITIAL PROCESS

3n

425 49 425 425 Country of
disassembly

COUNTRY -
DISASSEMBLY

3n

426 50 426 426 Country covering
full process chain

COUNTRY - FULL
PROCESS

3n

7001 51 7001 7001 NATO stock
number

NSN 13n

7002 52 7002 7002 UN/ECE meat
carcasses and
cuts classification

MEAT CUT 1*30an

7003 53 7003 7003 Expiration Date
and Time

EXPIRY
DATE/TIME

10n

7004 54 7004 7004 Active Potency ACTIVE POTENCY 1*4n

703s 55 7030 7030 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 56 7031 7031 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 57 7032 7032 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 58 7033 7033 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 59 7034 7034 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 60 7035 7035 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 61 7036 7036 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 62 7037 7037 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 63 7038 7038 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

703s 64 7039 7039 Approval number
of processor with
ISO country code

PROCESSOR # s 3n 1*27an

8001 65 8001 8001 Roll products -
width, length,
core diameter,
direction, splices

DIMENSIONS 14n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 255 of 315

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

8002 66 8002 8002 Electronic serial
identifier for
cellular mobile
telephones

CMT No 1*20an

8003 67 8003 8003 Global Returnable
Asset Identifier

GRAI 14n 0*16an

8004 68 8004 8004 Global Individual
Asset Identifier

GIAI 1*30an

8005 69 8005 8005 Price per unit of
measure

PRICE PER UNIT 6n

8006 70 8006 8006 Identification of
the component of
a trade item

ITIP 18n

8007 71 8007 8007 International
Bank Account
Number

IBAN 1*34an

8008 72 8008 8008 Date and time of
production

PROD TIME 8*12n

8018 73 8018 8018 Global Service
Relation Number -
Recipient

GSRN -
RECIPIENT

18n

8100
8101 etc

74 K-Secondary
= S08

 Coupon Codes

90 75 90 90 Information
mutually agreed
between trading
partners
(including FACT
DIs)

INTERNAL 1*30an

91 76 91 91 Company internal
information

INTERNAL 1*an

92 77 92 92 Company internal
information

INTERNAL 1*an

93 78 93 93 Company internal
information

INTERNAL 1*an

94 79 94 94 Company internal
information

INTERNAL 1*an

95 80 95 95 Company internal
information

INTERNAL 1*an

96 81 96 96 Company internal
information

INTERNAL 1*an

97 82 97 97 Company internal
information

INTERNAL 1*an

98 83 98 98 Company internal
information

INTERNAL 1*an

99 84 99 99 Company internal
information

INTERNAL 1*an

nnn 85 K-Secondary
= S12

 Additional AIs

K-TableEnd = F9B0

 6225

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 256 of 315

K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)

K-TableID = F9S00

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

310(***) 0 310%x30-35 310%x30-35 Net weight,
kilograms (Variable
Measure Trade
Item)

NET WEIGHT
(kg)

6n

320(***) 1 320%x30-35 320%x30-35 Net weight, pounds
(Variable Measure
Trade Item)

NET WEIGHT
(lb)

6n

356(***) 2 356%x30-35 356%x30-35 Net weight, troy
ounces (Variable
Measure Trade
Item)

NET WEIGHT
(t)

6n

K-TableEnd = F9S00

 6226

K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item)

K-TableID = F9S01

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

311(***) 0 311%x30-35 311%x30-35 Length of first
dimension,
metres (Variable
Measure Trade
Item)

LENGTH (m) 6n

321(***) 1 321%x30-35 321%x30-35 Length or first
dimension,
inches (Variable
Measure Trade
Item)

LENGTH (i) 6n

322(***) 2 322%x30-35 322%x30-35 Length or first
dimension, feet
(Variable
Measure Trade
Item)

LENGTH (f) 6n

323(***) 3 323%x30-35 323%x30-35 Length or first
dimension,
yards (Variable
Measure Trade
Item)

LENGTH (y) 6n

K-TableEnd = F9S01

 6227

K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)

K-TableID = F9S02

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 257 of 315

K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)

312(***) 0 312%x30-35 312%x30-35 Width,
diameter, or
second
dimension,
metres (Variable
Measure Trade
Item)

WIDTH (m) 6n

324(***) 1 324%x30-35 324%x30-35 Width,
diameter, or
second
dimension,
inches (Variable
Measure Trade
Item)

WIDTH (i) 6n

325(***) 2 325%x30-35 325%x30-35 Width,
diameter, or
second
dimension,
(Variable
Measure Trade
Item)

WIDTH (f) 6n

326(***) 3 326%x30-35 326%x30-35 Width,
diameter, or
second
dimension,
yards (Variable
Measure Trade
Item)

WIDTH (y) 6n

K-TableEnd = F9S02

 6228

K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)

K-TableID = F9S03

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

313(***) 0 313%x30-35 313%x30-35 Depth,
thickness,
height, or third
dimension,
metres (Variable
Measure Trade
Item)

HEIGHT (m) 6n

327(***) 1 327%x30-35 327%x30-35 Depth,
thickness,
height, or third
dimension,
inches (Variable
Measure Trade
Item)

HEIGHT (i) 6n

328(***) 2 328%x30-35 328%x30-35 Depth,
thickness,
height, or third
dimension, feet
(Variable
Measure Trade
Item)

HEIGHT (f) 6n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 258 of 315

K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)

329(***) 3 329%x30-35 329%x30-35 Depth,
thickness,
height, or third
dimension,
yards (Variable
Measure Trade
Item)

HEIGHT (y) 6n

K-TableEnd = F9S03

 6229

K-Text = Sec. IDT - Area (Variable Measure Trade Item)

K-TableID = F9S04

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

314(***) 0 314%x30-35 314%x30-35 Area, square
metres (Variable
Measure Trade
Item)

AREA (m^2) 6n

350(***) 1 350%x30-35 350%x30-35 Area, square
inches (Variable
Measure Trade
Item)

AREA (i^2) 6n

351(***) 2 351%x30-35 351%x30-35 Area, square
feet (Variable
Measure Trade
Item)

AREA (f2) 6n

352(***) 3 352%x30-35 352%x30-35 Area, square
yards (Variable
Measure Trade
Item)

AREA (y2) 6n

K-TableEnd = F9S04

 6230

K-Text = Sec. IDT - Net volume (Variable Measure Trade Item)

K-TableID = F9S05

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

315(***) 0 315%x30-35 315%x30-35 Net volume,
litres (Variable
Measure Trade
Item)

NET VOLUME
(l)

6n

316(***) 1 316%x30-35 316%x30-35 Net volume,
cubic metres
(Variable
Measure Trade
Item)

NET VOLUME
(m3)

6n

357(***) 2 357%x30-35 357%x30-35 Net weight (or
volume), ounces
(Variable
Measure Trade
Item)

NET VOLUME
(oz)

6n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 259 of 315

K-Text = Sec. IDT - Net volume (Variable Measure Trade Item)

360(***) 3 360%x30-35 360%x30-35 Net volume,
quarts (Variable
Measure Trade
Item)

NET VOLUME
(q)

6n

361(***) 4 361%x30-35 361%x30-35 Net volume,
gallons U.S.
(Variable
Measure Trade
Item)

NET VOLUME
(g)

6n

364(***) 5 364%x30-35 364%x30-35 Net volume,
cubic inches

VOLUME
(i^3), log

6n

365(***) 6 365%x30-35 365%x30-35 Net volume,
cubic feet
(Variable
Measure Trade
Item)

VOLUME
(f3), log

6n

366(***) 7 366%x30-35 366%x30-35 Net volume,
cubic yards
(Variable
Measure Trade
Item)

VOLUME
(y3), log

6n

K-TableEnd = F9S05

 6231

K-Text = Sec. IDT - Logistic Volume

K-TableID = F9S06

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

335(***) 0 335%x30-35 335%x30-35 Logistic volume,
litres

VOLUME (l),
log

6n

336(***) 1 336%x30-35 336%x30-35 Logistic volume,
cubic meters

VOLUME
(m^3), log

6n

362(***) 2 362%x30-35 362%x30-35 Logistic volume,
quarts

VOLUME (q),
log

6n

363(***) 3 363%x30-35 363%x30-35 Logistic volume,
gallons

VOLUME (g),
log

6n

367(***) 4 367%x30-35 367%x30-35 Logistic volume,
cubic inches

VOLUME (q),
log

6n

368(***) 5 368%x30-35 368%x30-35 Logistic volume,
cubic feet

VOLUME (g),
log

6n

369(***) 6 369%x30-35 369%x30-35 Logistic volume,
cubic yards

VOLUME
(i^3), log

6n

K-TableEnd = F9S06

 6232

K-Text = Sec. IDT - Logistic Area

K-TableID = F9S07

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 260 of 315

K-Text = Sec. IDT - Logistic Area

334(***) 0 334%x30-35 334%x30-35 Area, square
metres

AREA
(m^2), log

6n

353(***) 1 353%x30-35 353%x30-35 Area, square
inches

AREA (i^2),
log

6n

354(***) 2 354%x30-35 354%x30-35 Area, square
feet

AREA (f^2),
log

6n

355(***) 3 355%x30-35 355%x30-35 Area, square
yards

AREA (y^2),
log

6n

K-TableEnd = F9S07

 6233

K-Text = Sec. IDT - Coupon Codes

K-TableID = F9S08

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalu
e

OIDs IDstring Name Data Title FormatString

8100 0 8100 8100 GS1-128 Coupon
Extended Code -
NSC + Offer Code
** DEPRECATED
as of GS15i2 **

- 6n

8101 1 8101 8101 GS1-128 Coupon
Extended Code -
NSC + Offer Code +
end of offer code
** DEPRECATED
as of GS15i2 **

- 10n

8102 2 8102 8102 GS1-128 Coupon
Extended Code -
NSC
** DEPRECATED
as of GS15i2 **

- 2n

8110 3 8110 8110 Coupon Code
Identification for Use
in North America

 1*70an

8111 4 8111 8111 Loyalty points of a
coupon

POINTS 4n

K-TableEnd = F9S08

 6234

K-Text = Sec. IDT - Length or first dimension

K-TableID = F9S09

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalu
e

OIDs IDstring Name Data Title FormatString

331(***) 0 331%x30-
35

331%x30-
35

Length or first
dimension,
metres

LENGTH
(m), log

6n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 261 of 315

K-Text = Sec. IDT - Length or first dimension

341(***) 1 341%x30-
35

341%x30-
35

Length or first
dimension,
inches

LENGTH (i),
log

6n

342(***) 2 342%x30-
35

342%x30-
35

Length or first
dimension,
feet

LENGTH (f),
log

6n

343(***) 3 343%x30-
35

343%x30-
35

Length or first
dimension,
yards

LENGTH
(y), log

6n

K-TableEnd = F9S09

 6235

K-Text = Sec. IDT - Width, diameter, or second dimension

K-TableID = F9S10

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalu
e

OIDs IDstring Name Data Title FormatString

332(***) 0 332%x30-
35

332%x30-
35

Width,
diameter, or
second
dimension,
metres

WIDTH (m),
log

6n

344(***) 1 344%x30-
35

344%x30-
35

Width,
diameter, or
second
dimension

WIDTH (i),
log

6n

345(***) 2 345%x30-
35

345%x30-
35

Width,
diameter, or
second
dimension

WIDTH (f),
log

6n

346(***) 3 346%x30-
35

346%x30-
35

Width,
diameter, or
second
dimension

WIDTH (y),
log

6n

K-TableEnd = F9S10

 6236

K-Text = Sec. IDT - Depth, thickness, height, or third dimension

K-TableID = F9S11

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or AIs IDvalu
e

OIDs IDstring Name Data Title FormatString

333(***) 0 333%x30-
35

333%x30-
35

Depth,
thickness,
height, or third
dimension,
metres

HEIGHT
(m), log

6n

347(***) 1 347%x30-
35

347%x30-
35

Depth,
thickness,
height, or third
dimension

HEIGHT (i),
log

6n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 262 of 315

K-Text = Sec. IDT - Depth, thickness, height, or third dimension

348(***) 2 348%x30-
35

348%x30-
35

Depth,
thickness,
height, or third
dimension

HEIGHT (f),
log

6n

349(***) 3 349%x30-
35

349%x30-
35

Depth,
thickness,
height, or third
dimension

HEIGHT (y),
log

6n

K-TableEnd = F9S11

 6237

K-Text = Sec. IDT - Additional AIs

K-TableID = F9S12

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 128

AI or AIs IDvalue OIDs IDstring Name Data Title FormatString

243 0 243 243 Packaging
Component
Number

PCN 1*20an

255 1 255 255 Global Coupon
Number

GCN 13n 0*12n

427 2 427 427 Country
Subdivision of
Origin Code for a
Trade Item

ORIGIN
SUBDIVISIO
N

1*3an

710 3 710 710 National
Healthcare
Reimbursement
Number -
Germany (PZN)

NHRN PZN 3n 1*27an

711 4 711 711 National
Healthcare
Reimbursement
Number - France
(CIP)

NHRN CIP 3n 1*27an

712 5 712 712 National
Healthcare
Reimbursement
Number - Spain
(CN)

NHRN CN 3n 1*27an

713 6 713 713 National
Healthcare
Reimbursement
Number - Brazil
(DRN)

NHRN DRN 3n 1*27an

8010 7 8010 8010 Component / Part
Identifier

CPID 1*30an

8011 8 8011 8011 Component / Part
Identifier Serial
Number

CPID Serial 1*12n

8017 9 8017 8017 Global Service
Relation Number
- Provider

GSRN -
PROVIDER

18n

8019 10 8019 8019 Service Relation
Instance Number

SRIN 1*10n

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 263 of 315

K-Text = Sec. IDT - Additional AIs

8200 11 8200 8200 Extended
Packaging URL

PRODUCT
URL

1*70an

16 12 16 16 Sell by date
(YYMMDD)

SELL BY 6n

394n 13 394%x30-
33

394%x30-
33

Percentage
discount of a
coupon

PCT OFF 4n

7005 14 7005 7005 Catch area CATCH
AREA

1*12an

7006 15 7006 7006 First freeze date FIRST
FREEZE
DATE

6n

7007 16 7007 7007 Harvest date HARVEST
DATE

6*12an

7008 17 7008 7008 Species for
fishery purposes

ACQUATIC
SPECIES

1*3an

7009 18 7009 7009 Fishing gear type FISHING
GEAR TYPE

1*10an

7010 19 7010 7010 Production
method

PROD
METHOD

1*2an

8012 20 8012 8012 Software version VERSION 1*20an

416 21 416 416 GLN of the
production or
service location

PROD/SERV
/LOC

13n

7020 22 7020 7020 Refurbishment lot
ID

REFURB LOT 1*20an

7021 23 7021 7021 Functional status FUNC STAT 1*20an

7022 24 7022 7022 Revision status REV STAT 1*20an

7023 25 7023 7023 Global Individual
Asset Identifier
(GIAI) of an
assembly

GIAI -
ASSEMBLY

1*30an

235 26 235 235 Third party
controlled,
serialised
extension of
GTIN

TPX 1*28an

417 27 417 417 Global Location
Number of Party

PARTY 13n

714 28 714 714 National
Healthcare
Reimbursement
Number -
Portugal (AIM)

NHRN AIM 1*an20

7040 29 7040 7040 Unique
Identification
Code with
Extensions (per
EU 2018/574)

UIC 1n 1*3an

8013 30 8013 8013 Global Model
Number

GMN 1*an30

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 264 of 315

K-Text = Sec. IDT - Additional AIs

8026 31 8026 8026 Identification of
pieces of a trade
item (ITIP)
contained in a
logistics unit

ITIP
CONTENT

18n

8112 32 8112 8112 Paperless coupon
code
identification for
use in North
America

 1*an70

7240 33 7240 7240 Protocol ID PROTOCOL 1*20an

395(***) 34 395%x30-
35

395%x30-
35

Amount Payable
per unit of
measure single
monetary area
(variable
measure trade
item)

PRICE/UoM

6n

4300 35 4300 4300 Ship-to / Deliver-
to company
name

SHIP TO
COMP

1*35an

4301 36 4301 4301 Ship-to / Deliver-
to contact name:
AI

SHIP TO
NAME

1*35an

4302 37 4302 4302 Ship-to / Deliver-
to address line 1:
AI

SHIP TO
ADD1

1*70an

4303 38 4303 4303 Ship-to / Deliver-
to address line 2:
AI

SHIP TO
ADD2

1*70an

4304 39 4304 4304 Ship-to / Deliver-
to suburb

SHIP TO
SUB

1*70an

4305 40 4305 4305 Ship-to / Deliver-
to locality

SHIP TO
LOC

1*70an

4306 41 4306 4306 Ship-to / Deliver-
to region

SHIP TO
REG

1*70an

4307 42 4307 4307 Ship-to / Deliver-
to country code

SHIP TO
COUNTRY

2an

4308 43 4308 4308 Ship-to / Deliver-
to telephone
number

SHIP TO
PHONE

1*30an

4309 44 4309 4309 Ship-to / Deliver-
to GEO location

SHIP TO
GEO

20n

4310 45 4310 4310 Return-to
company name

RTN TO
COMP

1*35an

4311 46 4311 4311 Return-to contact
name

RTN TO
NAME

1*35an

4312 47 4312 4312 Return-to
address line 1

RTN TO
ADD1

1*70an

4313 48 4313 4313 Return-to
address line 2

RTN TO
ADD2

1*70an

4314 49 4314 4314 Return-to suburb RTN TO SUB 1*70an

4315 50 4315 4315 Return-to locality RTN TO LOC 1*70an

4316 51 4316 4316 Return-to region RTN TO REG 1*70an

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 265 of 315

K-Text = Sec. IDT - Additional AIs

4317 52 4317 4317 Return-to country
code

RTN TO
COUNTRY

2an

4318 53 4318 4318 Return-to postal
code

RTN TO
POST

1*20an

4319 54 4319 4319 Return-to
telephone
number

RTN TO
PHONE

1*30an

4320 55 4320 4320 Service code
description

SRV
DESCRIPTIO
N

1*35an

4321 56 4321 4321 Dangerous goods
flag

DANGEROU
S GOODS

1n

4322 57 4322 4322 Authority to leave
flag

AUTH LEAV 1n

4323 58 4323 4323 Signature
required flag

SIG
REQUIRED

1n

4324 59 4324 4324 Not before
delivery
date/time

NBEF DEL
DT

10n

4325 60 4325 4325 Not after delivery
date/time

NAFT DEL
DT

10n

4326 61 4326 4326 Release date REL DATE 6n

715 62 715 715 National
Healthcare
Reimbursement
Number - United
States of America
NDC

NHRN NDC 1*an20

723s 63 7230 7230 Certification
reference

CERT # s 2an 1*28an

723s 64 7231 7231 Certification
reference

CERT # s 2an 1*28an

723s 65 7232 7232 Certification
reference

CERT # s 2an 1*28an

723s 66 7233 7233 Certification
reference

CERT # s 2an 1*28an

723s 67 7234 7234 Certification
reference

CERT # s 2an 1*28an

723s 68 7235 7235 Certification
reference

CERT # s 2an 1*28an

723s 69 7236 7236 Certification
reference

CERT # s 2an 1*28an

723s 70 7237 7237 Certification
reference

CERT # s 2an 1*28an

723s 71 7238 7238 Certification
reference

CERT # s 2an 1*28an

723s 72 7239 7239 Certification
reference

CERT # s 2an 1*28an

7241 73 7241 7241 AIDC media type AIDC MEDIA
TYPE

2n

7242 74 7242 7242 Version Control
Number (VCN)

VCN 1*25an

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 266 of 315

K-Text = Sec. IDT - Additional AIs

8030 75 8030 8030 Digital Signature
(DigSig)

DIGSIG 1*90an

7011 76 7011 7011 Test by date TEST BY
DATE

6n 0*4n

4330 77 4330 4330 Maximum
temperature in
Fahrenheit

MAX TEMP F 6n 0*1an

4331 78 4331 4331 Maximum
temperature in
Celsius

MAX TEMP C 6n 0*1an

4332 79 4332 4332 Minimum
temperature in
Fahrenheit

MIN TEMP F 6n 0*1an

4333 80 4333 4333 Minimum
temperature in
Celsius

MIN TEMP F 6n 0*1an

7002 81 7002 7002 UNECE meat
carcasses and
cuts classification

MEAT CUT 1*30an

7041 82 7041 7041 UN/CEFACT
freight unit type

UFRGT UNIT
TYPE

1*an4

716 83 716 716 National
Healthcare
Reimbursement
Number - Italy
AIC

NHRN AIC 1*an20

7250 84 7250 7250 Date of birth DOB 8n

7251 85 7251 7251 Date and time of
birth

DOB TIME 12n

7252 86 7252 7252 Biological sex BIO SEX 1n

7253 87 7253 7253 Family name of
person

FAMILY
NAME

1*an40

7254 88 7254 7254 Given name of
person

GIVEN
NAME

1*an40

7255 89 7255 7255 Name suffix of
person

SUFFIX 1*an10

7256 90 7256 7256 Full name of
person

FULL NAME 1*an90

7257 91 7257 7257 Address of
person

PERSON
ADDR

1*an70

7258 92 7258 7258 Baby birth
sequence
indicator

BIRTH
SEQUENCE

1*an1 1n 1*an1

7259 93 7259 7259 Baby of family
name

BABY 1*an40

K-TableEnd = F9S12

F.2 Comma-Separated-Value (CSV) format 6238

This section is the Packed Objects ID Table for Data Format 9 (GS1 Application Identifiers) in 6239
machine readable, comma-separated-value format, as registered with ISO. See Section F.1 for a 6240
non-normative listing of the content of the ID Table for Data Format 9, in a human readable, tabular 6241
format. 6242

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 267 of 315

In the comma-separated-value format, line breaks are significant. However, certain lines are too 6243
long to fit within the margins of this document. In the listing below, the symbol █ at the end of line 6244
indicates that the ID Table line is continued on the following line. Such a line shall be interpreted by 6245
concatenating the following line and omitting the █ symbol. 6246

Note that, as of TDS 2.1, the Packed Objects ID Table for Data Format 9 in Section F.2 has been 6247
supplemented with an external, normative artefact in CSV format, which can be found online at 6248
https://ref.gs1.org/standards/tds/artefacts. 6249

 6250

K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9,,,,,, 6251
K-Version = 1.00,,,,,, 6252
K-ISO15434=05,,,,,, 6253
K-Text = Primary Base Table,,,,,, 6254
K-TableID = F9B0,,,,,, 6255
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6256
K-IDsize = 90,,,,,, 6257
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6258
0,1,0,0,SSCC (Serial Shipping Container Code),SSCC,18n 6259
1,2,1,1,Global Trade Item Number,GTIN,14n 6260
02 + 37,3,(2)(37),(02)(37),GTIN + Count of trade items contained in a logistic█ 6261
unit,CONTENT + COUNT,(14n)(1*8n) 6262
10,4,10,10,Batch or lot number,BATCH/LOT,1*20an 6263
11,5,11,11,Production date (YYMMDD),PROD DATE,6n 6264
12,6,12,12,Due date (YYMMDD),DUE DATE,6n 6265
13,7,13,13,Packaging date (YYMMDD),PACK DATE,6n 6266
15,8,15,15,Best before date (YYMMDD),BEST BEFORE OR SELL BY,6n 6267
17,9,17,17,Expiration date (YYMMDD),USE BY OR EXPIRY,6n 6268
20,10,20,20,Internal product variant,VARIANT,2n 6269
21,11,21,21,Serial number,SERIAL,1*20an 6270
22,12,22,22,Consumer product variant,CPV,1*20an 6271
240,13,240,240,Additional product identification assigned by the 6272
manufacturer,ADDITIONAL ID,1*30an 6273
241,14,241,241,Customer part number,CUST. PART NO.,1*30an 6274
242,15,242,242,Made-to-Order Variation Number,VARIATION NUMBER,1*6n 6275
250,16,250,250,Secondary serial number,SECONDARY SERIAL,1*30an 6276
251,17,251,251,Reference to source entity,REF. TO SOURCE,1*30an 6277
253,18,253,253,Global Document Type Identifier,DOC. ID,13n 0*17an 6278
30,19,30,30,Variable count,VAR. COUNT,1*8n 6279
310n 320n etc,20,K-Secondary = S00,,"Net weight, kilograms or pounds or troy oz█ 6280
(Variable Measure Trade Item)",, 6281
311n 321n etc,21,K-Secondary = S01,,Length of first dimension (Variable Measure█ 6282
Trade Item),, 6283
312n 324n etc,22,K-Secondary = S02,,"Width, diameter, or second dimension (Variable█ 6284
Measure Trade Item)",, 6285
313n 327n etc,23,K-Secondary = S03,,"Depth, thickness, height, or third dimension█ 6286
(Variable Measure Trade Item)",, 6287
314n 350n etc,24,K-Secondary = S04,,Area (Variable Measure Trade Item),, 6288
315n 316n etc,25,K-Secondary = S05,,Net volume (Variable Measure Trade Item),, 6289
330n or 340n,26,330%x30-36 / 340%x30-36,330%x30-36 / 340%x30-36,"Logistic weight, █ 6290
kilograms or pounds",GROSS WEIGHT (kg) or (lb),6n / 6n 6291
"331n, 341n, etc",27,K-Secondary = S09,,Length or first dimension,, 6292
"332n, 344n, etc",28,K-Secondary = S10,,"Width, diameter, or second dimension",, 6293
"333n, 347n, etc",29,K-Secondary = S11,,"Depth, thickness, height, or third█ 6294
dimension",, 6295
334n 353n etc,30,K-Secondary = S07,,Logistic Area,, 6296
335n 336n etc,31,K-Secondary = S06,335%x30-36,Logistic volume,, 6297
337(***),32,337%x30-36,337%x30-36,Kilograms per square metre,KG PER m^2,6n 6298
390n or 391n,33,390%x30-39 / 391%x30-39,390%x30-39 / 391%x30-39,Amount payable -█ 6299
single monetary area or with ISO currency code,AMOUNT,1*15n / 4*18n 6300
392n or 393n,34,392%x30-39 / 393%x30-39,392%x30-39 / 393%x30-39,Amount payable for█ 6301
Variable Measure Trade Item - single monetary unit or ISO cc, PRICE,1*15n / 4*18n 6302
400,35,400,400,Customer's purchase order number,ORDER NUMBER,1*30an 6303
401,36,401,401,Global Identification Number for Consignment,GINC,1*30an 6304
402,37,402,402,Global Shipment Identification Number,GSIN,17n 6305
403,38,403,403,Routing code,ROUTE,1*30an 6306

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 268 of 315

410,39,410,410,Ship to - Deliver to Global Location Number,SHIP TO LOC,13n 6307
411,40,411,411,Bill to - Invoice to Global Location Number,BILL TO,13n 6308
412,41,412,412,Purchased from Global Location Number,PURCHASE FROM,13n 6309
413,42,413,413,Ship for - Deliver for - Forward to Global Location Number,SHIP FOR█ 6310
LOC,13n 6311
414 and 254,43,(414) [254],(414) [254],"Identification of a physical location GLN, █ 6312
and optional Extension",LOC No + GLN EXTENSION,(13n) [1*20an] 6313
415 and 8020,44,(415) (8020),(415) (8020),Global Location Number of the Invoicing█ 6314
Party and Payment Slip Reference Number,PAY + REF No,(13n) (1*25an) 6315
420 or 421,45,(420/421),(420/421),Ship-to / Deliver-to postal code,SHIP TO█ 6316
POST,(1*20an / 3n 1*9an) 6317
422,46,422,422,Country of origin of a trade item,ORIGIN,3n 6318
423,47,423,423,Country of initial processing,COUNTRY - INITIAL PROCESS.,3*15n 6319
424,48,424,424,Country of processing,COUNTRY - PROCESS.,3n 6320
425,49,425,425,Country of disassembly,COUNTRY - DISASSEMBLY,3n 6321
426,50,426,426,Country covering full process chain,COUNTRY - FULL PROCESS,3n 6322
7001,51,7001,7001,NATO stock number,NSN,13n 6323
7002,52,7002,7002,UN/ECE meat carcasses and cuts classification,MEAT CUT,1*30an 6324
7003,53,7003,7003,Expiration Date and Time,EXPIRY DATE/TIME,10n 6325
7004,54,7004,7004,Active Potency,ACTIVE POTENCY,1*4n 6326
703s,55,7030,7030,Approval number of processor with ISO country code,PROCESSOR #█ 6327
s,3n 1*27an 6328
703s,56,7031,7031,Approval number of processor with ISO country code,PROCESSOR #█ 6329
s,3n 1*27an 6330
703s,57,7032,7032,Approval number of processor with ISO country code,PROCESSOR #█ 6331
s,3n 1*27an 6332
703s,58,7033,7033,Approval number of processor with ISO country code,PROCESSOR #█ 6333
s,3n 1*27an 6334
703s,59,7034,7034,Approval number of processor with ISO country code,PROCESSOR #█ 6335
s,3n 1*27an 6336
703s,60,7035,7035,Approval number of processor with ISO country code,PROCESSOR #█ 6337
s,3n 1*27an 6338
703s,61,7036,7036,Approval number of processor with ISO country code,PROCESSOR #█ 6339
s,3n 1*27an 6340
703s,62,7037,7037,Approval number of processor with ISO country code,PROCESSOR #█ 6341
s,3n 1*27an 6342
703s,63,7038,7038,Approval number of processor with ISO country code,PROCESSOR #█ 6343
s,3n 1*27an 6344
703s,64,7039,7039,Approval number of processor with ISO country code,PROCESSOR #█ 6345
s,3n 1*27an 6346
8001,65,8001,8001,"Roll products - width, length, core diameter, direction, █ 6347
splices",DIMENSIONS,14n 6348
8002,66,8002,8002,Electronic serial identifier for cellular mobile telephones,CMT█ 6349
No,1*20an 6350
8003,67,8003,8003,Global Returnable Asset Identifier,GRAI,14n 0*16an 6351
8004,68,8004,8004,Global Individual Asset Identifier,GIAI,1*30an 6352
8005,69,8005,8005,Price per unit of measure,PRICE PER UNIT,6n 6353
8006,70,8006,8006,Identification of the component of a trade item,GCTIN,18n 6354
8007,71,8007,8007,International Bank Account Number,IBAN,1*30an 6355
8008,72,8008,8008,Date and time of production,PROD TIME,8*12n 6356
8018,73,8018,8018,Global Service Relation Number - Recipient,GSRN - RECIPIENT,18n 6357
8100 8101 etc,74,K-Secondary = S08,,Coupon Codes,, 6358
90,75,90,90,Information mutually agreed between trading partners (including FACT█ 6359
DIs),INTERNAL,1*30an 6360
91,76,91,91,Company internal information,INTERNAL,1*an 6361
92,77,92,92,Company internal information,INTERNAL,1*an 6362
93,78,93,93,Company internal information,INTERNAL,1*an 6363
94,79,94,94,Company internal information,INTERNAL,1*an 6364
95,80,95,95,Company internal information,INTERNAL,1*an 6365
96,81,96,96,Company internal information,INTERNAL,1*an 6366
97,82,97,97,Company internal information,INTERNAL,1*an 6367
98,83,98,98,Company internal information,INTERNAL,1*an 6368
99,84,99,99,Company internal information,INTERNAL,1*an 6369
nnn,85,K-Secondary = S12,,Additional AIs,, 6370
K-TableEnd = F9B0,,,,,, 6371
 6372

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 269 of 315

"K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure█ 6373
Trade Item)",,,,,, 6374
K-TableID = F9S00,,,,,, 6375
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6376
K-IDsize = 4,,,,,, 6377
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6378
310(***),0,310%x30-35,310%x30-35,"Net weight, kilograms (Variable Measure Trade█ 6379
Item)",NET WEIGHT (kg),6n 6380
320(***),1,320%x30-35,320%x30-35,"Net weight, pounds (Variable Measure Trade█ 6381
Item)",NET WEIGHT (lb),6n 6382
356(***),2,356%x30-35,356%x30-35,"Net weight, troy ounces (Variable Measure Trade█ 6383
Item)",NET WEIGHT (t),6n 6384
K-TableEnd = F9S00,,,,,, 6385
 6386
K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item),,,,,, 6387
K-TableID = F9S01,,,,,, 6388
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6389
K-IDsize = 4,,,,,, 6390
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6391
311(***),0,311%x30-35,311%x30-35,"Length of first dimension, metres (Variable█ 6392
Measure Trade Item)",LENGTH (m),6n 6393
321(***),1,321%x30-35,321%x30-35,"Length or first dimension, inches (Variable█ 6394
Measure Trade Item)",LENGTH (i),6n 6395
322(***),2,322%x30-35,322%x30-35,"Length or first dimension, feet (Variable Measure█ 6396
Trade Item)",LENGTH (f),6n 6397
323(***),3,323%x30-35,323%x30-35,"Length or first dimension, yards (Variable█ 6398
Measure Trade Item)",LENGTH (y),6n 6399
K-TableEnd = F9S01,,,,,, 6400
 6401
"K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade█ 6402
Item)",,,,,, 6403
K-TableID = F9S02,,,,,, 6404
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6405
K-IDsize = 4,,,,,, 6406
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6407
312(***),0,312%x30-35,312%x30-35,"Width, diameter, or second dimension, metres█ 6408
(Variable Measure Trade Item)",WIDTH (m),6n 6409
324(***),1,324%x30-35,324%x30-35,"Width, diameter, or second dimension, inches█ 6410
(Variable Measure Trade Item)",WIDTH (i),6n 6411
325(***),2,325%x30-35,325%x30-35,"Width, diameter, or second dimension, (Variable█ 6412
Measure Trade Item)",WIDTH (f),6n 6413
326(***),3,326%x30-35,326%x30-35,"Width, diameter, or second dimension, yards█ 6414
(Variable Measure Trade Item)",WIDTH (y),6n 6415
K-TableEnd = F9S02,,,,,, 6416
 6417
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure█ 6418
Trade Item)",,,,,, 6419
K-TableID = F9S03,,,,,, 6420
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6421
K-IDsize = 4,,,,,, 6422
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6423
313(***),0,313%x30-35,313%x30-35,"Depth, thickness, height, or third dimension, █ 6424
metres (Variable Measure Trade Item)",HEIGHT (m),6n 6425
327(***),1,327%x30-35,327%x30-35,"Depth, thickness, height, or third dimension, █ 6426
inches (Variable Measure Trade Item)",HEIGHT (i),6n 6427
328(***),2,328%x30-35,328%x30-35,"Depth, thickness, height, or third dimension, █ 6428
feet (Variable Measure Trade Item)",HEIGHT (f),6n 6429
329(***),3,329%x30-35,329%x30-35,"Depth, thickness, height, or third dimension, █ 6430
yards (Variable Measure Trade Item)",HEIGHT (y),6n 6431
K-TableEnd = F9S03,,,,,, 6432
 6433
K-Text = Sec. IDT - Area (Variable Measure Trade Item),,,,,, 6434
K-TableID = F9S04,,,,,, 6435
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6436
K-IDsize = 4,,,,,, 6437
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6438

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 270 of 315

314(***),0,314%x30-35,314%x30-35,"Area, square metres (Variable Measure Trade█ 6439
Item)",AREA (m^2),6n 6440
350(***),1,350%x30-35,350%x30-35,"Area, square inches (Variable Measure Trade█ 6441
Item)",AREA (i^2),6n 6442
351(***),2,351%x30-35,351%x30-35,"Area, square feet (Variable Measure Trade█ 6443
Item)",AREA (f^2),6n 6444
352(***),3,352%x30-35,352%x30-35,"Area, square yards (Variable Measure Trade█ 6445
Item)",AREA (y^2),6n 6446
K-TableEnd = F9S04,,,,,, 6447
 6448
K-Text = Sec. IDT - Net volume (Variable Measure Trade Item),,,,,, 6449
K-TableID = F9S05,,,,,, 6450
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6451
K-IDsize = 8,,,,,, 6452
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6453
315(***),0,315%x30-35,315%x30-35,"Net volume, litres (Variable Measure Trade█ 6454
Item)",NET VOLUME (l),6n 6455
316(***),1,316%x30-35,316%x30-35,"Net volume, cubic metres (Variable Measure Trade█ 6456
Item)",NET VOLUME (m^3),6n 6457
357(***),2,357%x30-35,357%x30-35,"Net weight (or volume), ounces (Variable Measure█ 6458
Trade Item)",NET VOLUME (oz),6n 6459
360(***),3,360%x30-35,360%x30-35,"Net volume, quarts (Variable Measure Trade█ 6460
Item)",NET VOLUME (q),6n 6461
361(***),4,361%x30-35,361%x30-35,"Net volume, gallons U.S. (Variable Measure Trade█ 6462
Item)",NET VOLUME (g),6n 6463
364(***),5,364%x30-35,364%x30-35,"Net volume, cubic inches","VOLUME (i^3), log",6n 6464
365(***),6,365%x30-35,365%x30-35,"Net volume, cubic feet (Variable Measure Trade█ 6465
Item)","VOLUME (f^3), log",6n 6466
366(***),7,366%x30-35,366%x30-35,"Net volume, cubic yards (Variable Measure Trade█ 6467
Item)","VOLUME (y^3), log",6n 6468
K-TableEnd = F9S05,,,,,, 6469
 6470
K-Text = Sec. IDT - Logistic Volume,,,,,, 6471
K-TableID = F9S06,,,,,, 6472
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6473
K-IDsize = 8,,,,,, 6474
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6475
335(***),0,335%x30-35,335%x30-35,"Logistic volume, litres","VOLUME (l), log",6n 6476
336(***),1,336%x30-35,336%x30-35,"Logistic volume, cubic meters","VOLUME (m^3), █ 6477
log",6n 6478
362(***),2,362%x30-35,362%x30-35,"Logistic volume, quarts","VOLUME (q), log",6n 6479
363(***),3,363%x30-35,363%x30-35,"Logistic volume, gallons","VOLUME (g), log",6n 6480
367(***),4,367%x30-35,367%x30-35,"Logistic volume, cubic inches","VOLUME (q), █ 6481
log",6n 6482
368(***),5,368%x30-35,368%x30-35,"Logistic volume, cubic feet","VOLUME (g), log",6n 6483
369(***),6,369%x30-35,369%x30-35,"Logistic volume, cubic yards","VOLUME (i^3), █ 6484
log",6n 6485
K-TableEnd = F9S06,,,,,, 6486
 6487
K-Text = Sec. IDT - Logistic Area,,,,,, 6488
K-TableID = F9S07,,,,,, 6489
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6490
K-IDsize = 4,,,,,, 6491
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6492
334(***),0,334%x30-35,334%x30-35,"Area, square metres","AREA (m^2), log",6n 6493
353(***),1,353%x30-35,353%x30-35,"Area, square inches","AREA (i^2), log",6n 6494
354(***),2,354%x30-35,354%x30-35,"Area, square feet","AREA (f^2), log",6n 6495
355(***),3,355%x30-35,355%x30-35,"Area, square yards","AREA (y^2), log",6n 6496
K-TableEnd = F9S07,,,,,, 6497
 6498
K-Text = Sec. IDT - Coupon Codes,,,,,, 6499
K-TableID = F9S08,,,,,, 6500
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6501
K-IDsize = 8,,,,,, 6502
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6503

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 271 of 315

8100,0,8100,8100,GS1-128 Coupon Extended Code - NSC + Offer Code ** DEPRECATED as of 6504
GS1GS15i2 **,-,6n 6505
8101,1,8101,8101,GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer█ 6506
code ** DEPRECATED as of GS1GS15i2 **,-,10n 6507
8102,2,8102,8102,GS1-128 Coupon Extended Code - NSC ** DEPRECATED as of GS1GS15i2 6508
**,-,2n 6509
8110,3,8110,8110,Coupon Code Identification for Use in North America,,1*70an 6510
8111,22,8111,8111,Loyalty points of a coupon,POINTS,4n 6511
K-TableEnd = F9S08,,,,,, 6512
 6513
K-Text = Sec. IDT - Length or first dimension,,,,,, 6514
K-TableID = F9S09,,,,,, 6515
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6516
K-IDsize = 4,,,,,, 6517
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6518
331(***),0,331%x30-35,331%x30-35,"Length or first dimension, metres","LENGTH (m), █ 6519
log",6n 6520
341(***),1,341%x30-35,341%x30-35,"Length or first dimension, inches","LENGTH (i), █ 6521
log",6n 6522
342(***),2,342%x30-35,342%x30-35,"Length or first dimension, feet","LENGTH (f), █ 6523
log",6n 6524
343(***),3,343%x30-35,343%x30-35,"Length or first dimension, yards","LENGTH (y), █ 6525
log",6n 6526
K-TableEnd = F9S09,,,,,, 6527
 6528
"K-Text = Sec. IDT - Width, diameter, or second dimension",,,,,, 6529
K-TableID = F9S10,,,,,, 6530
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6531
K-IDsize = 4,,,,,, 6532
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6533
332(***),0,332%x30-35,332%x30-35,"Width, diameter, or second dimension, █ 6534
metres","WIDTH (m), log",6n 6535
344(***),1,344%x30-35,344%x30-35,"Width, diameter, or second dimension","WIDTH █ 6536
(i), log",6n 6537
345(***),2,345%x30-35,345%x30-35,"Width, diameter, or second dimension","WIDTH █ 6538
(f), log",6n 6539
346(***),3,346%x30-35,346%x30-35,"Width, diameter, or second dimension","WIDTH █ 6540
(y), log",6n 6541
K-TableEnd = F9S10,,,,,, 6542
 6543
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension",,,,,, 6544
K-TableID = F9S11,,,,,, 6545
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6546
K-IDsize = 4,,,,,, 6547
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6548
333(***),0,333%x30-35,333%x30-35,"Depth, thickness, height, or third dimension, █ 6549
metres","HEIGHT (m), log",6n 6550
347(***),1,347%x30-35,347%x30-35,"Depth, thickness, height, or third█ 6551
dimension","HEIGHT (i), log",6n 6552
348(***),2,348%x30-35,348%x30-35,"Depth, thickness, height, or third█ 6553
dimension","HEIGHT (f), log",6n 6554
349(***),3,349%x30-35,349%x30-35,"Depth, thickness, height, or third█ 6555
dimension","HEIGHT (y), log",6n 6556
K-TableEnd = F9S11,,,,,, 6557
 6558
K-Text = Sec. IDT - Additional AIs,,,,,, 6559
K-TableID = F9S12,,,,, 6560
K-RootOID = urn:oid:1.0.15961.9,,,,,, 6561
K-IDsize = 128,,,,,, 6562
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 6563
243,0,243,243,Packaging Component Number,PCN,1*20an 6564
255,1,255,255,Global Coupon Number,GCN,13n 0*12n 6565
427,2,427,427,Country Subdivision of Origin Code for a Trade Item,ORIGIN█ 6566
SUBDIVISION,1*3an 6567
710,3,710,710,National Healthcare Reimbursement Number - Germany (PZN),NHRN PZN,3n█ 6568
1*27an 6569

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 272 of 315

711,4,711,711,National Healthcare Reimbursement Number - France (CIP),NHRN CIP,3n█ 6570
1*27an 6571
712,5,712,712,National Healthcare Reimbursement Number - Spain (CN),NHRN CN,3n█ 6572
1*27an 6573
713,6,713,713,National Healthcare Reimbursement Number - Brazil (DRN),NHRN DRN,3n█ 6574
1*27an 6575
8010,7,8010,8010,Component / Part Identifier,CPID,1*30an 6576
8011,8,8011,8011,Component / Part Identifier Serial Number,CPID Serial,1*12n 6577
8017,9,8017,8017,Global Service Relation Number - Provider,GSRN - PROVIDER,18n 6578
8019,10,8019,8019,Service Relation Instance Number,SRIN,1*10n 6579
8200,11,8200,8200,Extended Packaging URL,PRODUCT URL,1*70an 6580
16,12,16,16,Sell by date (YYMMDD),SELL BY,6n 6581
394n,13,394%x30-39,394%x30-39,Percentage discount of a coupon,PCT OFF,4n 6582
7005,14,7005,7005,Catch area,CATCH AREA,1*12an 6583
7006,15,7006,7006,First freeze date,FIRST FREEZE DATE,6n 6584
7007,16,7007,7007,Harvest date,HARVEST DATE,6*12an 6585
7008,17,7008,7008,Species for fishery purposes,ACQUATIC SPECIES,1*3an 6586
7009,18,7009,7009,Fishing gear type,FISHING GEAR TYPE,1*10an 6587
7010,19,7010,7010,Production method,PROD METHOD,1*2an 6588
8012,20,8012,8012,Software version,VERSION,1*20an 6589
416,21,416,416,GLN of the production or servie location,PROD/SERV/LOC,13n 6590
7020,22,7020,7020,Refurbishment lot ID,REFURB LOT,1*20an 6591
7021,23,7021,7021,Functional status,FUNC STAT,1*20an 6592
7022,24,7022,7022,Revision status,REV STAT,1*20an 6593
7023,25,7023,7023,Global Individual Assset Identifier (GIAI) of an Assembly,GIAI-6594
ASSEMBLY,1*30an 6595
235,26,235,235,"Third party controlled, serialised extension of GTIN",TPX,1*28n 6596
417,27,417,417,Global Location Number of Party,PGLN,13n 6597
714,28,714,714,National Healthcare Reimbursement Number - Portugal (AIM),NHRH █ 6598
AIM,1*an20 6599
7040,29,7040,7040,Unique Identification Code with Extensions (per EU 2018/574),UIC,█ 6600
1n 1*3an 6601
8013,30,8013,8013,Global Model Number,GMN,1*an30 6602
8026,31,8026,8026,Identification of pieces of a trade item (ITIP) contained in a 6603
logistics unit,ITIP CONTENT,18n 6604
8112,32,8112,8112,Paperless coupon code identification for use in North█ 6605
America,,1*an70 6606
7240,33,7240,7240,Protocol ID,PROTOCOL,1*20an 6607
395(***),34,395%x30-35,395%x30-35,Amount Payable per unit of measure single█ 6608
monetary area (variable measure trade item),PRICE/UoM,6n 6609
4300,35,4300,4300,Ship-to / Deliver-to company name,SHIP TO COMP,1*35an 6610
4301,36,4301,4301,Ship-to / Deliver-to contact name,SHIP TO NAME,1*35an 6611
4302,37,4302,4302,Ship-to / Deliver-to address line 1,SHIP TO ADD1,1*70an 6612
4303,38,4303,4303,Ship-to / Deliver-to address line 2,SHIP TO ADD2,1*70an 6613
4304,39,4304,4304,Ship-to / Deliver-to suburb,SHIP TO SUB,1*70an 6614
4305,40,4305,4305,Ship-to / Deliver-to locality,SHIP TO LOC,1*70an 6615
4306,41,4306,4306,Ship-to / Deliver-to region,SHIP TO REG,1*70an 6616
4307,42,4307,4307,Ship-to / Deliver-to country code,SHIP TO COUNTRY,2an 6617
4308,43,4308,4308,Ship-to / Deliver-to telephone number,SHIP TO PHONE,1*30an 6618
4309,44,4309,4309,Ship-to / Deliver-to GEO location,SHIP TO GEO,20n 6619
4310,45,4310,4310,Return-to company name,RTN TO COMP,1*35an 6620
4311,46,4311,4311,Return-to contact name,RTN TO NAME,1*35an 6621
4312,47,4312,4312,Return-to address line 1,RTN TO ADD1,1*70an 6622
4313,48,4313,4313,Return-to address line 2,RTN TO ADD2,1*70an 6623
4314,49,4314,4314,Return-to suburb,RTN TO SUB,1*70an 6624
4315,50,4315,4315,Return-to locality,RTN TO LOC,1*70an 6625
4316,51,4316,4316,Return-to region,RTN TO REG,1*70an 6626
4317,52,4317,4317,Return-to country code,RTN TO COUNTRY,2an 6627
4318,53,4318,4318,Return-to postal code,RTN TO POST,1*20an 6628
4319,54,4319,4319,Return-to telephone number,RTN TO PHONE,1*30an 6629
4320,55,4320,4320,Service code,SRV,1*35an 6630
4321,56,4321,4321,Dangerous goods flag,DANGEROUS GOODS,1n 6631
4322,57,4322,4322,Authority to leave flag,AUTH LEAV,1n 6632
4323,58,4323,4323,Signature required flag,SIG REQUIRED,1n 6633
4324,59,4324,4324,Not before delivery date/time,NBEF DEL DT,10n 6634
4325,60,4325,4325,Not after delivery date/time,NAFT DEL DT,10n 6635

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 273 of 315

4326,61,4326,4326,Release date,REL DATE,6n 6636
715,62,715,715,National Healthcare Reimbursement Number - United States of America █ 6637
(NDC),NHRN NDC,1*an20 6638
723s,63,7230,7230,Certification reference,CERT # s,2an 1*28an 6639
723s,64,7231,7231,Certification reference,CERT # s,2an 1*28an 6640
723s,65,7232,7232,Certification reference,CERT # s,2an 1*28an 6641
723s,66,7233,7233,Certification reference,CERT # s,2an 1*28an 6642
723s,67,7234,7234,Certification reference,CERT # s,2an 1*28an 6643
723s,68,7235,7235,Certification reference,CERT # s,2an 1*28an 6644
723s,69,7236,7236,Certification reference,CERT # s,2an 1*28an 6645
723s,70,7237,7237,Certification reference,CERT # s,2an 1*28an 6646
723s,71,7238,7238,Certification reference,CERT # s,2an 1*28an 6647
723s,72,7239,7239,Certification reference,CERT # s,2an 1*28an 6648
7241,73,7241,7241,AIDC Media Type,AIDC MEDIA TYPE,2an 6649
7242,74,7242,7242,Version Control Number (VCN),VCN,1*25an 6650
8030,75,7239,8030,Digital Signature (DigSig),DIGSIG,1*90an 6651
7011,76,7011,7011,Test by date,TEST BY DATE,6n 0*4n 6652
4330,77,4330,4330,Maximum temperature in Fahrenheit,MAX TEMP F,6n 0*1an 6653
4331,78,4331,4331,Maximum temperature in Celsius,MAX TEMP C,6n 0*1an 6654
4332,79,4332,4332,Minimum temperature in Farenheit,MIN TEMP F,6n 0*1an 6655
4333,80,4333,4333,Minimum temperature in Celsius,MIN TEMP C,6n 0*1an 6656
7002,81,7002,7002,UNECE meat carcasses and cuts classification,MEAT CUT,1*30an 6657
7041,82,7041,7041,UN/CEFACT freight unit type,UFRGT UNIT TYPE,1*an4 6658
716,83,716,716, National Healthcare Reimbursement Number - Italy AIC,NHRN AIC,1*an20 6659
7250,84,7250,7250,Date of birth,DOB,8n 6660
7251,85,7251,7251,Date and time of birth,DOB TIME,12n 6661
7252,86,7252,7252,Biological sex,BIO SEX,1n 6662
7253,87,7253,7253,Family name of person,FAMILY NAME,1*an40 6663
7254,88,7254,7254,Given name of person,GIVEN NAME,1*an40 6664
7255,89,7255,7255,Name suffix of person,SUFFIX,1*an10 6665
7256,90,7256,7256,Full name of person,FULL NAME,1*an90 6666
7257,91,7257,7257,Address of person,PERSON ADDR,1*an70 6667
7258,92,7258,7258,Baby birth sequence indicator,BIRTH SEQUENCE,1*an1 1n 1*an1 6668
7259,93,7259,7259,Baby birth of family,BABY,1*an40 6669
K-TableEnd = F9S12,,,,,, 6670

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 274 of 315

G 6-Bit Alphanumeric Character Set 6671

The following table specifies the characters that are used in the Component / Part Reference in CPI 6672
EPCs and in the original part number and serial number in ADI EPCs. A subset of these characters 6673
are also used for the CAGE/DoDAAC code in ADI EPCs. The columns are as follows: 6674

■ Graphic symbol: The printed representation of the character as used in human-readable forms. 6675

■ Name: The common name for the character 6676

■ Binary Value: A Binary numeral that gives the 6-bit binary value for the character as used in EPC binary 6677
encodings. This binary value is always equal to the least significant six bits of the ISO/IEC 646 [ISO646] 6678
(ASCII) code for the character. 6679

■ URI Form: The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This 6680
is either a single character whose ASCII code’s least significant six bits is equal to the value in the "binary 6681
value" column, or an escape triplet consisting of a percent character followed by two characters giving the 6682
hexadecimal value for the character. 6683

Table I.3.1-1 Characters Permitted in 6-bit Alphanumeric Fields 6684

Graphic
symbol

Name Binary
value

URI Form Graphic
symbol

Name Binary
value

URI Form

Pound/ Number
Sign

100011 %23 H Capital H 001000 H

- Hyphen/ Minus
Sign

101101 - I Capital I 001001 I

/ Forward Slash 101111 %2F J Capital J 001010 J

0 Zero Digit 110000 0 K Capital K 001011 K

1 One Digit 110001 1 L Capital L 001100 L

2 Two Digit 110010 2 M Capital M 001101 M

3 Three Digit 110011 3 N Capital N 001110 N

4 Four Digit 110100 4 O Capital O 001111 O

5 Five Digit 110101 5 P Capital P 010000 P

6 Six Digit 110110 6 Q Capital Q 010001 Q

7 Seven Digit 110111 7 R Capital R 010010 R

8 Eight Digit 111000 8 S Capital S 010011 S

9 Nine Digit 111001 9 T Capital T 010100 T

A Capital A 000001 A U Capital U 010101 U

B Capital B 000010 B V Capital V 010110 V

C Capital C 000011 C W Capital W 010111 W

D Capital D 000100 D X Capital X 011000 X

E Capital E 000101 E Y Capital Y 011001 Y

F Capital F 000110 F Z Capital
Letter Z

011010 Z

G Capital G 000111 G

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 275 of 315

H (Intentionally Omitted) 6685

[This annex is omitted so that Annexes I through M, which specify Packed Objects, have the same 6686
annex letters as the corresponding annexes of ISO/IEC 15962, 2nd Edition.] 6687

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 276 of 315

I Packed Objects structure 6688

I.1 Overview 6689

The Packed Objects format provides for efficient encoding and access of user data. The Packed 6690
Objects format offers increased encoding efficiency compared to the No-Directory and Directory 6691
Access-Methods partly by utilising sophisticated compaction methods, partly by defining an inherent 6692
directory structure at the front of each Packed Object (before any of its data is encoded) that 6693
supports random access while reducing the fixed overhead of some prior methods, and partly by 6694
utilising data-system-specific information (such as the GS1 definitions of fixed-length Application 6695
Identifiers). 6696

I.2 Overview of Packed Objects documentation 6697

The formal description of Packed Objects is presented in this Annex and Annexes J, K, L, and M, as 6698
follows: 6699

■ The overall structure of Packed Objects is described in Section I.3. 6700

■ The individual sections of a Packed Object are described in Sections I.4 through I.9. 6701

■ The structure and features of ID Tables (utilised by Packed Objects to represent various data system 6702
identifiers) are described in Annex J. 6703

■ The numerical bases and character sets used in Packed Objects are described in Annex K. 6704

■ An encoding algorithm and worked example are described in Annex L. 6705

■ The decoding algorithm for Packed Objects is described in Annex M. 6706

In addition, note that all descriptions of specific ID Tables for use with Packed Objects are registered 6707
separately, under the procedures of ISO/IEC 15961-2 as is the complete formal description of the 6708
machine-readable format for registered ID Tables. 6709

I.3 High-Level Packed Objects format design 6710

I.3.1 Overview 6711

The Packed Objects memory format consists of a sequence in memory of one or more "Packed 6712
Objects" data structures. Each Packed Object may contain either encoded data or directory 6713
information, but not both. The first Packed Object in memory is preceded by a DSFID. The DSFID 6714
indicates use of Packed Objects as the memory’s Access Method, and indicates the registered Data 6715
Format that is the default format for every Packed Object in that memory. Every Packed Object may 6716
be optionally preceded or followed by padding patterns (if needed for alignment on word or block 6717
boundaries). In addition, at most one Packed Object in memory may optionally be preceded by a 6718
pointer to a Directory Packed Object (this pointer may itself be optionally followed by padding). This 6719
series of Packed Objects is terminated by optional padding followed by one or more zero-valued 6720
octets aligned on byte boundaries. See Figure I.3.1-1, which shows this sequence when appearing in 6721
an RFID tag. 6722

 Note: Because the data structures within an encoded Packed Object are bit-aligned rather 6723
than byte-aligned, this Annex uses the term ‘octet’ instead of ‘byte’ except in case where an 6724
eight-bit quantity must be aligned on a byte boundary. 6725

Figure I.3.1-1 Overall Memory structure when using Packed Objects 6726
DSFID Optional

Pointer*
And/Or
Padding

First Packed
Object

Optional
Pointer*
And/Or
Padding

Optional
Second Packed
Object

…

Optional
Packed
Object

Optional
Pointer*
And/Or
Padding

Zero
Octet(s)

*Note: the Optional Pointer to a Directory Packed Object may appear at most only once in memory 6727

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 277 of 315

Every Packed Object represents a sequence of one or more data system Identifiers, each specified 6728
by reference to an entry within a Base ID Table from a registered data format. The entry is 6729
referenced by its relative position within the Base Table; this relative position or Base Table index is 6730
referred to throughout this specification as an "ID Value." There are two different Packed Objects 6731
methods available for representing a sequence of Identifiers by reference to their ID Values: 6732

■ An ID List Packed Object (IDLPO) encodes a series of ID Values as a list, whose length depends on the 6733
number of data items being represented; 6734

■ An ID Map Packed Object (IDMPO) instead encodes a fixed-length bit array, whose length depends on the 6735
total number of entries defined in the registered Base Table. Each bit in the array is ‘1’ if the 6736
corresponding table entry is represented by the Packed Object, and is ‘0’ otherwise. 6737

An ID List is the default Packed Objects format, because it uses fewer bits than an ID Map, if the list 6738
contains only a small percentage of the data system’s defined ID Values. However, if the Packed 6739
Object includes more than about one-quarter of the defined entries, then an ID Map requires fewer 6740
bits. For example, if a data system has sixteen entries, then each ID Value (table index) is a four bit 6741
quantity, and a list of four ID Values takes as many bits as would the complete ID Map. An ID Map’s 6742
fixed-length characteristic makes it especially suitable for use in a Directory Packed Object, which 6743
lists all of the Identifiers in all of the Packed Objects in memory (see Section I.9. The overall 6744
structure of a Packed Object is the same, whether an IDLPO or an IDMPO, as shown in Figure I 3-2 6745
and as described in the next subsection. 6746

Figure I.3.1-2 Packed object structure 6747
Optional
Format
Flags

Object Info Section
(IDLPO or IDMPO)

Secondary
ID Section
(if needed)

Aux Format
Section
(if needed)

Data Section
(if needed)

Packed objects may be made "editable", by adding an optional Addendum subsection to the end of 6748
the Object Info section, which includes a pointer to an "Addendum Packed Object" where additions 6749
and/or deletions have been made. One or more such "chains" of editable "parent" and "child" 6750
Packed Objects may be present within the overall sequence of Packed Objects in memory, but no 6751
more than one chain of Directory Packed Objects may be present. 6752

I.3.2 Descriptions of each section of a Packed Object’s structure 6753

Each Packed Object consists of several bit-aligned sections (that is, no pad bits between sections 6754
are used), carried in a variable number of octets. All required and optional Packed Objects formats 6755
are encompassed by the following ordered list of Packed Objects sections. Following this list, each 6756
Packed Objects section is introduced, and later sections of this Annex describe each Packed Objects 6757
section in detail. 6758

■ Format Flags: A Packed Object may optionally begin with the pattern ‘0000’ which is reserved to 6759
introduce one or more Format Flags, as described in I.4.2. These flags may indicate use of the non-6760
default ID Map format. If the Format Flags are not present, then the Packed Object defaults to the ID List 6761
format. 6762

□ Certain flag patterns indicate an inter-Object pattern (Directory Pointer or Padding) 6763

□ Other flag patterns indicate the Packed Object’s type (Map or. List), and may indicated the 6764
presence of an optional Addendum subsection for editing. 6765

■ Object Info: All Packed Objects contain an Object Info Section which includes Object Length Information 6766
and ID Value Information: 6767

□ Object Length Information includes an ObjectLength field (indicating the overall length of 6768
the Packed Object in octets) followed by Pad Indicator bit, so that the number of significant 6769
bits in the Packed Object can be determined. 6770

□ ID Value Information indicates which Identifiers are present and in what order, and (if an 6771
IDLPO) also includes a leading NumberOfIDs field, indicating how many ID Values are 6772
encoded in the ID List. 6773

The Object Info section is encoded in one of the following formats, as shown in Figure I.3.2-1 and 6774
Figure I.3.2-2. 6775

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 278 of 315

■ ID List (IDLPO) Object Info format: 6776

□ Object Length (EBV-6) plus Pad Indicator bit 6777

□ A single ID List or an ID Lists Section (depending on Format Flags) 6778

■ ID Map (IDMPO) Object Info format: 6779

□ One or more ID Map sections 6780

□ Object Length (EBV-6) plus Pad Indicator bit 6781

For either of these Object Info formats, an Optional Addendum subsection may be present at the 6782
end of the Object Info section. 6783

■ Secondary ID Bits: A Packed Object may include a Secondary ID section, if needed to encode additional 6784
bits that are defined for some classes of IDs (these bits complete the definition of the ID). 6785

■ Aux Format Bits: A Data Packed Object may include an Aux Format Section, which if present encodes 6786
one or more bits that are defined to support data compression, but do not contribute to defining the ID. 6787

■ Data Section: A Data Packed Object includes a Data Section, representing the compressed data 6788
associated with each of the identifiers listed within the Packed Object. This section is omitted in a 6789
Directory Packed Object, and in a Packed Object that uses No-directory compaction (see I.7.1). 6790
Depending on the declaration of data format in the relevant ID table, the Data section will contain either 6791
or both of two subsections: 6792

□ Known-Length Numerics subsection: this subsection compacts and concatenates all of 6793
the non-empty data strings that are known a priori to be numeric. 6794

□ AlphaNumeric subsection: this subsection concatenates and compacts all of the non-6795
empty data strings that are not a priori known to be all-numeric. 6796

Figure I.3.2-1 IDLPO Object Info Structure 6797
Object Info, in a Default ID List PO Object Info, in a Non-default ID List PO

Object
Length

Number
Of IDs

ID
List

Optional
Addendum

or Object
Length

ID Lists Section
(one or more lists)

Optional
Addendum

Figure I.3.2-2 IDMPO Object Info Structure 6798
Object Info, in an ID Map PO

ID Map Section
(one or more maps)

Object
Length

Optional
Addendum

I.4 Format Flags section 6799

The default layout of memory, under the Packed Objects access method, consists of a leading 6800
DSFID, immediately followed by an ID List Packed Object (at the next byte boundary), then 6801
optionally additional ID List Packed Objects (each beginning at the next byte boundary), and 6802
terminated by a zero-valued octet at the next byte boundary (indicating that no additional Packed 6803
Objects are encoded). This section defines the valid Format Flags patterns that may appear at the 6804
expected start of a Packed Object to override the default layout if desired (for example, by changing 6805
the Packed Object’s format, or by inserting padding patterns to align the next Packed Object on a 6806
word or block boundary). The set of defined patterns are shown below. 6807

Table I.3.2-1 Format Flag 6808

Bit Pattern Description Additional Info See Section

0000 0000 Termination Pattern No more Packed Objects follow I.4.1

LLLLLL xx First octet of an IDLPO For any LLLLLL > 3 I.5

0000 Format Flags starting pattern (if the full EBV-6 is non-zero) I.4.2

0000 10NA IDLPO with:
 N = 1: non-default Info
 A = 1: Addendum Present

If N = 1: allows multiple ID tables
If A = 1: Addendum ptr(s) at end of
Object Info section

I.4.3

0000 01xx Inter-PO pattern A Directory Pointer, or padding I.4.4

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 279 of 315

Bit Pattern Description Additional Info See Section

0000 0100 Signifies a padding octet No padding length indicator follows I.4.4

0000 0101 Signifies run-length padding An EBV-8 padding length follows I.4.4

0000 0110 RFU I.4.4

0000 0111 Directory pointer Followed by EBV-8 pattern I.4.4

0000 11xx ID Map Packed Object I.4.2

0000 0001
0000 0010
0000 0011

[Invalid] Invalid pattern

I.4.1 Data terminating flag pattern 6809

A pattern of eight or more ‘0’ bits at the expected start of a Packed Object denotes that no more 6810
Packed Objects are present in the remainder of memory. 6811

NOTE: Six successive ‘0’ bits at the expect start of a Packed Object would (if interpreted as a Packed 6812
Object) indicate an ID List Packed Object of length zero. 6813

I.4.2 Format flag section starting bit patterns 6814

A non-zero EBV-6 with a leading pattern of "0000" is used as a Format Flags section Indication 6815
Pattern. The additional bits following an initial ‘0000’ format Flag Indicating Pattern are defined as 6816
follows: 6817

■ A following two-bit pattern of ‘10’ (creating an initial pattern of ‘000010’) indicates an IDLPO with at least 6818
one non-default optional feature (see I.4.3) 6819

■ A following two-bit pattern of ‘11’ indicates an IDMPO, which is a Packed Object using an ID Map format 6820
instead of ID List-format The ID Map section (see I.9) immediately follows this two-bit pattern. 6821

■ A following two-bit pattern of ‘01’ signifies an External pattern (Padding pattern or Pointer) prior to the 6822
start of the next Packed Object (see I.4.4) 6823

A leading EBV-6 Object Length of less than four is invalid as a Packed Objects length. 6824

 Note: The shortest possible Packed Object is an IDLPO, for a data system using four bits per 6825
ID Value, encoding a single ID Value. This Packed Object has a total of 14 fixed bits. 6826
Therefore, a two-octet Packed Object would only contain two data bits, and is invalid. A three-6827
octet Packed Object would be able to encode a single data item up to three digits long. In 6828
order to preserve "3" as an invalid length in this scenario, the Packed Objects encoder shall 6829
encode a leading Format Flags section (with all options set to zero, if desired) in order to 6830
increase the object length to four. 6831

I.4.3 IDLPO Format Flags 6832

The appearance of ‘000010’ at the expected start of a Packed Object is followed by two additional 6833
bits, to form a complete IDLPO Format Flags section of "000010NA", where: 6834

■ If the first additional bit ‘N’ is ‘1’, then a non-default format is employed for the IDLPO Object Info 6835
section. Whereas the default IDLPO format allows for only a single ID List (utilising the registration’s 6836
default Base ID Table), the optional non-default IDLPO Object Info format supports a sequence of one or 6837
more ID Lists, and each such list begins with identifying information as to which registered table it 6838
represents (see I.5.1). 6839

■ If the second additional bit ‘A’ is ‘1’, then an Addendum subsection is present at the end of the Object 6840
Info section (see I.5.6). 6841

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 280 of 315

I.4.4 Patterns for use between Packed Objects 6842

The appearance of ‘000001’ at the expected start of a Packed Object is used to indicate either 6843
padding or a directory pointer, as follows: 6844

■ A following two-bit pattern of ‘11’ indicates that a Directory Packed Object Pointer follows the pattern. 6845
The pointer is one or more octets in length, in EBV-8 format. This pointer may be Null (a value of zero), 6846
but if non-zero, indicates the number of octets from the start of the pointer to the start of a Directory 6847
Packed Object (which if editable, shall be the first in its "chain"). For example, if the Format Flags byte for 6848
a Directory Pointer is encoded at byte offset 1, the Pointer itself occupies bytes beginning at offset 2, and 6849
the Directory starts at byte offset 9, then the Dir Ptr encodes the value "7" in EBV-8 format. A Directory 6850
Packed Object Pointer may appear before the first Packed Object in memory, or at any other position 6851
where a Packed Object may begin, but may only appear once in a given data carrier memory, and (if non-6852
null) must be at a lower address than the Directory it points to. The first octet after this pointer may be 6853
padding (as defined immediately below), a new set of Format Flag patterns, or the start of an ID List 6854
Packed Object. 6855

■ A following two-bit pattern of ‘00’ indicates that the full eight-bit pattern of ‘00000100’ serves as a 6856
padding byte, so that the next Packed Object may begin on a desired word or block boundary. This 6857
pattern may repeat as necessary to achieve the desired alignment. 6858

■ A following two-bit pattern of ‘01’ as a run-length padding indicator, and shall be immediately followed by 6859
an EBV-8 indicating the number of octets from the start of the EBV-8 itself to the start of the next Packed 6860
Object (for example, if the next Packed Object follows immediately, the EBV-8 has a value of one). This 6861
mechanism eliminates the need to write many words of memory in order to pad out a large memory 6862
block. 6863

■ A following two-bit pattern of ‘10’ is Reserved. 6864

I.5 Object Info section 6865

Each Packed Object’s Object Info section contains both Length Information (the size of the Packed 6866
Object, in bits and in octets), and ID Values Information. A Packed Object encodes representations 6867
of one or more data system Identifiers and (if a Data Packed Object) also encodes their associated 6868
data elements (AI strings, DI strings, etc). The ID Values information encodes a complete listing of 6869
all the Identifiers (AIs, DIs, etc) encoded in the Packed Object, or (in a Directory Packed Object) all 6870
the Identifiers encoded anywhere in memory. 6871

To conserve encoded and transmitted bits, data system Identifiers (each typically represented in 6872
data systems by either two, three, or four ASCII characters) is represented within a Packed Object 6873
by an ID Value, representing an index denoting an entry in a registered Base Table of ID Values. A 6874
single ID Value may represent a single Object Identifier, or may represent a commonly-used 6875
sequence of Object Identifiers. In some cases, the ID Value represents a "class" of related Object 6876
Identifiers, or an Object Identifier sequence in which one or more Object Identifiers are optionally 6877
encoded; in these cases, Secondary ID Bits (see I.6) are encoded in order to specify which selection 6878
or option was chosen when the Packed Object was encoded. A "fully-qualified ID Value" (FQIDV) is 6879
an ID Value, plus a particular choice of associated Secondary ID bits (if any are invoked by the ID 6880
Value’s table entry). Only one instance of a particular fully-qualified ID Value may appear in a data 6881
carrier’s Data Packed Objects, but a particular ID Value may appear more than once, if each time it 6882
is "qualified" by different Secondary ID Bits. If an ID Value does appear more than once, all 6883
occurrences shall be in a single Packed Object (or within a single "chain" of a Packed Object plus its 6884
Addenda). 6885

There are two methods defined for encoding ID Values: an ID List Packed Object uses a variable-6886
length list of ID Value bit fields, whereas an ID Map Packed Object uses a fixed-length bit array. 6887
Unless a Packed Object’s format is modified by an initial Format Flags pattern, the Packed Object’s 6888
format defaults to that of an ID List Packed Object (IDLPO), containing a single ID List, whose ID 6889
Values correspond to the default Base ID Table of the registered Data Format. Optional Format Flags 6890
can change the format of the ID Section to either an IDMPO format, or to an IDLPO format encoding 6891
an ID Lists section (which supports multiple ID Tables, including non-default data systems). 6892

Although the ordering of information within the Object Info section varies with the chosen format 6893
(see I.5.1), the Object Info section of every Packed Object shall provide Length information as 6894
defined in I.5.2, and ID Values information (see I.5.3) as defined in I.5.4, or I.5.5. The Object Info 6895

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 281 of 315

section (of either an IDLPO or an IDMPO) may conclude with an optional Addendum subsection (see 6896
I.5.6). 6897

I.5.1 Object Info formats 6898

IDLPO default Object Info format 6899

The default IDLPO Object Info format is used for a Packed Object either without a leading Format 6900
Flags section, or with a Format Flags section indicating an IDLPO with a possible Addendum and a 6901
default Object Info section. The default IDLPO Object Info section contains a single ID List 6902
(optionally followed by an Addendum subsection if so indicated by the Format Flags). The format of 6903
the default IDLPO Object Info section is shown in the table below. 6904

Table I.5.1-1 Default IDLPO Object Info format 6905

Field Name: Length Information NumberOfIDs ID Listing Addendum
subsection

Usage: The number of octets
in this Object, plus a
last-octet pad
indicator

number of ID
Values in this
Object (minus one)

A single list of ID
Values; value size
depends on registered
Data Format

Optional pointer(s)
to other Objects
containing Edit
information

Structure: Variable: see I.5.2 Variable:EBV-3 See I.5.4 See I.5.6

In a IDLPO’s Object Info section, the NumberOfIDs field is an EBV-3 Extensible Bit Vector, consisting 6906
of one or more repetitions of an Extension Bit followed by 2 value bits. This EBV-3 encodes one less 6907
than the number of ID Values on the associated ID Listing. For example, an EBV-3 of ‘101 000’ 6908
indicates (4 + 0 +1) = 5 IDs values. The Length Information is as described in I.5.2 for all Packed 6909
Objects. The next fields are an ID Listing (see I.5.4) and an optional Addendum subsection (see 6910
I.5.6). 6911

IDLPO non-default Object Info format 6912

Leading Format Flags may modify the Object Info structure of an IDLPO, so that it may contain 6913
more than one ID Listing, in an ID Lists section (which also allows non-default ID tables to be 6914
employed). The non-default IDLPO Object Info structure is shown in the table below. 6915

Table I.5.1-2 Non-Default IDLPO Object Info format 6916

Field
Name:

Length Info ID Lists Section, first List Optional
Additional ID
List(s)

Null App
Indicator
(single
zero bit)

Addendum
Subsection

Application
Indicator

Number
of IDs

ID
Listing

Usage: The
number of
octets in
this Object,
plus a last-
octet pad
indicator

Indicates
the selected
ID Table
and the size
of each
entry

Number
Of ID
Values on
the list
(minus
one)

Listing
of ID
Values,
then
one F/R
Use bit

Zero or more
repeated
lists, each
for a
different ID
Table

Optional
pointer(s) to
other Objects
containing
Edit
information

Structure: see I.5.2 see I.5.3 See I.5.1 See
I.5.4
and
I.5.3

References
in previous
columns

See I.5.3 See I.5.6

IDMPO Object Info format 6917

Leading Format Flags may define the Object Info structure to be an IDMPO, in which the Length 6918
Information (and optional Addendum subsection) follow an ID Map section (see I.5.5). This 6919
arrangement ensures that the ID Map is in a fixed location for a given application, of benefit when 6920
used as a Directory. The IDMPO Object Info structure is shown in the table below. 6921

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 282 of 315

Table I.5.1-3 IDMPO Object Info format 6922

Field Name: ID Map section Length Information Addendum

Usage: One or more ID Map structures,
each using a different ID Table

The number of octets in this
Object, plus a last-octet pad
indicator

Optional
pointer(s) to
other Objects
containing Edit
information

Structure: see I.5.3 See I.5.2 See I.5.6

I.5.2 Length Information 6923

The format of the Length information, always present in the Object Info section of any Packed 6924
Object, is shown in the table below. 6925

Table I.5.2-1 Packed Object Length information 6926

Field Name: ObjectLength Pad Indicator

Usage: The number of 8-bit bytes in this Object This includes the 1st
byte of this Packed Object, including its IDLPO/IDMPO
format flags if present. It excludes patterns for use between
Packed Objects, as specified in I.4.4

If ‘1’: the Object’s last
byte contains at least 1
pad

Structure: Variable: EBV-6 Fixed: 1 bit

The first field, ObjectLength, is an EBV-6 Extensible Bit Vector, consisting of one or more repetitions 6927
of an Extension Bit and 5 value bits. An EBV-6 of ‘000100’ (value of 4) indicates a four-byte Packed 6928
Object, An EBV-6 of ‘100001 000000’ (value of 32) indicates a 32-byte Object, and so on. 6929

The Pad Indicator bit immediately follows the end of the EBV-6 ObjectLength. This bit is set to ‘0’ if 6930
there are no padding bits in the last byte of the Packed Object. If set to ‘1’, then bitwise padding 6931
begins with the least-significant or rightmost ‘1’ bit of the last byte, and the padding consists of this 6932
rightmost ‘1’ bit, plus any ‘0’ bits to the right of that bit. This method effectively uses a single bit to 6933
indicate a three-bit quantity (i.e., the number of trailing pad bits). When a receiving system wants 6934
to determine the total number of bits (rather than bytes) in a Packed Object, it would examine the 6935
ObjectLength field of the Packed Object (to determine the number of bytes) and multiply the result 6936
by eight, and (if the Pad Indicator bit is set) examine the last byte of the Packed Object and 6937
decrement the bit count by (1 plus the number of ‘0’ bits following the rightmost ‘1’ bit of that final 6938
byte). 6939

I.5.3 General description of ID values 6940

A registered data format defines (at a minimum) a Primary Base ID Table (a detailed specification 6941
for registered ID tables may be found in Annex J). This base table defines the data system 6942
Identifier(s) represented by each row of the table, any Secondary ID Bits or Aux Format bits 6943
invoked by each table entry, and various implicit rules (taken from a predefined rule set) that 6944
decoding systems shall use when interpreting data encoded according to each entry. When a data 6945
item is encoded in a Packed Object, its associated table entry is identified by the entry’s relative 6946
position in the Base Table. This table position or index is the ID Value that is represented in Packed 6947
Objects. 6948

A Base Table containing a given number of entries inherently specifies the number of bits needed to 6949
encode a table index (i.e., an ID Value) in an ID List Packed Object (as the Log (base 2) of the 6950
number of entries). Since current and future data system ID Tables will vary in unpredictable ways 6951
in terms of their numbers of table entries, there is a need to pre-define an ID Value Size mechanism 6952
that allows for future extensibility to accommodate new tables, while minimising decoder complexity 6953
and minimising the need to upgrade decoding software (other than the addition of new tables). 6954
Therefore, regardless of the exact number of Base Table entries defined, each Base Table definition 6955
shall utilise one of the predefined sizes for ID Value encodings defined in Table I 5-5 (any unused 6956
entries shall be labelled as reserved, as provided in Annex J). The ID Size Bit pattern is encoded in a 6957
Packed Object only when it uses a non-default Base ID Table. Some entries in the table indicate a 6958
size that is not an integral power of two. When encoding (into an IDLPO) ID Values from tables that 6959
utilise such sizes, each pair of ID Values is encoded by multiplying the earlier ID of the pair by the 6960

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 283 of 315

base specified in the fourth column of Table I-5-5 and adding the later ID of the pair, and encoding 6961
the result in the number of bits specified in the fourth column. If there is a trailing single ID Value 6962
for this ID Table, it is encoded in the number of bits specified in the third column of the table below. 6963

Table I.5.3-1 Defined ID Value sizes 6964

ID Size Bit
pattern

 Maximum
number of Table
Entries

Number of Bits per single or
trailing ID Value, and how
encoded

Number of Bits per pair
of ID Values, and how
encoded

000 Up to 16 4, as 1 Base 16 value 8, as 2 Base 16 values

001 Up to 22 5, as 1 Base 22 value 9, as 2 Base 22 values

010 Up to 32 5, as 1 Base 32 value 10, as 2 Base 32 values

011 Up to 45 6, as 1 Base 45 value 11, as 2 Base 45 values

100 Up to 64 6, as 1 Base 64 value 12, as 2 Base 64 values

101 Up to 90 7, as 1 Base 90 value 13, as 2 Base 90 values

110 Up to 128 7, as 1 Base 128 value 14, as 2 Base 128
values

1110 Up to 256 8, as 1 Base 256 value 16, as 2 Base 256
values

111100 Up to 512 9, as 1 Base 512 value 18, as 2 Base 512
values

111101 Up to 1024 10, as 1 Base 1024 value 20, as 2 Base 1024
values

111110 Up to 2048 11, as 1 Base 2048 value 22, as 2 Base 2048
values

111111 Up to 4096 12, as 1 Base 4096 value 24, as 2 Base 4096
values

Application indicator subsection 6965

An Application Indicator subsection can be utilised to indicate use of ID Values from a default or 6966
non-default ID Table. This subsection is required in every IDMPO, but is only required in an IDLPO 6967
that uses the non-default format supporting multiple ID Lists. 6968

An Application Indicator consists of the following components: 6969

■ A single AppIndicatorPresent bit, which if ‘0’ means that no additional ID List or Map follows. Note that 6970
this bit is always omitted for the first List or Map in an Object Info section. When this bit is present and 6971
‘0’, then none of the following bit fields are encoded. 6972

■ A single ExternalReg bit that, if ‘1’, indicates use of an ID Table from a registration other than the 6973
memory’s default. If ‘1’, this bit is immediately followed by a 9-bit representation of a Data Format 6974
registered under ISO/IEC 15961. 6975

■ An ID Size pattern which denotes a table size (and therefore an ID Map bit length, when used in an 6976
IDMPO), which shall be one of the patterns defined by Table I.5.2-1. The table size indicated in this field 6977
must be less than or equal to the table size indicated in the selected ID table. The purpose of this field is 6978
so that the decoder can parse past the ID List or ID Map, even if the ID Table is not available to the 6979
decoder. 6980

■ A three-bit ID Subset pattern. The registered data format’s Primary Base ID Table, if used by the current 6981
Packed Object, shall always be indicated by an encoded ID Subset pattern of ‘000’. However, up to seven 6982
Alternate Base Tables may also be defined in the registration (with varying ID Sizes), and a choice from 6983
among these can be indicated by the encoded Subset pattern. This feature can be useful to define smaller 6984
sector-specific or application-specific subsets of a full data system, thus substantially reducing the size of 6985
the encoded ID Map. 6986

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 284 of 315

Full/Restricted Use bits 6987

When contemplating the use of new ID Table registrations, or registrations for external data 6988
systems, application designers may utilise a "restricted use" encoding option that adds some 6989
overhead to a Packed Object but in exchange results in a format that can be fully decoded by 6990
receiving systems not in possession of the new or external ID table. With the exception of a IDLPO 6991
using the default Object Info format, one Full/Restricted Use bit is encoded immediately after each 6992
ID table is represented in the ID Map section or ID Lists section of a Data or Directory Packed 6993
Object. In a Directory Packed Object, this bit shall always be set to '0' and its value ignored. If an 6994
encoder wishes to utilise the "restricted use" option in an IDLPO, it shall preface the IDLPO with a 6995
Format Flags section invoking the non-default Object Info format. 6996

If a "Full/Restricted Use" bit is ‘0’ then the encoding of data strings from the corresponding 6997
registered ID Table makes full use of the ID table’s IDstring and FormatString information. If the bit 6998
is ‘1’, then this signifies that some encoding overhead was added to the Secondary ID section and 6999
(in the case of Packed-Object compaction) the Aux Format section, so that a decoder without access 7000
to the table can nonetheless output OIDs and data from the Packed Object according to the scheme 7001
specified in J.4.1. Specifically, a Full/Restricted Use bit set to ‘1’ indicates that: 7002

■ for each encoded ID Value, the encoder added an EBV-3 indicator to the Secondary ID section, to indicate 7003
how many Secondary ID bits were invoked by that ID Value. If the EBV-3 is nonzero, then the Secondary 7004
ID bits (as indicated by the table entry) immediately follow, followed in turn by another EBV-3, until the 7005
entire list of ID Values has been represented. 7006

■ the encoder did not take advantage of the information from the referenced table’s FormatString column. 7007
Instead, corresponding to each ID Value, the encoder inserted an EBV-3 into the Aux Format section, 7008
indicating the number of discrete data string lengths invoked by the ID Value (which could be more than 7009
one due to combinations and/or optional components), followed by the indicated number of string 7010
lengths, each length encoded as though there were no FormatString in the ID table. All data items were 7011
encoded in the A/N subsection of the Data section. 7012

I.5.4 ID Values representation in an ID Value-list Packed Object 7013

Each ID Value is represented within an IDLPO on a list of bit fields; the number of bit fields on the 7014
list is determined from the NumberOfIDs field (see Section I.5.6). Each ID Value bit field’s length is 7015
in the range of four to eleven bits, depending on the size of the Base Table index it represents. In 7016
the optional non-default format for an IDLPO’s Object Info section, a single Packed Object may 7017
contain multiple ID List subsections, each referencing a different ID Table. In this non-default 7018
format, each ID List subsection consists of an Application Indicator subsection (which terminates the 7019
ID Lists, if it begins with a ‘0’ bit), followed by an EBV-3 NumberOfIDs, an ID List, and a 7020
Full/Restricted Use flag. 7021

I.5.5 ID Values representation in an ID Map Packed Object 7022

Encoding an ID Map can be more efficient than encoding a list of ID Values, when representing a 7023
relatively large number of ID Values (constituting more than about 10 percent of a large Base 7024
Table’s entries, or about 25 percent of a small Base Table’s entries). When encoded in an ID Map, 7025
each ID Value is represented by its relative position within the map (for example, the first ID Map 7026
bit represents ID Value "0", the third bit represents ID Value "2", and the last bit represents ID 7027
Value ‘n’ (corresponding to the last entry of a Base Table with (n+1) entries). The value of each bit 7028
within an ID Map indicates whether the corresponding ID Value is present (if the bit is ‘1’) or absent 7029
(if ‘0’). An ID Map is always encoded as part of an ID Map Section structure (see I.9.1). 7030

I.5.6 Optional Addendum subsection of the Object Info section 7031

The Packed Object Addendum feature supports basic editing operations, specifically the ability to 7032
add, delete, or replace individual data items in a previously-written Packed Object, without a need 7033
to rewrite the entire Packed Object. A Packed Object that does not contain an Addendum subsection 7034
cannot be edited in this fashion, and must be completely rewritten if changes are required. 7035

An Addendum subsection consists of a Reverse Links bit, followed by a Child bit, followed by either 7036
one or two EBV-6 links. Links from a Data Packed Object shall only go to other Data Packed Objects 7037
as addenda; links from a Directory Packed Object shall only go to other Directory Packed Objects as 7038

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 285 of 315

addenda. The standard Packed Object structure rules apply, with some restrictions that are 7039
described in I.5.6. 7040

The Reverse Links bit shall be set identically in every Packed Object of the same "chain." The 7041
Reverse Links bit is defined as follows: 7042

■ If the Reverse Links bit is ‘0’, then each child in this chain of Packed Objects is at a higher memory 7043
location then its parent. The link to a Child is encoded as the number of octets (plus one) that are in 7044
between the last octet of the current Packed Object and the first octet of the Child. The link to the parent 7045
is encoded as the number of octets (plus one) that are in between the first octet of the parent Packed 7046
Object and the first octet of the current Packed Object. 7047

■ If the Reverse Links bit is ‘1’, then each child in this chain of Packed Objects is at a lower memory 7048
location then its parent. The link to a Child is encoded as the number of octets (plus one) that are in 7049
between the first octet of the current Packed Object and the first octet of the Child. The link to the parent 7050
is encoded as the number of octets (plus one) that are in between the last octet of the current Packed 7051
Object and the first octet of the parent. 7052

The Child bit is defined as follows: 7053

■ If the Child bit is a ‘0’, then this Packed Object is an editable "Parentless" Packed Object (i.e., the first of 7054
a chain), and in this case the Child bit is immediately followed by a single EBV-6 link to the first "child" 7055
Packed Object that contains editing addenda for the parent. 7056

■ If the Child bit is a ‘1’, then this Packed Object is an editable "child" of an edited "parent," and the bit is 7057
immediately followed by one EBV-6 link to the "parent" and a second EBV-6 line to the next "child" 7058
Packed Object that contains editing addenda for the parent. 7059

A link value of zero is a Null pointer (no child exists), and in a Packed Object whose Child bit is ‘0’, 7060
this indicates that the Packed Object is editable, but has not yet been edited. A link to the Parent is 7061
provided, so that a Directory may indicate the presence and location of an ID Value in an Addendum 7062
Packed Object, while still providing an interrogator with the ability to efficiently locate the other ID 7063
Values that are logically associated with the original "parent" Packed Object. A link value of zero is 7064
invalid as a pointer towards a Parent. 7065

In order to allow room for a sufficiently-large link, when the future location of the next "child" is 7066
unknown at the time the parent is encoded, it is permissible to use the "redundant" form of the 7067
EBV-6 (for example using "100000 000000" to represent a link value of zero). 7068

Addendum "EditingOP" list (only in ID List Packed Objects) 7069

In an IDLPO only, each Addendum section of a "child" ID List Packed Object contains a set of 7070
"EditingOp" bits encoded immediately after its last EBV-6 link. The number of such bits is 7071
determined from the number of entries on the Addendum Packed Object’s ID list. For each ID Value 7072
on this list, the corresponding EditingOp bit or bits are defined as follows: 7073

■ ‘1’ means that the corresponding Fully-Qualified ID Value (FQIDV) is Replaced. A Replace operation has 7074
the effect that the data originally associated with the FQIDV matching the FQIDV in this Addendum 7075
Packed Object shall be ignored, and logically replaced by the Aux Format bits and data encoded in this 7076
Addendum Packed Object) 7077

■ ‘00’ means that the corresponding FQIDV is Deleted but not replaced. In this case, neither the Aux 7078
Format bits nor the data associated with this ID Value are encoded in the Addendum Packed Object. 7079

■ ‘01’ means that the corresponding FQIDV is Added (either this FQIDV was not previously encoded, or it 7080
was previously deleted without replacement). In this case, the associated Aux Format Bits and data shall 7081
be encoded in the Addendum Packed Object. 7082

 Note: If an application requests several "edit" operations at once (including some Delete or 7083
Replace operations as well as Adds) then implementations can achieve more efficient 7084
encoding if the Adds share the Addendum overhead, rather than being implemented in a new 7085
Packed Object. 7086

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 286 of 315

Packed Objects containing an addendum subsection 7087

A Packed Object containing an Addendum subsection is otherwise identical in structure to other 7088
Packed Objects. However, the following observations apply: 7089

■ A "parentless" Packed Object (the first in a chain) may be either an ID List Packed Object or an ID Map 7090
Packed Object (and a parentless IDMPO may be either a Data or Directory IDMPO). When a "parentless" 7091
PO is a directory, only directory IDMPOs may be used as addenda. A Directory IDMPO’s Map bits shall be 7092
updated to correctly reflect the end state of the chain of additions and deletions to the memory bank; an 7093
Addendum to the Directory is not utilised to perform this maintenance (a Directory Addendum may only 7094
add new structural components, as described later in this section). In contrast, when the edited 7095
parentless object is an ID List Packed Object or ID Map Packed Object, its ID List or ID Map cannot be 7096
updated to reflect the end state of the aggregate Object (parents plus children). 7097

■ Although a "child" may be either an ID List or an ID Map Packed Object, only an IDLPO can indicate 7098
deletions or changes to the current set of fully-qualified ID Values and associated data that is embodied in 7099
the chain. 7100

□ When a child is an IDMPO, it shall only be utilised to add (not delete or modify) structural 7101
information, and shall not be used to modify existing information. In a Directory chain, a 7102
child IDMPO may add new ID tables, or may add a new AuxMap section or subsections, or 7103
may extend an existing PO Index Table or ObjectOffsets list. In a Data chain, an IDMPO 7104
shall not be used as an Addendum, except to add new ID Tables. 7105

□ When a child is an IDLPO, its ID list (followed by "EditingOp" bits) lists only those FQIDVs 7106
that have been deleted, added, or replaced, relative to the cumulative ID list from the prior 7107
Objects linked to it. 7108

I.6 Secondary ID Bits section 7109

The Packed Objects design requirements include a requirement that all of the data system 7110
Identifiers (AI’s, DI’s, etc.) encoded in a Packed Object’s can be fully recognised without expanding 7111
the compressed data, even though some ID Values provide only a partially-qualified Identifier. As a 7112
result, if any of the ID Values invoke Secondary ID bits, the Object Info section shall be followed by 7113
a Secondary ID Bits section. Examples include a four-bit field to identify the third digit of a group of 7114
related Logistics AIs. 7115

Secondary ID bits can be invoked for several reasons, as needed in order to fully specify Identifiers. 7116
For example, a single ID Table entry’s ID Value may specify a choice between two similar identifiers 7117
(requiring one encoded bit to select one of the two IDs at the time of encoding), or may specify a 7118
combination of required and optional identifiers (requiring one encoded bit to enable or disable each 7119
option). The available mechanisms are described in Annex J. All resulting Secondary ID bit fields are 7120
concatenated in this Secondary ID Bits section, in the same order as the ID Values that invoked 7121
them were listed within the Packed Object. Note that the Secondary ID Bits section is identically 7122
defined, whether the Packed Object is an IDLPO or an IDMPO, but is not present in a Directory 7123
IDMPO. 7124

I.7 Aux Format section 7125

The Aux Format section of a Data Packed Object encodes auxiliary information for the decoding 7126
process. A Directory Packed Object does not contain an Aux Format section. In a Data Packed 7127
Object, the Aux Format section begins with "Compact-Parameter" bits as defined in the table below. 7128

Table I.5.6-1 Compact-Parameter bit patterns 7129

Bit Pattern Compaction method used in this Packed Object Reference

‘1’ "Packed-Object" compaction See I.7.2

‘000’ "Application-Defined", as defined for the No-Directory access method See I.7.1

‘001’ "Compact", as defined for the No-Directory access method See I.7.1

‘010’ "UTF-8", as defined for the No-Directory access method See I.7.1

‘011bbbb’ (‘bbbb’ shall be in the range of 4..14): reserved for future definition See I.7.1

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 287 of 315

If the Compact-Parameter bit pattern is ‘1’, then the remainder of the Aux Format section is 7130
encoded as described in I.7.2; otherwise, the remainder of the Aux Format section is encoded. See 7131
I.7.1 as described in I.7.1. 7132

I.7.1 Support for No-Directory compaction methods 7133

If any of the No-Directory compaction methods were selected by the Compact-Parameter bits, then 7134
the Compact-Parameter bits are followed by an byte-alignment padding pattern consisting of zero or 7135
more ‘0’ bits followed by a single ‘1’ bit, so that the next bit after the ‘1’ is aligned as the most-7136
significant bit of the next byte. 7137

This next byte is defined as the first octet of a "No-Directory Data section", which is used in place of 7138
the Data section described in I.8. The data strings of this Packed Object are encoded in the order 7139
indicated by the Object Info section of the Packed Object, compacted exactly as described in Annex 7140
D of [ISO15962] (Encoding rules for No-Directory Access-Method), with the following two 7141
exceptions: 7142

■ The Object-Identifier is not encoded in the "No-Directory Data section", because it has already been 7143
encoded into the Object Info and Secondary ID sections. 7144

■ The Precursor is modified in that only the three Compaction Type Code bits are significant, and the other 7145
bits in the Precursor are set to ‘0’. 7146

Therefore, each of the data strings invoked by the ID Table entry are separately encoded in a 7147
modified data set structure as: 7148

<modified precursor> <length of compacted object> <compacted object octets> 7149

The <compacted object octets> are determined and encoded as described in D.1.1 and D.1.2 of 7150
[ISO15962] and the <length of compacted object> is determined and encoded as described in D.2 7151
of [ISO15962]. 7152

Following the last data set, a terminating precursor value of zero shall not be encoded (the decoding 7153
system recognises the end of the data using the encoded ObjectLength of the Packed Object). 7154

I.7.2 Support for the packed-object compaction method 7155

If the Packed-Object compaction method was selected by the Compact-Parameter bits, then the 7156
Compact-Parameter bits are followed by zero or more Aux Format bits, as may be invoked by the ID 7157
Table entries used in this Packed Object. The Aux Format bits are then immediately followed by a 7158
Data section that uses the Packed-Object compaction method described in I.8. 7159

An ID Table entry that was designed for use with the Packed-Object compaction method can call for 7160
various types of auxiliary information beyond the complete indication of the ID itself (such as bit 7161
fields to indicate a variable data length, to aid the data compaction process). All such bit fields are 7162
concatenated in this portion, in the order called for by the ID List or Map. Note that the Aux Format 7163
section is identically defined, whether the Packed Object is an IDLPO or an IDMPO. 7164

An ID Table entry invokes Aux Format length bits for all entries that are not specified as fixed-length 7165
in the table (however, these length bits are not actually encoded if they correspond to the last data 7166
item encoded in the A/N subsection of a Packed Object). This information allows the decoding 7167
system to parse the decoded data into strings of the appropriate lengths. An encoded Aux Format 7168
length entry utilises a variable number of bits, determined from the specified range between the 7169
shortest and longest data strings allowed for the data item, as follows: 7170

■ If a maximum length is specified, and the specified range (defined as the maximum length minus the 7171
minimum length) is less than eight, or greater than 44, then lengths in this range are encoded in the 7172
fewest number of bits that can express lengths within that range, and an encoded value of zero 7173
represents the minimum length specified in the format string. For example, if the range is specified as 7174
from three to six characters, then lengths are encoded using two bits, and ‘00’ represents a length of 7175
three. 7176

■ Otherwise (including the case of an unspecified maximum length), the value (actual length – specified 7177
minimum) is encoded in a variable number of bits, as follows: 7178

■ Values from 0 to 14 (representing lengths from 1 to 15, if the specified minimum length is one character, 7179
for example) are encoded in four bits 7180

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 288 of 315

■ Values from 15 to 29 are encoded in eight bits (a prefix of ‘1111’ followed by four bits representing values 7181
from 15 (‘0000’) to 29 (‘1110’) 7182

■ Values from 30 to 44 are encoded in twelve bits (a prefix of ‘1111 1111’ followed by four bits 7183
representing values from 30 (‘0000’) to 44 (‘1110’) 7184

■ Values greater than 44 are encoded as a twelve-bit prefix of all ‘1’s, followed by an EBV-6 indication of 7185
(value – 44). 7186

Notes: 7187

■ if a range is specified with identical upper and lower bounds (i.e., a range of zero), this is treated as a 7188
fixed length, not a variable length, and no Aux Format bits are invoked. 7189

■ If a range is unspecified, or has unspecified upper or lower bounds, then this is treated as a default lower 7190
bound of one, and/or an unlimited upper bound. 7191

I.8 Data section 7192

A Data section is always present in a Packed Object, except in the case of a Directory Packed Object 7193
or Directory Addendum Packed Object (which encode no data elements), the case of a Data 7194
Addendum Packed Object containing only Delete operations, and the case of a Packed Object that 7195
uses No-directory compaction (see I.7.1). When a Data section is present, it follows the Object Info 7196
section (and the Secondary ID and Aux Format sections, if present). Depending on the 7197
characteristics of the encoded IDs and data strings, the Data section may include one or both of two 7198
subsections in the following order: a Known-Length Numerics subsection, and an AlphaNumerics 7199
subsection. The following paragraphs provide detailed descriptions of each of these Data Section 7200
subsections. If all of the subsections of the Data section are utilised in a Packed Object, then the 7201
layout of the Data section is as shown in the table below. 7202

Table I.7.2-1 Maximum Structure of a Packed Objects Data section 7203

Known-Length Numeric
subsection

AlphaNumeric subsection

A/N Header Bits Binary Data Segments

1st
KLN
Binar
y

2nd
KLN
Binar
y

… Last
KLN
Binar
y

Non-
Num
Base
Bit(s
)

Prefix
Bit,
Prefix
Run(s)

Suffix
Bit,
Suffix
Run(s)

Char
Map

Ext’d.
Num
Binary

Ext’d
Non-
Num
Binar
y

Base
10
Binar
y

Non-Num
Binary

I.8.1 Known-length-Numerics subsection of the data section 7204

For always-numeric data strings, the ID table may indicate a fixed number of digits (this fixed-7205
length information is not encoded in the Packed Object) and/or a variable number of digits (in which 7206
case the string’s length was encoded in the Aux Format section, as described above). When a single 7207
data item is specified in the FormatString column (see J.2.3) as containing a fixed-length numeric 7208
string followed by a variable-length string, the numeric string is encoded in the Known-length-7209
numerics subsection and the alphanumeric string in the Alphanumeric subsection. 7210

The summation of fixed-length information (derived directly from the ID table) plus variable-length 7211
information (derived from encoded bits as just described) results in a "known-length entry" for each 7212
of the always-numeric strings encoded in the current Packed Object. Each all-numeric data string in 7213
a Packed Object (if described as all-numeric in the ID Table) is encoded by converting the digit 7214
string into a single Binary number (up to 160 bits, representing a binary value between 0 and (1048-7215
1)). Figure K-1 in Annex K shows the number of bits required to represent a given number of digits. 7216
If an all-numeric string contains more than 48 digits, then the first 48 are encoded as one 160-bit 7217
group, followed by the next group of up to 48 digits, and so on. Finally, the Binary values for each 7218
all-numeric data string in the Object are themselves concatenated to form the Known-length-7219
Numerics subsection. 7220

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 289 of 315

I.8.2 Alphanumeric subsection of the data section 7221

The Alphanumeric (A/N) subsection, if present, encodes all of the Packed Object’s data from any 7222
data strings that were not already encoded in the Known-length Numerics subsection. If there are 7223
no alphanumeric characters to encode, the entire A/N subsection is omitted. The Alphanumeric 7224
subsection can encode any mix of digits and non-digit ASCII characters, or eight-bit data. The digit 7225
characters within this data are encoded separately, at an average efficiency of 4.322 bits per digit or 7226
better, depending on the character sequence. The non-digit characters are independently encoded 7227
at an average efficiency that varies between 5.91 bits per character or better (all uppercase letters), 7228
to a worst-case limit of 9 bits per character (if the character mix requires Base 256 encoding of non-7229
numeric characters). 7230

An Alphanumeric subsection consists of a series of A/N Header bits (see I.8.2.1), followed by from 7231
one to four Binary segments (each segment representing data encoded in a single numerical Base, 7232
such as Base 10 or Base 30, see I.8.2.4), padded if necessary to complete the final byte (see I 7233
8.2.5). 7234

A/N Header Bits 7235

The A/N Header Bits are defined as follows: 7236

■ One or two Non-Numeric Base bits, as follows: 7237

□ ‘0’ indicates that Base 30 was chosen for the non-numeric Base; 7238

□ ‘10’ indicates that Base 74 was chosen for the non-numeric Base; 7239

□ ‘11’ indicates that Base 256 was chosen for the non-numeric Base 7240

■ Either a single ‘0’ bit (indicating that no Character Map Prefix is encoded), or a ‘1’ bit followed by one or 7241
more "Runs" of six Prefix bits as defined in I.8.2.3. 7242

■ Either a single ‘0’ bit (indicating that no Character Map Suffix is encoded), or a ‘1’ bit followed by one or 7243
more "Runs" of six Suffix bits as defined in I.8.2.3. 7244

■ A variable-length "Character Map" bit pattern (see I.8.2.2), representing the base of each of the data 7245
characters, if any, that were not accounted for by a Prefix or Suffix. 7246

Dual-base Character-map encoding 7247

Compaction of the ordered list of alphanumeric data strings (excluding those data strings already 7248
encoded in the Known-Length Numerics subsection) is achieved by first concatenating the data 7249
characters into a single data string (the individual string lengths have already been recorded in the 7250
Aux Format section). Each of the data characters is classified as either Base 10 (for numeric digits), 7251
Base 30 non-numerics (primarily uppercase A-Z), Base 74 non-numerics (which includes both 7252
uppercase and lowercase alphas, and other ASCII characters), or Base 256 characters. These 7253
character sets are fully defined in Annex K. All characters from the Base 74 set are also accessible 7254
from Base 30 via the use of an extra "shift" value (as are most of the lower 128 characters in the 7255
Base 256 set). Depending on the relative percentage of "native" Base 30 values vs. other values in 7256
the data string, one of those bases is selected as the more efficient choice for a non-numeric base. 7257

Next, the precise sequence of numeric and non-numeric characters is recorded and encoded, using 7258
a variable-length bit pattern, called a "character map," where each ‘0’ represents a Base 10 value 7259
(encoding a digit) and each ‘1’ represents a value for a non-numeric character (in the selected 7260
base). Note that, (for example) if Base 30 encoding was selected, each data character (other than 7261
uppercase letters and the space character) needs to be represented by a pair of base-30 values, and 7262
thus each such data character is represented by a pair of ‘1’ bits in the character map. 7263

Prefix and Suffix Run-Length encoding 7264

For improved efficiency in cases where the concatenated sequence includes runs of six or more 7265
values from the same base, provision is made for optional run-length representations of one or 7266
more Prefix or Suffix "Runs" (single-base character sequences), which can replace the first and/or 7267
last portions of the character map. The encoder shall not create a Run that separates a Shift value 7268
from its next (shifted) value, and thus a Run always represents an integral number of source 7269
characters. 7270

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 290 of 315

An optional Prefix Representation, if present, consists of one or more occurrences of a Prefix Run. 7271
Each Prefix Run consists of one Run Position bit, followed by two Basis Bits, then followed by three 7272
Run Length bits, defined as follows: 7273

■ The Run Position bit, if ‘0’, indicates that at least one more Prefix Run is encoded following this one 7274
(representing another set of source characters to the right of the current set). The Run Position bit, if ‘1’, 7275
indicates that the current Prefix Run is the last (rightmost) Prefix Run of the A/N subsection. 7276

■ The first basis bit indicates a choice of numeric vs. non-numeric base, and the second basis bit, if ‘1’, 7277
indicates that the chosen base is extended to include characters from the "opposite" base. Thus, ‘00’ 7278
indicates a run-length-encoded sequence of base 10 values; ‘01’ indicates a sequence that is primarily 7279
(but not entirely) digits, encoded in Base 13; ‘10’ indicates a sequence a sequence of values from the 7280
non-numeric base that was selected earlier in the A/N header, and ‘11’ indicates a sequence of values 7281
primarily from that non-numeric base, but extended to include digit characters as well. Note an 7282
exception: if the non-numeric base that was selected in the A/N header is Base 256, then the "extended" 7283
version is defined to be Base 40. 7284

■ The 3-bit Run Length value assumes a minimum useable run of six same-base characters, and the length 7285
value is further divided by 2. Thus, the possible 3-bit Run Length values of 0, 1, 2, … 7 indicate a Run of 7286
6, 8, 10, … 20 characters from the same base. Note that a trailing "odd" character value at the end of a 7287
same-base sequence must be represented by adding a bit to the Character Map. 7288

An optional Suffix Representation, if present, is a series of one or more Suffix Runs, each identical in 7289
format to the Prefix Run just described. Consistent with that description, note that the Run Position 7290
bit, if ‘1’, indicates that the current Suffix Run is the last (rightmost) Suffix Run of the A/N 7291
subsection, and thus any preceding Suffix Runs represented source characters to the left of this final 7292
Suffix Run. 7293

Encoding into Binary Segments 7294

Immediately after the last bit of the Character Map, up to four binary numbers are encoded, each 7295
representing all of the characters that were encoded in a single base system. First, a base-13 bit 7296
sequence is encoded (if one or more Prefix or Suffix Runs called for base-13 encoding). If present, 7297
this bit sequence directly represents the binary number resulting from encoding the combined 7298
sequence of all Prefix and Suffix characters (in that order) classified as Base 13 (ignoring any 7299
intervening characters not thus classified) as a single value, or in other words, applying a base 13 to 7300
Binary conversion. The number of bits to encode in this sequence is directly determined from the 7301
number of base-13 values being represented, as called for by the sum of the Prefix and Suffix Run 7302
lengths for base 13 sequences. The number of bits, for a given number of Base 13 values, is 7303
determined from the Figure in Annex K. Next, an Extended-NonNumeric Base segment (either Base-7304
40 or Base 84) is similarly encoded (if any Prefix or Suffix Runs called for Extended-NonNumeric 7305
encoding). 7306

Next, a Base-10 Binary segment is encoded that directly represents the binary number resulting 7307
from encoding the sequence of the digits in the Prefix and/or character map and/or Suffix (ignoring 7308
any intervening non-digit characters) as a single value, or in other words, applying a base 10 to 7309
Binary conversion. The number of bits to encode in this sequence is directly determined from the 7310
number of digits being represented, as shown in Annex K. 7311

Immediately after the last bit of the Base-10 bit sequence (if any), a non-numeric (Base 30, Base 7312
74, or Base 256) bit sequence is encoded (if the character map indicates at least one non-numeric 7313
character). This bit sequence represents the binary number resulting from a base-30 to Binary 7314
conversion (or a Base-74 to Binary conversion, or a direct transfer of Base-256 values) of the 7315
sequence of non-digit characters in the data (ignoring any intervening digits). Again, the number of 7316
encoded bits is directly determined from the number of non-numeric values being represented, as 7317
shown in Annex K. Note that if Base 256 was selected as the non-Numeric base, then the encoder is 7318
free to classify and encode each digit either as Base 10 or as Base 256 (Base 10 will be more 7319
efficient, unless outweighed by the ability to take advantage of a long Prefix or Suffix). 7320

Note that an Alphanumeric subsection ends with several variable-length bit fields (the character 7321
map, and one or more Binary sections (representing the numeric and non-numeric Binary values). 7322
Note further that none of the lengths of these three variable-length bit fields are explicitly encoded 7323
(although one or two Extended-Base Binary segments may also be present, these have known 7324
lengths, determined from Prefix and/or Suffix runs). In order to determine the boundaries between 7325
these three variable-length fields, the decoder needs to implement a procedure, using knowledge of 7326

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 291 of 315

the remaining number of daIa bits, in order to correctly parse the Alphanumeric subsection. An 7327
example of such a procedure is described in Annex M. 7328

Padding the last Byte 7329

The last (least-significant) bit of the final Binary segment is also the last significant bit of the Packed 7330
Object. If there are any remaining bit positions in the last byte to be filled with pad bits, then the 7331
most significant pad bit shall be set to ‘1’, and any remaining less-significant pad bits shall be set to 7332
‘0’. The decoder can determine the total number of non-pad bits in a Packed Object by examining 7333
the Length Section of the Packed Object (and if the Pad Indicator bit of that section is ‘1’, by also 7334
examining the last byte of the Packed Object). 7335

I.9 ID Map and Directory encoding options 7336

An ID Map can be more efficient than a list of ID Values, when encoding a relatively large number of 7337
ID Values. Additionally, an ID Map representation is advantageous for use in a Directory Packed 7338
Object. The ID Map itself (the first major subsection of every ID Map section) is structured 7339
identically whether in a Data or Directory IDMPO, but a Directory IDMPO’s ID Map section contains 7340
additional optional subsections. The structure of an ID Map section, containing one or more ID 7341
Maps, is described in the section below, explained in terms of its usage in a Data IDMPO; 7342
subsequent sections explain the added structural elements in a Directory IDMPO. 7343

I.9.1 ID Map Section structure 7344

An IDMPO represents ID Values using a structure called an ID Map section, containing one or more 7345
ID Maps. Each ID Value encoded in a Data IDMPO is represented as a ‘1’ bit within an ID Map bit 7346
field, whose fixed length is equal to the number of entries in the corresponding Base Table. 7347
Conversely, each ‘0’ in the ID Map Field indicates the absence of the corresponding ID Value. Since 7348
the total number of ‘1’ bits within the ID Map Field equals the number of ID Values being 7349
represented, no explicit NumberOfIDs field is encoded. In order to implement the range of 7350
functionality made possible by this representation, the ID Map Section contains elements other than 7351
the ID Map itself. If present, the optional ID Map Section immediately follows the leading pattern 7352
indicating an IDMPO (as was described in I.4.2), and contains the following elements in the order 7353
listed below: 7354

■ An Application Indicator subsection (see I.5.3) 7355

■ an ID Map bit field (whose length is determined from the ID Size in the Application Indicator) 7356

■ a Full/Restricted Use bit (see I.5.3) 7357

■ (the above sequence forms an ID Map, which may optionally repeat multiple times) 7358

■ a Data/Directory indicator bit, 7359

■ an optional AuxMap section (never present in a Data IDMPO), and 7360

■ Closing Flag(s), consisting of an "Addendum Flag" bit. If ‘1’, then an Addendum subsection is present at 7361
the end of the Object Info section (after the Object Length Information). 7362

These elements, shown in the table below as a maximum structure (every element is present), are 7363
described in each of the next subsections. 7364

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 292 of 315

Table I.9.1-1 ID Map section 7365

First ID Map Optional additional ID
Map(s)

Null App
Indicator
(single zero
bit)

Data/
Directory
Indicator Bit

(If directory)
Optional
AuxMap
Section

Closing Flag
Bit(s)

App
Indicator

ID Map
Bit
Field
(ends
with
F/R bit)

App
Indicator

ID Map
Field
(ends with
F/R bit)

See I.5.3 See
I.9.1
and
I.5.3

As
previous

As
previous

See I.5.3 See I.9.2 Addendum
Flag Bit

When an ID Map section is encoded, it is always followed by an Object Length and Pad Indicator, 7366
and optionally followed by an Addendum subsection (all as have been previously defined), and then 7367
may be followed by any of the other sections defined for Packed Objects, except that a Directory 7368
IDMPO shall not include a Data section. 7369

ID Map and ID Map bit field 7370

An ID Map usually consists of an Application Indicator followed by an ID Map bit field, ending with a 7371
Full/Restricted Use bit. An ID Map bit field consists of a single "MapPresent" flag bit, then (if 7372
MapPresent is ‘1’) a number of bits equal to the length determined from the ID Size pattern within 7373
the Application Indicator, plus one (the Full/Restricted Use bit). The ID Map bit field indicates the 7374
presence/absence of encoded data items corresponding to entries in a specific registered Primary or 7375
Alternate Base Table. The choice of base table is indicated by the encoded combination of DSFID 7376
and Application Indicator pattern that precedes the ID Map bit field. The MSB of the ID Map bit field 7377
corresponds to ID Value 0 in the base table, the next bit corresponds to ID Value 1, and so on. 7378

In a Data Packed Object’s ID Map bit field, each ‘1’ bit indicates that this Packed Object contains an 7379
encoded occurrence of the data item corresponding to an entry in the registered Base Table 7380
associated with this ID Map. Note that the valid encoded entry may be found either in the first 7381
("parentless") Packed Object of the chain (the one containing the ID Map) or in an Addendum IDLPO 7382
of that chain. Note further that one or more data entries may be encoded in an IDMPO, but marked 7383
"invalid" (by a Delete entry in an Addendum IDLPO). 7384

An ID Map shall not correspond to a Secondary ID Table instead of a Base ID Table. Note that data 7385
items encoded in a "parentless" Data IDMPO shall appear in the same relative order in which they 7386
are listed in the associated Base Table. However, additional "out of order" data items may be added 7387
to an existing data IDMPO by appending an Addendum IDLPO to the Object. 7388

An ID Map cannot indicate a specific number of instances (greater than one) of the same ID Value, 7389
and this would seemingly imply that only one data instance using a given ID Value can be encoded 7390
in a Data IDMPO. However, the ID Map method needs to support the case where more two or more 7391
encoded data items are from the same identifier "class" (and thus share the same ID Value). The 7392
following mechanisms address this need: 7393

■ Another data item of the same class can be encoded in an Addendum IDLPO of the IDMPO. Multiple 7394
occurrences of the same ID Value can appear on an ID List, each associated with different encoded values 7395
of the Secondary ID bits. 7396

■ A series of two or more encoded instances of the same "class" can be efficiently indicated by a single 7397
instance of an ID Value (or equivalently by a single ID Map bit), if the corresponding Base Table entry 7398
defines a "Repeat" Bit (see J.2.2). 7399

An ID Map section may contain multiple ID Maps; a null Application Indicator section (with its 7400
AppIndicatorPresent bit set to ‘0’) terminates the list of ID Maps. 7401

Data/Directory and AuxMap indicator bits 7402

A Data/Directory indicator bit is always encoded immediately following the last ID Map. By 7403
definition, a Data IDMPO has its Data/Directory bit set to ‘0’, and a Directory IDMPO has its 7404
Data/Directory bit set to ‘1’. If the Data/Directory bit is set to ‘1’, it is immediately followed by an 7405
AuxMap indicator bit which, if ‘1’, indicates that an optional AuxMap section immediately follows. 7406

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 293 of 315

Closing Flags bit(s) 7407

The ID Map section ends with a single Closing Flag: 7408

■ The final bit of the Closing Flags is an Addendum Flag Bit which, if ‘1’, indicates that there is an optional 7409
Addendum subsection encoded at the end of the Object Info section of the Packed Object. If present, the 7410
Addendum subsection is as described in Section I.5.6. 7411

I.9.2 Directory Packed Objects 7412

A "Directory Packed Object" is an IDMPO whose Directory bit is set to ‘1’. Its only inherent 7413
difference from a Data IDMPO is that it does not contain any encoded data items. However, 7414
additional mechanisms and usage considerations apply only to a Directory Packed Object, and these 7415
are described in the following subsections. 7416

ID Maps in a Directory IDMPO 7417

Although the structure of an ID Map is identical whether in a Data or Directory IDMPO, the 7418
semantics of the structure are somewhat different. In a Directory Packed Object’s ID Map bit field, 7419
each ‘1’ bit indicates that a Data Packed Object in the same data carrier memory bank contains a 7420
valid data item associated with the corresponding entry in the specified Base Table for this ID Map. 7421
Optionally, a Directory Packed Object may further indicate which Packed Object contains each data 7422
item (see the description of the optional AuxMap section below). 7423

Note that, in contrast to a Data IDMPO, there is no required correlation between the order of bits in 7424
a Directory’s ID Map and the order in which these data items are subsequently encoded in memory 7425
within a sequence of Data Packed Objects. 7426

Optional AuxMap Section (Directory IDMPOs only) 7427

An AuxMap Section optionally allows a Directory IDMPO’s ID Map to indicate not only 7428
presence/absence of all the data items in this memory bank of the tag, but also which Packed 7429
Object encodes each data item. If the AuxMap indicator bit is ‘1’, then an AuxMap section shall be 7430
encoded immediately after this bit. If encoded, the AuxMap section shall contain one PO Index Field 7431
for each of the ID Maps that precede this section. After the last PO Index Field, the AuxMap Section 7432
may optionally encode an ObjectOffsets list, where each ObjectOffset generally indicates the 7433
number of bytes from the start of the previous Packed Object to the start of the next Packed Object. 7434
This AuxMap structure is shown (for an example IDMPO with two ID Maps) in the table below. 7435

Table I.9.2-1 Optional AuxMap section structure 7436

PO Index Field
for first ID Map

PO Index Field
for second ID Map

Object
Offsets
Present
bit

Optional ObjectOffsets subsection

POindex
Length

POindex
Table

POindex
Length

POindex
Table

Object
Offsets
Multiplier

Object1
offset
(EBV6)

Object2
offset
(EBV6)

… ObjectN
offset
(EBV6)

Each PO Index Field has the following structure and semantics: 7437

■ A three-bit POindexLength field, indicating the number of index bits encoded for each entry in the PO 7438
Index Table that immediately follows this field (unless the POindex length is ‘000’, which means that no 7439
PO Index Table follows). 7440

■ A PO Index Table, consisting of an array of bits, one bit (or group of bits, depending on the 7441
POIndexLength) for every bit in the corresponding ID Map of this directory Packed Object. A PO Index 7442
Table entry (i.e., a "PO Index") indicates (by relative order) which Packed Object contains the data item 7443
indicated by the corresponding ‘1’ bit in the ID Map. If an ID Map bit is '0', the corresponding PO Index 7444
Table entry is present but its contents are ignored. 7445

■ Every Packed Object is assigned an index value in sequence, without regard as to whether it is a 7446
"parentless" Packed Object or a "child" of another Packed Object, or whether it is a Data or Directory 7447
Packed Object. 7448

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 294 of 315

■ If the PO Index is within the first PO Index Table (for the associated ID Map) of the Directory "chain", 7449
then: 7450

□ a PO Index of zero refers to the first Packed Object in memory, 7451

□ a value of one refers to the next Packed Object in memory, and so on 7452

□ a value of m, where m is the largest value that can be encoded in the PO Index (given the 7453
number of bits per index that was set in the POindexLength), indicates a Packed Object 7454
whose relative index (position in memory) is m or higher. This definition allows Packed 7455
Objects higher than m to be indexed in an Addendum Directory Packed Object, as described 7456
immediately below. If no Addendum exists, then the precise position is either m or some 7457
indeterminate position greater than m. 7458

■ If the PO Index is not within the first PO Index Table of the directory chain for the associated ID Map (i.e., 7459
it is in an Addendum IDMPO), then: 7460

□ a PO Index of zero indicates that a prior PO Index Table of the chain provided the index 7461
information, 7462

□ a PO Index of n (n > 0) refers to the nth Packed Object above the highest index value 7463
available in the immediate parent directory PO; e.g., if the maximum index value in the 7464
immediate parent directory PO refers to PO number "3 or greater," then a PO index of 1 in 7465
this addendum refers to PO number 4. 7466

□ A PO Index of m (as defined above) similarly indicates a Packed Object whose position is the 7467
mth position, or higher, than the limit of the previous table in the chain. 7468

■ If the valid instance of an ID Value is in an Addendum Packed Object, an implementation may choose to 7469
set a PO Index to point directly to that Addendum, or may instead continue to point to the Packed Object 7470
in the chain that originally contained the ID Value. 7471
NOTE: The first approach sometimes leads to faster searching; the second sometimes leads to faster 7472
directory updates. 7473

After the last PO Index Field, the AuxMap section ends with (at minimum) a single "ObjectOffsets 7474
Present" bit. A‘0’ value of this bit indicates that no ObjectOffsets subsection is encoded. If instead 7475
this bit is a ‘1’, it is immediately followed by an ObjectOffsets subsection, which holds a list of EBV-6 7476
"offsets" (the number of octets between the start of a Packed Object and the start of the next 7477
Packed Object). If present, the ObjectOffsets subsection consists of an ObjectOffsetsMultiplier 7478
followed by an Object Offsets list, defined as follows: 7479

■ An EBV-6 ObjectOffsetsMultiplier, whose value, when multiplied by 6, sets the total number of bits 7480
reserved for the entire ObjectOffsets list. The value of this multiplier should be selected to ideally result in 7481
sufficient storage to hold the offsets for the maximum number of Packed Objects that can be indexed by 7482
this Directory Packed Object’s PO Index Table (given the value in the POIndexLength field, and given 7483
some estimated average size for those Packed Objects). 7484

■ a fixed-sized field containing a list of EBV-6 ObjectOffsets. The size of this field is exactly the number of 7485
bits as calculated from the ObjectOffsetsMultiplier. The first ObjectOffset represents the start of the 7486
second Packed Object in memory, relative to the first octet of memory (there would be little benefit in 7487
reserving extra space to store the offset of the first Packed Object). Each succeeding ObjectOffset 7488
indicates the start of the next Packed Object (relative to the previous ObjectOffset on the list), and the 7489
final ObjectOffset on the list points to the all-zero termination pattern where the next Packed Object may 7490
be written. An invalid offset of zero (EBV-6 pattern "000000") shall be used to terminate the ObjectOffset 7491
list. If the reserved storage space is fully occupied, it need not include this terminating pattern. 7492

■ In applications where the average Packed Object Length is difficult to predict, the reserved ObjectOffset 7493
storage space may sometimes prove to be insufficient. In this case, an Addendum Packed Object can be 7494
appended to the Directory Packed Object. This Addendum Directory Packed Object may contain null 7495
subsections for all but its ObjectOffsets subsection. Alternately, if it is anticipated that the capacity of the 7496
PO Index Table will also eventually be exceeded, then the Addendum Packed Object may also contain one 7497
or more non-null PO Index fields. Note that in a given instance of an AuxMap section, either a PO Index 7498
Table or an ObjectOffsets subsection may be the first to exceed its capacity. Therefore, the first position 7499
referenced by an ObjectOffsets list in an Addendum Packed Object need not coincide with the first 7500
position referenced by the PO Index Table of that same Addendum. Specifically, in an Addendum Packed 7501
Object, the first ObjectOffset listed is an offset referenced to the last ObjectOffset on the list of the 7502
"parent" Directory Packed Object. 7503

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 295 of 315

Usage as a Presence/Absence Directory 7504

In many applications, an Interrogator may choose to read the entire contents of any data carrier 7505
containing one or more "target" data items of interest. In such applications, the positional 7506
information of those data items within the memory is not needed during the initial reading 7507
operations; only a presence/absence indication is needed at this processing stage. An ID Map can 7508
form a particularly efficient Presence/Absence directory for denoting the contents of a data carrier in 7509
such applications. A full directory structure encodes the offset or address (memory location) of 7510
every data element within the data carrier, which requires the writing of a large number of bits 7511
(typically 32 bits or more per data item). Inevitably, such an approach also requires reading a large 7512
number of bits over the air, just to determine whether an identifier of interest is present on a 7513
particular tag. In contrast, when only presence/absence information is needed, using an ID Map 7514
conveys the same information using only one bit per data item defined in the data system. The 7515
entire ID Map can be typically represented in 128 bits or less, and stays the same size as more data 7516
items are written to the tag. 7517

A "Presence/Absence Directory" Packed Object is defined as a Directory IDMPO that does not 7518
contain a PO Index, and therefore provides no encoded information as to where individual data 7519
items reside within the data carrier. A Presence/Absence Directory can be converted to an "Indexed 7520
Directory" Packed Object (see I.9.2.4) by adding a PO Index in an Addendum Packed Object, as a 7521
"child" of the Presence/Absence Packed Object. 7522

Usage as an Indexed Directory 7523

In many applications involving large memories, an Interrogator may choose to read a Directory 7524
section covering the entire memory’s contents, and then issue subsequent Reads to fetch the 7525
"target" data items of interest. In such applications, the positional information of those data items 7526
within the memory is important, but if many data items are added to a large memory over time, the 7527
directory itself can grow to an undesirable size. 7528

An ID Map, used in conjunction with an AuxMap containing a PO Index, can form a particularly-7529
efficient "Indexed Directory" for denoting the contents of an RFID tag, and their approximate 7530
locations as well. Unlike a full tag directory structure, which encodes the offset or address (memory 7531
location) of every data element within the data carrier, an Indexed Directory encodes a small 7532
relative position or index indicating which Packed Object contains each data element. An application 7533
designer may choose to also encode the locations of each Packed Object in an optional ObjectOffsets 7534
subsection as described above, so that a decoding system, upon reading the Indexed Directory 7535
alone, can calculate the start addresses of all Packed Objects in memory. 7536

The utility of an ID Map used in this way is enhanced by the rule of most data systems that a given 7537
identifier may only appear once within a single data carrier. This rule, when an Indexed Directory is 7538
utilised with Packed Object encoding of the data in subsequent objects, can provide nearly-complete 7539
random access to reading data using relatively few directory bits. As an example, an ID Map 7540
directory (one bit per defined ID) can be associated with an additional AuxMap "PO Index" array 7541
(using, for example, three bits per defined ID). Using this arrangement, an interrogator would read 7542
the Directory Packed Object, and examine its ID Map to determine if the desired data item were 7543
present on the tag. If so, it would examine the 3 "PO Index" bits corresponding to that data item, to 7544
determine which of the first 8 Packed Objects on the tag contain the desired data item. If an 7545
optional ObjectOffsets subsection was encoded, then the Interrogator can calculate the starting 7546
address of the desired Packed Object directly; otherwise, the interrogator may perform successive 7547
read operations in order to fetch the desired Packed Object. 7548

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 296 of 315

J Packed Objects ID tables 7549

J.1 Packed Objects data format registration file structure 7550

A Packed Objects registered Data Format file consists of a series of "Keyword lines" and one or more 7551
ID Tables. Blank lines may occur anywhere within a Data Format File, and are ignored. Also, any 7552
line may end with extra blank columns, which are also ignored. 7553

■ A Keyword line consists of a Keyword (which always starts with "K-") followed by an equals sign and a 7554
character string, which assigns a value to that Keyword. Zero or more space characters may be present 7555
on either side of the equals sign. Some Keyword lines shall appear only once, at the top of the 7556
registration file, and others may appear multiple times, once for each ID Table in the file. 7557

■ An ID Table lists a series of ID Values (as defined in I.5.3). Each row of an ID Table contains a single ID 7558
Value (in a required "IDvalue" column), and additional columns may associate Object IDs (OIDs), ID 7559
strings, Format strings, and other information with that ID Value. A registration file always includes a 7560
single "Primary" Base ID Table, zero or more "Alternate" Base ID Tables, and may also include one or 7561
more Secondary ID Tables (that are referenced by one or more Base ID Table entries). 7562

To illustrate the file format, a hypothetical data system registration is shown in Figure J-1. In this 7563
hypothetical data system, each ID Value is associated with one or more OIDs and corresponding ID 7564
strings. The following subsections explain the syntax shown in the Figure. 7565

Figure I.9.2-1 Hypothetical Data Format registration file 7566
K-Text = Hypothetical Data
Format 100

K-Version =
1.0

K-TableID = F100B0

K-RootOID =
urn:oid:1.0.12345.100

K-IDsize
= 16

IDvalue OIDs IDstring Explanation FormatString

0 99 1Z Legacy ID "1Z"
corresponds to OID
99, is assigned
IDval 0

14n

1 9%x30-33 7%x42-45 An OID in the range
90..93,
Corresponding to
ID 7B..7E

1*8an

2 (10)(20)(25)(3
7)

(A)(B)(C)(D) a commonly-used
set of IDs

(1n)(2n)(3n)(4n)

3 26/27 1A/2B Either 1A or 2B is
encoded, but not
both

10n / 20n

4 (30) [31] (2A) [3B] 2A is always
encoded, optionally
followed by 3B

(11n) [1*20n]

5 (40/41/42) (53)
[55]

(4A/4B/4C) (5D)
[5E]

One of A/B/C is
encoded, then D,
and optionally E

(1n/2n/3n) (4n) [5n]

6 (60/61/(64)[66
])

(6A /6B / (6C)
[6D])

Selections, one of
which includes an
Option

(1n / 2n / (3n][4n])

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 297 of 315

K-TableEnd = F100B0

J.1.1 File Header section 7567

Keyword lines in the File Header (the first portion of every registration file) may occur in any order, 7568
and are as follows: 7569

■ (Mandatory) K-Version = nn.nn, which the registering body assigns, to ensure that any future 7570
revisions to their registration are clearly labelled. 7571

■ (Optional) K-Interpretation = string, where the "string" argument shall be one of the following: "ISO-7572
646", "UTF-8", "ECI-nnnnnn" (where nnnnnn is a registered six-digit ECI number), ISO-8859-nn, or 7573
"UNSPECIFIED". The Default interpretation is "UNSPECIFIED". This keyword line allows non-default 7574
interpretations to be placed on the octets of data strings that are decoded from Packed Objects. 7575

■ (Optional) K-ISO15434=nn, where "nn" represents a Format Indicator (a two-digit numeric identifier) 7576
as defined in ISO/IEC 15434. This keyword line allows receiving systems to optionally represent a 7577
decoded Packed Object as a fully-compliant ISO/IEC 15434 message. There is no default value for this 7578
keyword line. 7579

■ (Optional) K-AppPunc = nn, where nn represents (in decimal) the octet value of an ASCII character 7580
that is commonly used for punctuation in this application. If this keyword line is not present, the default 7581
Application Punctuation character is the hyphen. 7582

In addition, h may be included using the optional Keyword assignment line "K-text = string", and 7583
may appear zero or more times within a File Header or Table Header, but not in an ID Table body. 7584

J.1.2 Table Header section 7585

One or more Table Header sections (each introducing an ID Table) follow the File Header section. 7586
Each Table Header begins with a K-TableID keyword line, followed by a series of additional required 7587
and optional Keyword lines (which may occur in any order), as follows: 7588

■ (Mandatory) K-TableID = FnnXnn, where Fnn represents the ISO-assigned Data Format number 7589
(where 'nn' represents one or more decimal digits), and Xnn (where 'X' is either 'B' or 'S') is a registrant-7590
assigned Table ID for each ID Table in the file. The first ID Table shall always be the Primary Base ID 7591
Table of the registration, with a Table ID of "B0". As many as seven additional "Alternate" Base ID Tables 7592
may be included, with higher sequential "Bnn" Table IDs. Secondary ID Tables may be included, with 7593
sequential Table IDs of the form "Snn". 7594

■ (Mandatory) K-IDsize = nn. For a base ID table, the value nn shall be one of the values from the 7595
"Maximum number of Table Entries" column of Table I 5-5. For a secondary ID table, the value nn shall 7596
be a power of two (even if not present in Table I 5-5. 7597

■ (Optional) K-RootOID = urn:oid:i.j.k.ff where: 7598

□ I, j, and k are the leading arcs of the OID (as many arcs as required) and 7599

□ ff is the last arc of the Root OID (typically, the registered Data Format number) 7600

If the K-RootOID keyword is not present, then the default Root OID is: 7601

□ urn:oid:1.0.15961.ff, where "ff" is the registered Data Format number 7602

■ Other optional Keyword lines: in order to override the file-level defaults (to set different values for a 7603
particular table), a Table Header may invoke one or more of the Optional Keyword lines listed in for the 7604
File Header section. 7605

The end of the Table Header section is the first non-blank line that does not begin with a Keyword. 7606
This first non-blank line shall list the titles for every column in the ID Table that immediately follows 7607
this line; column titles are case-sensitive. 7608

An Alternate Base ID Table, if present, is identical in format to the Primary Base ID Table (but 7609
usually represents a smaller choice of identifiers, targeted for a specific application). 7610

A Secondary ID Table can be invoked by a keyword in a Base Table’s OIDs column. A Secondary ID 7611
Table is equivalent to a single Selection list (see J.3) for a single ID Value of a Base ID Table (except 7612
that a Secondary table uses K-Idsize to explicitly define the number of Secondary ID bits per ID); 7613

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 298 of 315

the IDvalue column of a Secondary table lists the value of the corresponding Secondary ID bits 7614
pattern for each row in the Secondary Table. An OIDs entry in a Secondary ID Table shall not itself 7615
contain a Selection list nor invoke another Secondary ID Table. 7616

J.1.3 ID Table section 7617

Each ID table consists of a series of one or more rows, each row including a mandatory "IDvalue" 7618
column, several defined Optional columns (such as "OIDs", "IDstring", and "FormatString"), and any 7619
number of Informative columns (such as the "Explanation" column in the hypothetical example 7620
shown above). 7621

Each ID Table ends with a required Keyword line of the form: 7622

■ K-TableEnd = FnnXnn, where FnnXnn shall match the preceding K-TableID keyword line that 7623
introduced the table. 7624

The syntax and requirements of all Mandatory and Optional columns shall be as described J.2. 7625

J.2 Mandatory and optional ID table columns 7626

Each ID Table in a Packed Objects registration shall include an IDvalue column, and may include 7627
other columns that are defined in this specification as Optional, and/or Informative columns (whose 7628
column heading is not defined in this specification). 7629

J.2.1 IDvalue column (Mandatory) 7630

Each ID Table in a Packed Objects registration shall include an IDvalue column. The ID Values on 7631
successive rows shall increase monotonically. However, the table may terminate before reaching the 7632
full number of rows indicated by the Keyword line containing K-IDsize. In this case, a receiving 7633
system will assume that all remaining ID Values are reserved for future assignment (as if the OIDs 7634
column contained the keyword "K-RFA"). If a registered Base ID Table does not include the optional 7635
OIDs column described below, then the IDvalue shall be used as the last arc of the OID. 7636

J.2.2 OIDs and IDstring columns (Optional) 7637

A Packed Objects registration always assigns a final OID arc to each identifier (either a number 7638
assigned in the "OIDs" column as will be described below, or if that column is absent, the IDvalue is 7639
assigned as the default final arc). The OIDs column is required rather than optional, if a single 7640
IDvalue is intended to represent either a combination of OIDs or a choice between OIDs (one or 7641
more Secondary ID bits are invoked by any entry that presents a choice of OIDs). 7642

A Packed Objects registration may include an IDString column, which if present assigns an ASCII-7643
string name for each OID. If no name is provided, systems must refer to the identifier by its OID 7644
(see J.3). However, many registrations will be based on data systems that do have an ASCII 7645
representation for each defined Identifier, and receiving systems may optionally output a 7646
representation based on those strings. If so, the ID Table may contain a column indicating the 7647
IDstring that corresponds to each OID. An empty IDstring cell means that there is no corresponding 7648
ASCII string associated with the OID. A non-empty IDstring shall provide a name for every OID 7649
invoked by the OIDs column of that row (or a single name, if no OIDs column is present). Therefore, 7650
the sequence of combination and selection operations in an IDstring shall exactly match those in the 7651
row’s OIDs column. 7652

A non-empty OIDs cell may contain either a keyword, an ASCII string representing (in decimal) a 7653
single OID value, or a compound string (in ABNF notation) that a defines a choice and/or a 7654
combination of OIDs. The detailed syntax for compound OID strings in this column (which also 7655
applies to the IDstring column) is as defined in section J.3. Instead of containing a simple or 7656
compound OID representation, an OIDs entry may contain one of the following Keywords: 7657

■ K-Verbatim = OIDddBnn, where "dd" represents the chosen penultimate arc of the OID, and "Bnn" 7658
indicates one of the Base 10, Base 40, or Base 74 encoding tables. This entry invokes a number of 7659
Secondary ID bits that serve two purposes: 7660

□ They encode an ASCII identifier "name" that might not have existed at the time the table 7661
was registered. The name is encoded in the Secondary ID bits section as a series of Base-n 7662

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 299 of 315

values representing the ASCII characters of the name, preceded by a four-bit field indicating 7663
the number of Base-n values that follow (zero is permissible, in order to support RFA entries 7664
as described below). 7665

□ The cumulative value of these Secondary ID bits, considered as a single unsigned binary 7666
integer and converted to decimal, is the final "arc" of the OID for this "verbatim-encoded’ 7667
identifier. 7668

■ K-Secondary = Snn, where "Snn" represents the Table ID of a Secondary ID Table in the same 7669
registration file. This is equivalent to a Base ID Table row OID entry that contains a single Selection list 7670
(with no other components at the top level), but instead of listing these components in the Base ID Table, 7671
each component is listed as a separate row in the Secondary ID Table, where each may be assigned a 7672
unique OID, ID string, and FormatString. 7673

■ K-Proprietary=OIDddPnn, where nn represents a fixed number of Secondary ID bits that encode an 7674
optional Enterprise Identifier indicating who wrote the proprietary data (an entry of K-7675
Proprietary=OIDddP0 indicates an "anonymous" proprietary data item). 7676

■ K-RFA = OIDddBnn, where "Bnn" is as defined above for Verbatim encoding, except that "B0" is a valid 7677
assignment (meaning that no Secondary ID bits are invoked). This keyword represents a Reserved for 7678
Future Assignment entry, with an option for Verbatim encoding of the Identifier "name" once a name is 7679
assigned by the entity who registered this Data Format. Encoders may use this entry, with a four-bit 7680
"verbatim" length of zero, until an Identifier "name" is assigned. A specific FormatString may be assigned 7681
to K-RFA entries, or the default a/n encoding may be utilised. 7682

Finally, any OIDs entry may end with a single "R" character (preceded by one or more space 7683
characters), to indicate that a "Repeat" bit shall be encoded as the last Secondary ID bit invoked by 7684
the entry. If ‘1’, this bit indicates that another instance of this class of identifier is also encoded 7685
(that is, this bit acts as if a repeat of the ID Value were encoded on an ID list). If ‘1’, then this bit is 7686
followed by another series of Secondary ID bits, to represent the particulars of this additional 7687
instance of the ID Value. 7688

An IDstring column shall not contain any of the above-listed Keyword entries, and an IDstring entry 7689
shall be empty when the corresponding OIDs entry contains a Keyword. 7690

J.2.3 FormatString column (Optional) 7691

An ID Table may optionally define the data characteristics of the data associated with a particular 7692
identifier, in order to facilitate data compaction. If present, the FormatString entry specifies whether 7693
a data item is all-numeric or alphanumeric (i.e., may contain characters other than the decimal 7694
digits), and specifies either a fixed length or a variable length. If no FormatString entry is present, 7695
then the default data characteristic is alphanumeric. If no FormatString entry is present, or if the 7696
entry does not specify a length, then any length >=1 is permitted. Unless a single fixed length is 7697
specified, the length of each encoded data item is encoded in the Aux Format section of the Packed 7698
Object, as specified in I.7. 7699

If a given IDstring entry defines more than a single identifier, then the corresponding FormatString 7700
column shall show a format string for each such identifier, using the same sequence of punctuation 7701
characters (disregarding concatenation) as was used in the corresponding IDstring. 7702

The format string for a single identifier shall be one of the following: 7703

■ A length qualifier followed by "n" (for always-numeric data); 7704

■ A length qualifier followed by "an" (for data that may contain non-digits); or 7705

■ A fixed-length qualifier, followed by "n", followed by one or more space characters, followed by a 7706
variable-length qualifier, followed by "an". 7707

A length qualifier shall be either null (that is, no qualifier present, indicating that any length >= 1 is 7708
legal), a single decimal number (indicating a fixed length) or a length range of the form "i*j", where 7709
"I" represents the minimum allowed length of the data item, "j" represents the maximum allowed 7710
length, and i <= j. In the latter case, if "j" is omitted, it means the maximum length is unlimited. 7711

Data corresponding to an "n" in the FormatString are encoded in the KLN subsection; data 7712
corresponding to an "an" in the FormatString are encoded in the A/N subsection. 7713

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 300 of 315

When a given instance of the data item is encoded in a Packed Object, its length is encoded in the 7714
Aux Format section as specified in I.7.2. The minimum value of the range is not itself encoded, but 7715
is specified in the ID Table’s FormatString column. 7716

Example: 7717

A FormatString entry of "3*6n" indicates an all-numeric data item whose length is always between 7718
three and six digits inclusive. A given length is encoded in two bits, where ‘00’ would indicate a 7719
string of digits whose length is "3", and ‘11’ would indicate a string length of six digits. 7720

J.2.4 Interp column (Optional) 7721

Some registrations may wish to specify information needed for output representations of the Packed 7722
Object’s contents, other than the default OID representation of the arcs of each encoded identifier. 7723
If this information is invariant for a particular table, the registration file may include keyword lines 7724
as previously defined. If the interpretation varies from row to row within a table, then an Interp 7725
column may be added to the ID Table. This column entry, if present, may contain one or more of 7726
the following keyword assignments (separated by semicolons), as were previously defined (see J.1.1 7727
and J.1.2): 7728

■ K-RootOID = urn:oid:i.j.k.l… 7729

■ K-Interpretation = string 7730

■ K-ISO15434=nn 7731

If used, these override (for a particular Identifier) the default file-level values and/or those specified 7732
in the Table Header section. 7733

J.3 Syntax of OIDs, IDstring, and FormatString Columns 7734

In a given ID Table entry, the OIDs, IDString, and FormatString column may indicate one or more 7735
mechanisms described in this section. J.3.1 specifies the semantics of the mechanisms, and J.3.2 7736
specifies the formal grammar for the ID Table columns. 7737

J.3.1 Semantics for OIDs, IDString, and FormatString Columns 7738

In the descriptions below, the word "Identifier" means either an OID final arc (in the context of the 7739
OIDs column) or an IDString name (in the context of the IDstring column). If both columns are 7740
present, only the OIDs column actually invokes Secondary ID bits. 7741

■ A Single component resolving to a single Identifier, in which case no additional Secondary ID bits are 7742
invoked. 7743

■ (For OIDs and IDString columns only) A single component resolving to one of a series of closely-related 7744
Identifiers, where the Identifier’s string representation varies only at one or more character positions. 7745
This is indicated using the Concatenation operator ‘%’ to introduce a range of ASCII characters at a 7746
specified position. For example, an OID whose final arc is defined as "391n", where the fourth digit ‘n’ can 7747
be any digit from ‘0’ to ‘6’ (ASCII characters 30hex to 36hex inclusive) is represented by the component 7748
391%x30-39 (note that no spaces are allowed). A Concatenation invokes the minimum number of 7749
Secondary ID digits needed to indicate the specified range. When both an OIDs column and an IDstring 7750
column are populated for a given row, both shall contain the same number of concatations, with the same 7751
ranges (so that the numbers and values of Secondary ID bits invoked are consistent). However, the 7752
minimum value listed for the two ranges can differ, so that (for example) the OID’s digit can range from 0 7753
to 3, while the corresponding IDstring character can range from "B" to "E" if so desired. Note that the use 7754
of Concatenation inherently constrains the relationship between OID and IDString, and so Concatenation 7755
may not be useable under all circumstances (the Selection operation described below usually provides an 7756
alternative). 7757

■ A Combination of two or more identifier components in an ordered sequence, indicated by surrounding 7758
each component of the sequence with parentheses. For example, an IDstring entry (A)(%x30-7759
37B)(2C) indicates that the associated ID Value represents a sequence of the following three identifiers: 7760

■ Identifier "A", then 7761

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 301 of 315

■ An identifier within the range "0B" to "7B" (invoking three Secondary ID bits to represent the choice of 7762
leading character), then 7763

■ Identifier "2C 7764

Note that a Combination does not itself invoke any Secondary ID bits (unless one or more of its 7765
components do). 7766

■ An Optional component is indicated by surrounding the component in brackets, which may viewed as a 7767
"conditional combination." For example the entry (A) [B][C][D] indicates that the ID Value represents 7768
identifier A, optionally followed by B, C, and/or D. A list of Options invokes one Secondary ID bit for each 7769
component in brackets, wherein a ‘1’ indicates that the optional component was encoded. 7770

■ A Selection between several mutually-exclusive components is indicated by separating the components by 7771
forward slash characters. For example, the IDstring entry (A/B/C/(D)(E)) indicates that the fully-7772
qualified ID Value represents a single choice from a list of four choices (the fourth of which is a 7773
Combination). A Selection invokes the minimum number of Secondary ID bits needed to indicate a choice 7774
from a list of the specified number of components. 7775

In general, a "compound" OIDs or IDstring entry may contain any or all of the above operations. 7776
However, to ensure that a single left-to-right parsing of an OIDs entry results in a deterministic set 7777
of Secondary ID bits (which are encoded in the same left-to-right order in which they are invoked by 7778
the OIDs entry), the following restrictions are applied: 7779

■ A given Identifier may only appear once in an OIDs entry. For example, the entry (A)(B/A) is invalid 7780

■ A OIDs entry may contain at most a single Selection list 7781

■ There is no restriction on the number of Combinations (because they invoke no Secondary ID bits) 7782

■ There is no restriction on the total number of Concatenations in an OIDs entry, but no single Component 7783
may contain more than two Concatenation operators. 7784

■ An Optional component may be a component of a Selection list, but an Optional component may not be a 7785
compound component, and therefore shall not include a Selection list nor a Combination nor Concatenation. 7786

■ A OIDs or IDstring entry may not include the characters ‘(’ , ‘)’, ‘[’ , ‘]’, ‘%’, ‘-’ , or ‘/’, unless used as an 7787
Operator as described above. If one of these characters is part of a defined data system Identifier "name", 7788
then it shall be represented as a single literal Concatenated character. 7789

J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns 7790

In each ID Table entry, the contents of the OIDs, IDString, and FormatString columns shall conform 7791
to the following grammar for Expr, unless the column is empty or (in the case of the OIDs column) 7792
it contains a keyword as specified in J.2.2. All three columns share the same grammar, except that 7793
the syntax for COMPONENT is different for each column as specified below. In a given ID Table Entry, 7794
the contents of the OIDs, IDString, and FormatString column (except if empty) shall have identical 7795
parse trees according to this grammar, except that the COMPONENTs may be different. Space 7796
characters are permitted (and ignored) anywhere in an Expr, except that in the interior of a 7797
COMPONENT spaces are only permitted where explicitly specified below. 7798

Expr = SelectionExpr / "(" SelectionExpr ")" / SelectionSubexpr 7799
 7800
SelectionExpr = SelectionSubexpr 1*("/" SelectionSubexpr) 7801
 7802
SelectionSubexpr = COMPONENT / ComboExpr 7803
 7804
ComboExpr = 1*ComboSubexpr 7805
 7806
ComboSubexpr = "(" COMPONENT ")" / "[" COMPONENT "]" 7807
 7808

For the OIDs column, COMPONENT shall conform to the following grammar: 7809

COMPONENT_OIDs = 1*(COMPONENT_OIDs_Char / Concat) 7810
 7811

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 302 of 315

COMPONENT_OIDs_Char = 1*(%x30-39) ; 0-9 7812
 7813

For the IDString column, COMPONENT shall conform to the following grammar: 7814

COMPONENT_IDString = UnquotedIDString / QuotedIDString 7815
 7816
UnquotedIDString = 1*(UnQuotedIDStringChar / Concat) 7817
 7818
UnquotedIDStringChar = %x30-39 / %x41-5A / %x61-7A / "_" ; 0-9 A-Z a-z _ 7819
 7820
QuotedIDString = QUOTE 1*QuotedIDStringConstituent QUOTE 7821
 7822
QuotedIDStringConstituent = " " / "!" / "#".."~" / (QUOTE QUOTE) 7823

QUOTE = %x22 ; ASCII double quote 7824

QUOTE refers to ASCII character 34 (decimal), the double quote character. 7825

When the QuotedIDString form for COMPONENT_IDString is used, the beginning and ending 7826
QUOTE characters shall not be considered part of the IDString. Between the beginning and ending 7827
QUOTE, all ASCII characters in the range 32 (decimal) through 126 (decimal), inclusive, are allowed, 7828
except that two QUOTE characters in a row shall denote a single double-quote character to be 7829
included in the IDString. 7830

In the QuotedIDString form, a % character does not denote the concatenation operator, but 7831
instead is just a percent character included literally in the IDString. To use the concatenation 7832
operator, the UnquotedIDString form must be used. In that case, a degenerate concatenation 7833
operator (where the start character equals the end character) may be used to include a character 7834
into the IDString that is not one of the characters listed for UnquotedIDStringChar. 7835

For the FormatString column, COMPONENT shall conform to the following grammar: 7836

COMPONENT_FormatString = 0*1Range ("an" / "n") 7837
 / FixedRange "n" 1*" " VarRange "an" 7838
 7839
Range = FixedRange / VarRange 7840
 7841
FixedRange = Number 7842
 7843
VarRange = Number "*" 0*1(Number) 7844
 7845
Number = 1*(%x30-39) ; 0-9 7846

The syntax for COMPONENT for the OIDs and IDString columns make reference to Concat, whose 7847
syntax is specified as follows: 7848

Concat = "%" "x" HexChar "-" HexChar 7849
HexChar = (%x30-39 / %x41-46) ; 0-9 A-F 7850

The hex value following the hyphen shall be greater than or equal to the hex value preceding the 7851
hyphen. In the OIDs column, each hex value shall be in the range 30hex to 39hex, inclusive. In the 7852
IDString column, each hex value shall be in the range 20hex to 7Ehex, inclusive. 7853

J.4 OID input/output representation 7854

The default method for representing the contents of a Packed Object to a receiving system is as a 7855
series of name/value pairs, where the name is an OID, and the value is the decoded data string 7856
associated with that OID. Unless otherwise specified by a K-RootOID keyword line, the default root 7857
OID is urn:oid:1.0.15961.ff, where ff is the Data Format encoded in the DSFID. The final arc of 7858
the OID is (by default) the IDvalue, but this is typically overridden by an entry in the OIDs column. 7859
Note that an encoded Application Indicator (see I.5.3) may change ff from the value indicated by 7860
the DSFID. 7861

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 303 of 315

If supported by information in the ID Table’s IDstring column, a receiving system may translate the 7862
OID output into various alternative formats, based on the IDString representation of the OIDs. One 7863
such format, as described in ISO/IEC 15434, requires as additional information a two-digit Format 7864
identifier; a table registration may provide this information using the K-ISO15434 keyword as 7865
described above. 7866

The combination of the K-RootOID keyword and the OIDs column provides the registering entity an 7867
ability to assign OIDs to data system identifiers without regard to how they are actually encoded, 7868
and therefore the same OID assignment can apply regardless of the access method. 7869

J.4.1 "ID Value OID" output representation 7870

If the receiving system does not have access to the relevant ID Table (possibly because it is newly-7871
registered), the Packed Objects decoder will not have sufficient information to convert the IDvalue 7872
(plus Secondary ID bits) to the intended OID. In order to ease the introduction of new or external 7873
tables, encoders have an option to follow "restricted use" rules (see I.5.3. 7874

When a receiving system has decoded a Packed Object encoded following "restricted use" rules, but 7875
does not have access to the indicated ID Table, it shall construct an "ID Value OID" in the following 7876
format: 7877

urn:oid:1.0.15961.300.ff.bb.idval.secbits 7878

where 1.0.15961.300 is a Root OID with a reserved Data Format of "300" that is never encoded in 7879
a DSFID, but is used to distinguish an "ID Value OID" from a true OID (as would have been used if 7880
the ID Table were available). The reserved value of 300 is followed by the encoded table’s Data 7881
Format (ff) (which may be different from the DSFID’s default), the table ID (bb) (always ‘0’, unless 7882
otherwise indicated via an encoded Application Indicator), the encoded ID value, and the decimal 7883
representation of the invoked Secondary ID bits. This process creates a unique OID for each unique 7884
fully-qualified ID Value. For example, using the hypothetical ID Table shown in Annex L (but 7885
assuming, for illustration purposes, that the table’s specified Root OID is urn:oid:1.0.12345.9, 7886
then an "AMOUNT" ID with a fourth digit of ‘2’ has a true OID of: 7887

urn:oid:1.0.12345.9.3912 7888

and an "ID Value OID" of 7889

urn:oid:1.0.15961.300.9.0.51.2 7890

When a single ID Value represents multiple component identifiers via combinations or optional 7891
components, their multiple OIDs and data strings shall be represented separately, each using the 7892
same "ID Value OID" (up through and including the Secondary ID bits arc), but adding as a final arc 7893
the component number (starting with "1" for the first component decoded under that IDvalue). 7894

If the decoding system encounters a Packed Object that references an ID Table that is unavailable 7895
to the decoder, but the encoder chose not to set the "Restricted Use" bit in the Application Indicator, 7896
then the decoder shall either discard the Packed Object, or relay the entire Packed Object to the 7897
receiving system as a single undecoded binary entity, a sequence of octets of the length specified in 7898
the ObjectLength field of the Packed Object. The OID for an undecoded Packed Object shall be 7899
urn:oid:1.0.15961.301.ff.n, where "301" is a Data Format reserved to indicate an undecoded 7900
Packed Object, "ff" shall be the Data Format encoded in the DSFID at the start of memory, and an 7901
optional final arc ‘n’ may be incremented sequentially to distinguish between multiple undecoded 7902
Packed Objects in the same data carrier memory. 7903

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 304 of 315

K Packed Objects encoding tables 7904

Packed Objects primarily utilise two encoding bases: 7905

■ Base 10, which encodes each of the digits ‘0’ through ‘9’ in one Base 10 value 7906

■ Base 30, which encodes the capital letters and selectable punctuation in one Base-30 value, and encodes 7907
punctuation and control characters from the remainder of the ASCII character set in two base-30 values 7908
(using a Shift mechanism) 7909

For situations where a high percentage of the input data’s non-numeric characters would require 7910
pairs of base-30 values, two alternative bases, Base 74 and Base 256, are also defined: 7911

■ The values in the Base 74 set correspond to the invariant subset of ISO/IEC 646 [ISO646] (which 7912
includes the GS1 character set), but with the digits eliminated, and with the addition of GS and <space> 7913
(GS is supported for uses other than as a data delimiter). 7914

■ The values in the Base 256 set may convey octets with no graphical-character interpretation, or 7915
"extended ASCII values" as defined in ISO/IEC 8859-6 [ISO8859-6], or UTF-8 (the interpretation may be 7916
set in the registered ID Table for an application). The characters ‘0’ through ‘9’ (ASCII values 48 through 7917
57) are supported, and an encoder may therefore encode the digits either by using a prefix or suffix (in 7918
Base 256) or by using a character map (in Base 10). Note that in GS1 data, FNC1 is represented by ASCII 7919
<GS> (octet value 29dec). 7920

Finally, there are situations where compaction efficiency can be enhanced by run-length encoding of 7921
base indicators, rather than by character map bits, when a long run of characters can be classified 7922
into a single base. To facilitate that classification, additional "extension" bases are added, only for 7923
use in Prefix and Suffix Runs. 7924

■ In order to support run-length encoding of a primarily-numeric string with a few interspersed letters, a 7925
Base 13 is defined, per Table B-2 7926

■ Two of these extension bases (Base 40 and Base 84) are simply defined, in that they extend the 7927
corresponding non-numeric bases (Base 30 and Base 74, respectively) to also include the ten decimal 7928
digits. The additional entries, for characters ‘0’ through ‘9’, are added as the next ten sequential values 7929
(values 30 through 39 for Base 40, and values 74 through 83 for Base 84). 7930

■ The "extended" version of Base 256 is defined as Base 40. This allows an encoder the option of encoding 7931
a few ASCII control or upper-ASCII characters in Base 256, while using a Prefix and/or Suffix to more 7932
efficiently encode the remaining non-numeric characters. 7933

The number of bits required to encode various numbers of Base 10, Base 16, Base 30, Base 40, 7934
Base 74, and Base 84 characters are shown in Figure B-1. In all cases, a limit is placed on the size 7935
of a single input group, selected so as to output a group no larger than 20 octets. 7936

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 305 of 315

Figure J.4.1-1 Required number of bits for a given number of Base ‘N’ values 7937

/* Base10 encoding accepts up to 48 input values per group: */ 7938
static const unsigned char bitsForNumBase10[] = { 7939
/* 0 - 9 */ 0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 7940
/* 10 - 19 */ 34, 37, 40, 44, 47, 50, 54, 57, 60, 64, 7941
/* 20 - 29 */ 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 7942
/* 30 - 39 */ 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 7943
/* 40 - 48 */ 133, 137, 140, 143, 147, 150, 153, 157, 160}; 7944
 7945
/* Base13 encoding accepts up to 43 input values per group: */ 7946
static const unsigned char bitsForNumBase13[] = { 7947
/* 0 - 9 */ 0, 4, 8, 12, 15, 19, 23, 26, 30, 34, 7948
/* 10 - 19 */ 38, 41, 45, 49, 52, 56, 60, 63, 67, 71, 7949
/* 20 - 29 */ 75, 78, 82, 86, 89, 93, 97, 100, 104, 108, 7950
/* 30 - 39 */ 112, 115, 119, 123, 126, 130, 134, 137, 141, 145, 7951
/* 40 - 43 */ 149, 152, 156, 160 }; 7952
 7953
/* Base30 encoding accepts up to 32 input values per group: */ 7954
static const unsigned char bitsForNumBase30[] = { 7955
/* 0 - 9 */ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 7956
/* 10 - 19 */ 50, 54, 59, 64, 69, 74, 79, 84, 89, 94, 7957
/* 20 - 29 */ 99, 104, 108, 113, 118, 123, 128, 133, 138, 143, 7958
/* 30 - 32 */ 148, 153, 158}; 7959
 7960
/* Base40 encoding accepts up to 30 input values per group: */ 7961
static const unsigned char bitsForNumBase40[] = { 7962
/* 0 - 9 */ 0, 6, 11, 16, 22, 27, 32, 38, 43, 48, 7963
/* 10 - 19 */ 54, 59, 64, 70, 75, 80, 86, 91, 96, 102, 7964
/* 20 - 29 */ 107, 112, 118, 123, 128, 134, 139, 144, 150, 155, 7965
/* 30 */ 160 }; 7966
 7967
/* Base74 encoding accepts up to 25 input values per group: */ 7968
static const unsigned char bitsForNumBase74[] = { 7969
/* 0 - 9 */ 0, 7, 13, 19, 25, 32, 38, 44, 50, 56, 7970
/* 10 - 19 */ 63, 69, 75, 81, 87, 94, 100, 106, 112, 118, 7971
/* 20 - 25 */ 125, 131, 137, 143, 150, 156 }; 7972
 7973
/* Base84 encoding accepts up to 25 input values per group: */ 7974
static const unsigned char bitsForNumBase84[] = { 7975
/* 0 - 9 */ 0, 7, 13, 20, 26, 32, 39, 45, 52, 58, 7976
/* 10 - 19 */ 64, 71, 77, 84, 90, 96, 103, 109, 116, 122, 7977
/* 20 - 25 */ 128, 135, 141, 148, 154, 160 }; 7978

Table J.4.1-1 Base 30 Character set 7979

Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal

0 A-Punc1 N/A NUL 0 space 32

1 A 65 SOH 1 ! 33

2 B 66 STX 2 " 34

3 C 67 ETX 3 # 35

4 D 68 EOT 4 $ 36

5 E 69 ENQ 5 % 37

6 F 70 ACK 6 & 38

7 G 71 BEL 7 ‘ 39

8 H 72 BS 8 (40

9 I 73 HT 9) 41

10 J 74 LF 10 * 42

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 306 of 315

Val Basic set Shift 1 set Shift 2 set

11 K 75 VT 11 + 43

12 L 76 FF 12 , 44

13 M 77 CR 13 - 45

14 N 78 SO 14 . 46

15 O 79 SI 15 / 47

16 P 80 DLE 16 : 58

17 Q 81 ETB 23 ; 59

18 R 82 ESC 27 < 60

19 S 83 FS 28 = 61

20 T 84 GS 29 > 62

21 U 85 RS 30 ? 63

22 V 86 US 31 @ 64

23 W 87 invalid N/A \ 92

24 X 88 invalid N/A ^ 94

25 Y 89 invalid N/A _ 95

26 Z 90 [91 ‘ 96

27 Shift 1 N/A] 93 | 124

28 Shift 2 N/A { 123 ~ 126

29 P-Punc2 N/A } 125 invalid N/A

Note 1: Application-Specified Punctuation character (Value 0 of the Basic set) is defined by 7980
default as the ASCII hyphen character (45dec), but may be redefined by a registered Data Format 7981

Note 2: Programmable Punctuation character (Value 29 of the Basic set): the first appearance of 7982
P-Punc in the alphanumeric data for a Packed Object, whether that first appearance is compacted 7983
into the Base 30 segment or the Base 40 segment, acts as a <Shift 2>, and also "programs" the 7984
character to be represented by second and subsequent appearances of P-Punc (in either segment) 7985
for the remainder of the alphanumeric data in that Packed Object. The Base 30 or Base 40 value 7986
immediately following that first appearance is interpreted using the Shift 2 column (Punctuation), 7987
and assigned to subsequent instances of P-Punc for the Packed Object. 7988

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 307 of 315

Table J.4.1-2 Base 13 Character set 7989

Value Basic set Shift 1 set Shift 2 set Shift 3 set

 Char Decimal Char Decimal Char Decimal Char Decimal

0 0 48 A 65 N 78 space 32

1 1 49 B 66 O 79 $ 36

2 2 50 C 67 P 80 % 37

3 3 51 D 68 Q 81 & 38

4 4 52 E 69 R 82 * 42

5 5 53 F 70 S 83 + 43

6 6 54 G 71 T 84 , 44

7 7 55 H 72 U 85 - 45

8 8 56 I 73 V 86 . 46

9 9 57 J 74 W 87 / 47

10 Shift1 N/A K 75 X 88 ? 63

11 Shift2 N/A L 76 Y 89 _ 95

12 Shift3 N/A M 77 Z 90 <GS> 29

Table J.4.1-3 Base 40 Character set 7990

Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal

0 See Table K-1

… …

29 See Table K-1

30 0 48

31 1 49

32 2 50

33 3 51

34 4 52

35 5 53

36 6 54

37 7 55

38 8 56

39 9 57

Table J.4.1-4 Character Set 7991

Val Char Decimal Val Char Decimal Val Char Decimal

0 GS 29 25 F 70 50 d 100

1 ! 33 26 G 71 51 e 101

2 " 34 27 H 72 52 f 102

3 % 37 28 I 73 53 g 103

4 & 38 29 J 74 54 h 104

5 ' 39 30 K 75 55 i 105

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 308 of 315

Val Char Decimal Val Char Decimal Val Char Decimal

6 (40 31 L 76 56 j 106

7) 41 32 M 77 57 k 107

8 * 42 33 N 78 58 l 108

9 + 43 34 O 79 59 m 109

10 , 44 35 P 80 60 n 110

11 - 45 36 Q 81 61 o 111

12 . 46 37 R 82 62 p 112

13 / 47 38 S 83 63 q 113

14 : 58 39 T 84 64 r 114

15 ; 59 40 U 85 65 s 115

16 < 60 41 V 86 66 t 116

17 = 61 42 W 87 67 u 117

18 > 62 43 X 88 68 v 118

19 ? 63 44 Y 89 69 w 119

20 A 65 45 Z 90 70 x 120

21 B 66 46 _ 95 71 y 121

22 C 67 47 a 97 72 z 122

23 D 68 48 b 98 73 Space 32

24 E 69 49 c 99

Table J.4.1-5 Base 84 Character Set 7992

Val Char Decimal Val Char Decimal Val Char Decimal

0 FNC1 N/A 25 F 50 d

1-73 See Table K-4

74 0 48 78 4 52 82 8 56

75 1 49 79 5 53 83 9 57

76 2 50 80 6 54

77 3 51 81 7 55

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 309 of 315

L Encoding Packed Objects (non-normative) 7993

In order to illustrate a number of the techniques that can be invoked when encoding a Packed 7994
Object, the following sample input data consists of data elements from a hypothetical data system. 7995
This data represents: 7996

■ An Expiration date (OID 7) of October 31, 2006, represented as a six-digit number 061031. 7997

■ An Amount Payable (OID 3n) of 1234.56 Euros, represented as a digit string 978123456 ("978" is the ISO 7998
Country Code indicating that the amount payable is in Euros). As shown in Table L-1, this data element is 7999
all-numeric, with at least 4 digits and at most 18 digits. In this example, the OID "3n" will be "32", where 8000
the "2" in the data element name indicates the decimal point is located two digits from the right. 8001

■ A Lot Number (OID 1) of 1A23B456CD 8002

The application will present the above input to the encoder as a list of OID/Value pairs. The resulting 8003
input data, represented below as a single data string (wherein each OID final arc is shown in 8004
parentheses) is: 8005

(7)061031(32)978123456(1)1A23B456CD 8006

The example uses a hypothetical ID Table. In this hypothetical table, each ID Value is a seven-bit 8007
index into the Base ID Table; the entries relevant to this example are shown in Table L-1. 8008

Encoding is performed in the following steps: 8009

■ Three data elements are to be encoded, using Table L-1. 8010

■ As shown in the table’s IDstring column, the combination of OID 7 and OID 1 is efficiently supported 8011
(because it is commonly seen in applications), and thus the encoder re-orders the input so that 7 and 1 8012
are adjacent and in the order indicated in the OIDs column: 8013

■ (7)061031(1)1A23B456CD(32)978123456 8014

■ Now, this OID pair can be assigned a single ID Value of 125 (decimal). The FormatString column for this 8015
entry shows that the encoded data will always consist of a fixed-length 6-digit string, followed by a 8016
variable-length alphanumeric string. 8017

■ Also as shown in Table L-1, OID 3n has an ID Value of 51 (decimal). The OIDs column for this entry 8018
shows that the OID is formed by concatenating "3" with a suffix consisting of a single character in the 8019
range 30hex to 39hex (i.e., a decimal digit). Since that is a range of ten possibilities, a four-bit number will 8020
need to be encoded in the Secondary ID section to indicate which suffix character was chosen. The 8021
FormatString column for this entry shows that its data is variable-length numeric; the variable length 8022
information will require four bits to be encoded in the Aux Format section. 8023

■ Since only a small percentage of the 128-entry ID Table is utilised in this Packed Object, the encoder 8024
chooses an ID List format, rather than an ID Map format. As this is the default format, no Format Flags 8025
section is required. 8026

■ This results in the following Object Info section: 8027

□ EBV-6 (ObjectLength): the value is TBD at this stage of the encoding process 8028

□ Pad Indicator bit: TBD at this stage 8029

□ EBV-3 (numberOfIDs) of 001 (meaning two ID Values will follow) 8030

□ An ID List, including: 8031

- First ID Value: 125 (dec) in 7 bits, representing OID 7 followed by OID 1 8032

- Second ID Value: 51 (decimal) in 7 bits, representing OID 3n 8033

■ A Secondary ID section is encoded as ‘0010’, indicating the trailing ‘2’ of the 3n OID. It so happens this 8034
‘2’ means that two digits follow the implied decimal point, but that information is not needed in order to 8035
encode or decode the Packed Object. 8036

■ Next, an Aux Format section is encoded. An initial ‘1’ bit is encoded, invoking the Packed-Object 8037
compaction method. Of the three OIDs, only OID (3n) requires encoded Aux Format information: a four-8038
bit pattern of ‘0101’ (representing "six" variable-length digits – as "one" is the first allowed choice, a 8039
pattern of "0101" denotes "six"). 8040

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 310 of 315

■ Next, the encoder encodes the first data item, for OID 7, which is defined as a fixed-length six-digit data 8041
item. The six digits of the source data string are "061031", which are converted to a sequence of six 8042
Base-10 values by subtracting 30hex from each character of the string (the resulting values are denoted as 8043
values v5 through v0 in the formula below). These are then converted to a single Binary value, using the 8044
following formula: 8045

□ 105 * v5 + 104 * v4+ 103 * v3+ 102 * v2+ 101 * v1+ 100 * v0 8046

According to Figure K-1, a six-digit number is always encoded into 20 bits (regardless of any 8047
leading zero’s in the input), resulting in a Binary string of: 8048

"0000 11101110 01100111" 8049

■ The next data item is for OID 1, but since the table indicates that this OID’s data is alphanumeric, 8050
encoding into the Packed Object is deferred until after all of the known-length numeric data is encoded. 8051

■ Next, the encoder finds that OID 3n is defined by Table L-1 as all-numeric, whose length of 9 (in this 8052
example) was encoded as (9 – 4 = 5) into four bits within the Aux Format subsection. Thus, a Known-8053
Length-Numeric subsection is encoded for this data item, consisting of a binary value bit-pattern encoding 8054
9 digits. Using Figure K-1 in Annex K, the encoder determines that 30 bits need to be encoded in order to 8055
represent a 9-digit number as a binary value. In this example, the binary value equivalent of 8056
"978123456" is the 30-bit binary sequence: 8057

"111010010011001111101011000000" 8058

■ At this point, encoding of the Known-Length Numeric subsection of the Data Section is complete. 8059

Note that, so far, the total number of encoded bits is (3 + 6 + 1 + 7 + 7 + 4 + 5 + 20 + 30) or 83 8060
bits, representing the IDLPO Length Section (assuming that a single EBV-6 vector remains sufficient 8061
to encode the Packed Object’s length), two 7-bit ID Values, the Secondary ID and Aux Format 8062
sections, and two Known-Length-Numeric compacted binary fields. 8063

At this stage, only one non-numeric data string (for OID 1) remains to be encoded in the 8064
Alphanumeric subsection. The 10-character source data string is "1A23B456CD". This string 8065
contains no characters requiring a base-30 Shift out of the basic Base-30 character set, and so 8066
Base-30 is selected for the non-numeric base (and so the first bit of the Alphanumeric subsection is 8067
set to ‘0’ accordingly). The data string has no substrings with six or more successive characters 8068
from the same base, and so the next two bits are set to ‘00’ (indicating that neither a Prefix nor a 8069
Suffix is run-length encoded). Thus, a full 10-bit Character Map needs to be encoded next. Its 8070
specific bit pattern is ‘0100100011’, indicating the specific sequence of digits and non-digits in the 8071
source data string "1A23B456CD". 8072

Up to this point, the Alphanumeric subsection contains the 13-bit sequence ‘0 00 0100100011’. 8073
From Annex K, it can be determined that lengths of the two final bit sequences (encoding the Base-8074
10 and Base-30 components of the source data string) are 20 bits (for the six digits) and 20 bits 8075
(for the four uppercase letters using Base 30). The six digits of the source data string 8076
"1A23B456CD" are "123456", which encodes to a 20-bit sequence of: 8077

"00011110001001000000" 8078

which is appended to the end of the 13-bit sequence cited at the start of this paragraph. 8079

The four non-digits of the source data string are "ABCD", which are converted (using Table K-1) to a 8080
sequence of four Base-30 values 1, 2, 3, and 4 (denoted as values v3 through v0 in the formula 8081
below. These are then converted to a single Binary value, using the following formula: 8082

303 * v3 + 302 * v2 + 301 * v1 + 300 * v0 8083

In this example, the formula calculates as (27000 * 1 + 900 * 2 + 30 * 3 + 1 * 4) which is equal to 8084
070DE (hexadecimal) encoded as the 20-bit sequence "00000111000011011110" which is appended 8085
to the end of the previous 20-bit sequence. Thus, the AlphaNumeric section contains a total of (13 + 8086
20 + 20) or 53 bits, appended immediately after the previous 83 bits, for a grand total of 136 8087
significant bits in the Packed Object. 8088

The final encoding step is to calculate the full length of the Packed Object (to encode the EBV-6 8089
within the Length Section) and to pad-out the last byte (if necessary). Dividing 136 by eight shows 8090
that a total of 17 bytes are required to hold the Packed Object, and that no pad bits are required in 8091
the last byte. Thus, the EBV-6 portion of the Length Section is "010001", where this EBV-6 value 8092
indicates 17 bytes in the Object. Following that, the Pad Indicator bit is set to ‘0’ indicating that no 8093
padding bits are present in the last data byte. 8094

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 311 of 315

The complete encoding process may be summarised as follows: 8095

Original input: (7)061031(32)978123456(1)1A23B456CD 8096

Re-ordered as: (7)061031(1)1A23B456CD(32)978123456 8097

 8098

FORMAT FLAGS SECTION: (empty) 8099

OBJECT INFO SECTION: 8100

 ebvObjectLen: 010001 8101

 paddingPresent: 0 8102

 ebvNumIDs: 001 8103

 IDvals: 1111101 0110011 8104

SECONDARY ID SECTION: 8105

 IDbits: 0010 8106

AUX FORMAT SECTION: 8107

 auxFormatbits: 1 0101 8108

DATA SECTION: 8109

 KLnumeric: 0000 11101110 01100111 111010 01001100 11111010 11000000 8110

 ANheader: 0 8111

 ANprefix: 0 8112

 ANsuffix: 0 8113

 ANmap: 01 00100011 8114

 ANdigitVal: 0001 11100010 01000000 8115

 ANnonDigitsVal: 0000 01110000 11011110 8116

 Padding: none 8117

Total Bits in Packed Object: 136; when byte aligned: 136 8118

Output as: 44 7E B3 2A 87 73 3F 49 9F 58 01 23 1E 24 00 70 DE 8119

Table L-1 shows the relevant subset of a hypothetical ID Table for a hypothetical ISO-registered 8120
Data Format 99. 8121

Table J.4.1-1 hypothetical Base ID Table, for the example in Annex L 8122

K-Version = 1.0

K-TableID = F99B0

K-RootOID =
urn:oid:1.0.15961.99

K-IDsize = 128

IDvalue OIDs Data Title FormatString

3 1 BATCH/LOT 1*20an

8 7 USE BY OR EXPIRY 6n

51 3%x30-39 AMOUNT 4*18n

125 (7) (1) EXPIRY + BATCH/LOT (6n) (1*20an)

K-TableEnd = F99B0

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 312 of 315

M Decoding Packed Objects (non-normative) 8123

M.1 Overview 8124

The decode process begins by decoding the first byte of the memory as a DSFID. If the leading two 8125
bits indicate the Packed Objects access method, then the remainder of this Annex applies. From the 8126
remainder of the DSFID octet or octets, determine the Data Format, which shall be applied as the 8127
default Data Format for all of the Packed Objects in this memory. From the Data Format, determine 8128
the default ID Table which shall be used to process the ID Values in each Packed Object. 8129

Typically, the decoder takes a first pass through the initial ID Values list, as described earlier, in 8130
order to complete the list of identifiers. If the decoder finds any identifiers of interest in a Packed 8131
Object (or if it has been asked to report back all the data strings from a tag’s memory), then it will 8132
need to record the implied fixed lengths (from the ID table) and the encoded variable lengths (from 8133
the Aux Format subsection), in order to parse the Packed Object’s compressed data. The decoder, 8134
when recording any variable-length bit patterns, must first convert them to variable string lengths 8135
per the table (for example, a three-bit pattern may indicate a variable string length in the range of 8136
two to nine). 8137

Starting at the first byte-aligned position after the end of the DSFID, parse the remaining memory 8138
contents until the end of encoded data, repeating the remainder of this section until a Terminating 8139
Pattern is reached. 8140

Determine from the leading bit pattern (see I.4) which one of the following conditions applies: 8141

1. there are no further Packed Objects in Memory (if the leading 8-bit pattern is all zeroes, this 8142
indicates the Terminating Pattern) 8143

2. one or more Padding bytes are present. If padding is present, skip the padding bytes, which are 8144
as described in Annex I, and examine the first non-pad byte. 8145

3. a Directory Pointer is encoded. If present, record the offset indicated by the following bytes, and 8146
then continue examining from the next byte in memory 8147

4. a Format Flags section is present, in which case process this section according to the format 8148
described in Annex I 8149

5. a default-format Packed Object begins at this location 8150

If the Packed Object had a Format Flags section, then this section may indicate that the Packed 8151
Object is of the ID Map format, otherwise it is of the ID List format. According to the indicated 8152
format, parse the Object Information section to determine the Object Length and ID information 8153
contained in the Packed Object. See Annex I for the details of the two formats. Regardless of the 8154
format, this step results in a known Object length (in bits) and an ordered list of the ID Values 8155
encoded in the Packed Object. From the governing ID Table, determine the list of characteristics for 8156
each ID (such as the presence and number of Secondary ID bits). 8157

Parse the Secondary ID section of the Object, based on the number of Secondary ID bits invoked by 8158
each ID Value in sequence. From this information, create a list of the fully-qualified ID Values 8159
(FQIDVs) that are encoded in the Packed Object. 8160

Parse the Aux Format section of the Object, based on the number of Aux Format bits invoked by 8161
each FQIDV in sequence. 8162

Parse the Data section of the Packed Object: 8163

1. If one or more of the FQIDVs indicate all-numeric data, then the Packed Object’s Data section 8164
contains a Known-Length Numeric subsection, wherein the digit strings of these all-numeric 8165
items have been encoded as a series of binary quantities. Using the known length of each of 8166
these all-numeric data items, parse the correct numbers of bits for each data item, and convert 8167
each set of bits to a string of decimal digits. 8168

2. If (after parsing the preceding sections) one or more of the FQIDVs indicate alphanumeric data, 8169
then the Packed Object’s Data section contains an AlphaNumeric subsection, wherein the 8170
character strings of these alphanumeric items have been concatenated and encoded into the 8171
structure defined in Annex I. Decode this data using the "Decoding Alphanumeric data" 8172
procedure outlined below. 8173

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 313 of 315

3. For each FQIDV in the decoded sequence: 8174

4. convert the FQIDV to an OID, by appending the OID string defined in the registered format’s ID 8175
Table to the root OID string defined in that ID Table (or to the default Root OID, if none is 8176
defined in the table) 8177

5. Complete the OID/Value pair by parsing out the next sequence of decoded characters. The 8178
length of this sequence is determined directly from the ID Table (if the FQIDV is specified as 8179
fixed length) or from a corresponding entry encoded within the Aux Format section. 8180

M.2 Decoding alphanumeric data 8181

Within the Alphanumeric subsection of a Packed Object, the total number of data characters is not 8182
encoded, nor is the bit length of the character map, nor are the bit lengths of the succeeding Binary 8183
sections (representing the numeric and non-numeric Binary values). As a result, the decoder must 8184
follow a specific procedure in order to correctly parse the AlphaNumeric section. 8185

When decoding the A/N subsection using this procedure, the decoder will first count the number of 8186
non-bitmapped values in each base (as indicated by the various Prefix and Suffix Runs), and (from 8187
that count) will determine the number of bits required to encoded these numbers of values in these 8188
bases. The procedure can then calculate, from the remaining number of bits, the number of 8189
explicitly-encoded character map bits. After separately decoding the various binary fields (one field 8190
for each base that was used), the decoder "re-interleaves" the decoded ASCII characters in the 8191
correct order. 8192

The A/N subsection decoding procedure is as follows: 8193

■ Determine the total number of non-pad bits in the Packed Object, as described in section I.8.2 8194

■ Keep a count of the total number of bits parsed thus far, as each of the subsections prior to the 8195
Alphanumeric subsection is processed 8196

■ Parse the initial Header bits of the Alphanumeric subsection, up to but not including the Character Map, 8197
and add this number to previous value of TotalBitsParsed. 8198

■ Initialise a DigitsCount to the total number of base-10 values indicated by the Prefix and Suffix (which 8199
may be zero) 8200

■ Initialise an ExtDigitsCount to the total number of base-13 values indicated by the Prefix and Suffix 8201
(which may be zero) 8202

■ Initialise a NonDigitsCount to the total number of base-30, base 74, or base-256 values indicated by the 8203
Prefix and Suffix (which may be zero) 8204

■ Initialise an ExtNonDigitsCount to the total number of base-40 or base 84 values indicated by the Prefix 8205
and Suffix (which may be zero) 8206

■ Calculate Extended-base Bit Counts: Using the tables in Annex K, calculate two numbers: 8207

□ ExtDigitBits, the number of bits required to encode the number of base-13 values indicated 8208
by ExtDigitsCount, and 8209

□ ExtNonDigitBits, the number of bits required to encode the number of base-40 (or base-84) 8210
values indicated by ExtNonDigitsCount 8211

□ Add ExtDigitBits and ExtNonDigitBits to TotalBitsParsed 8212

■ Create a PrefixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as 8213
indicated by the Prefix bits just parsed. Use quad-base bit pairs defined as follows: 8214

□ ‘00’ indicates a base 10 value; 8215

□ ‘01’ indicates a character encoded in Base 13; 8216

□ ‘10’ indicates the non-numeric base that was selected earlier in the A/N header, and 8217

□ ‘11’ indicates the Extended version of the non-numeric base that was selected earlier 8218

■ Create a SuffixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as 8219
indicated by the Suffix bits just parsed. 8220

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 314 of 315

■ Initialise the FinalCharacterMap bit string and the MainCharacterMap bit string to an empty string 8221

■ Calculate running Bit Counts: Using the tables in Annex B, calculate two numbers: 8222

□ DigitBits, the number of bits required to encode the number of base-10 values currently 8223
indicated by DigitsCount, and 8224

□ NonDigitBits, the number of bits required to encode the number of base-30 (or base 74 or 8225
base-256) values currently indicated by NonDigitsCount 8226

■ set AlnumBits equal to the sum of DigitBits plus NonDigitBits 8227

■ if the sum of TotalBitsParsed and AlnumBits equals the total number of non-pad bits in the Packed Object, 8228
then no more bits remain to be parsed from the character map, and so the remaining bit patterns, 8229
representing Binary values, are ready to be converted back to extended base values and/or base 10/base 8230
30/base 74/base-256 values (skip to the Final Decoding steps below). Otherwise, get the next encoded 8231
bit from the encoded Character map, convert the bit to a quad-base bit-pair by converting each ‘0’ to ‘00’ 8232
and each ‘1’ to ‘10’, append the pair to the end of the MainCharacterMap bit string, and: 8233

□ If the encoded map bit was ‘0’, increment DigitsCount, 8234

□ Else if ‘1’, increment NonDigitsCount 8235

□ Loop back to the Calculate running Bit Counts step above and continue 8236

■ Final decoding steps: once the encoded Character Map bits have been fully parsed: 8237

□ Fetch the next set of zero or more bits, whose length is indicated by ExtDigitBits. Convert 8238
this number of bits from Binary values to a series of base 13 values, and store the resulting 8239
array of values as ExtDigitVals. 8240

□ Fetch the next set of zero or more bits, whose length is indicated by ExtNonDigitBits. 8241
Convert this number of bits from Binary values to a series of base 40 or base 84 values 8242
(depending on the selection indicated in the A/N Header), and store the resulting array of 8243
values as ExtNonDigitVals. 8244

□ Fetch the next set of bits, whose length is indicated by DigitBits. Convert this number of bits 8245
from Binary values to a series of base 10 values, and store the resulting array of values as 8246
DigitVals. 8247

□ Fetch the final set of bits, whose length is indicated by NonDigitBits. Convert this number of 8248
bits from Binary values to a series of base 30 or base 74 or base 256 values (depending on 8249
the value of the first bits of the Alphanumeric subsection), and store the resulting array of 8250
values as NonDigitVals. 8251

□ Create the FinalCharacterMap bit string by copying to it, in this order, the previously-created 8252
PrefixCharacterMap bit string, then the MainCharacterMap string, and finally append the 8253
previously-created SuffixCharacterMap bit string to the end of the FinalCharacterMap string. 8254

□ Create an interleaved character string, representing the concatenated data strings from all 8255
of the non-numeric data strings of the Packed Object, by parsing through the 8256
FinalCharacterMap, and: 8257

■ For each ‘00’ bit-pair encountered in the FinalCharacterMap, copy the next value from DigitVals to 8258
InterleavedString (add 48 to each value to convert to ASCII); 8259

■ For each ‘01’ bit-pair encountered in the FinalCharacterMap, fetch the next value from ExtDigitVals, and 8260
use Table K-2 to convert that value to ASCII (or, if the value is a Base 13 shift, then increment past the 8261
next ‘01’ pair in the FinalCharacterMap, and use that Base 13 shift value plus the next Base 13 value from 8262
ExtDigitVals to convert the pair of values to ASCII). Store the result to InterleavedString; 8263

■ For each ‘10’ bit-pair encountered in the FinalCharacterMap, get the next character from NonDigitVals, 8264
convert its base value to an ASCII value using Annex K, and store the resulting ASCII value into 8265
InterleavedString. Fetch and process an additional Base 30 value for every Base 30 Shift values 8266
encountered, to create and store a single ASCII character. 8267

■ For each ‘11’ bit-pair encountered in the FinalCharacterMap, get the next character from ExtNonDigitVals, 8268
convert its base value to an ASCII value using Annex K, and store the resulting ASCII value into 8269
InterleavedString, processing any Shifts as previously described. 8270

EPC Tag Data Standard (TDS)

Release 2.2, Ratified, Feb 2025 © 2024 GS1 AISBL Page 315 of 315

Once the full FinalCharacterMap has been parsed, the InterleavedString is completely populated. 8271
Starting from the first AlphaNumeric entry on the ID list, copy characters from the InterleavedString 8272
to each such entry, ending each copy operation after the number of characters indicated by the 8273
corresponding Aux Format length bits, or at the end of the InterleavedString, whichever comes first. 8274

 8275

	Foreword
	1 Introduction
	2 Terminology and typographical conventions
	3 Overview of TDS
	4 The Electronic Product Code: A universal identifier for physical objects
	4.1 The need for a universal identifier: an example
	4.2 Use of identifiers in a Business Data Context
	4.3 Relationship between EPCs and GS1 keys
	4.4 Use of the EPC in the GS1 System Architecture

	5 Common grammar elements
	6 EPC URI
	6.1 Use of the EPC URI
	6.2 Assignment of EPCs to physical objects
	6.3 EPC URI syntax
	6.3.1 Serialised Global Trade Item Number (SGTIN)
	6.3.2 Serial Shipping Container Code (SSCC)
	6.3.3 Global Location Number With or Without Extension (SGLN)
	6.3.4 Global Returnable Asset Identifier (GRAI)
	6.3.5 Global Individual Asset Identifier (GIAI)
	6.3.6 Global Service Relation Number – Recipient (GSRN)
	6.3.7 Global Service Relation Number – Provider (GSRNP)
	6.3.8 Global Document Type Identifier (GDTI)
	6.3.9 Component / Part Identifier (CPI)
	6.3.10 Serialised Global Coupon Number (SGCN)
	6.3.11 Global Identification Number for Consignment (GINC)
	6.3.12 Global Shipment Identification Number (GSIN)
	6.3.13 Individual Trade Item Piece (ITIP)
	6.3.14 Unit Pack Identifier (UPUI)
	6.3.15 Global Location Number of Party (PGLN)
	6.3.16 General Identifier (GID)
	6.3.17 US Department of Defense Identifier (DOD)
	6.3.18 Aerospace and Defense Identifier (ADI)
	6.3.19 BIC Container Code (BIC)
	6.3.20 IMO Vessel Number (IMOVN)

	6.4 EPC Class URI Syntax
	6.4.1 GTIN + Batch/Lot (LGTIN)

	7 Correspondence between EPCs and GS1 Keys
	7.1 The GS1 Company Prefix (GCP) in EPC encodings
	7.2 Determining length of the EPC CompanyPrefix component for individually assigned GS1 Keys
	7.2.1 Individually assigned GTINs
	7.2.2 Individually assigned GLNs
	7.2.3 Other individually assigned GS1 Keys

	7.3 Serialised Global Trade Item Number (SGTIN)
	7.3.1 GTIN-12 and GTIN-13
	7.3.2 GTIN-8
	7.3.3 RCN-8
	7.3.4 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007)
	7.3.5 Restricted Circulation (GS1 Prefixes 02 and 20 – 29)
	7.3.6 Coupon Code Identification for Restricted Distribution (GS1 Prefixes 981-984 and 99)
	7.3.7 Refund Receipt (GS1 Prefix 980)
	7.3.8 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979)
	7.3.8.1 ISBN and ISMN
	7.3.8.2 ISSN

	7.4 Serial Shipping Container Code (SSCC)
	7.5 Global Location Number With or Without Extension (SGLN)
	7.6 Global Returnable Asset Identifier (GRAI)
	7.7 Global Individual Asset Identifier (GIAI)
	7.8 Global Service Relation Number – Recipient (GSRN)
	7.9 Global Service Relation Number – Provider (GSRNP)
	7.10 Global Document Type Identifier (GDTI)
	7.11 Component and Part Identifier (CPI)
	7.12 Serialised Global Coupon Number (SGCN)
	7.13 Global Identification Number for Consignment (GINC)
	7.14 Global Shipment Identification Number (GSIN)
	7.15 Individual Trade Item Piece (ITIP)
	7.16 Unit Pack Identifier (UPUI)
	7.17 Global Location Number of Party (PGLN)
	7.18 GTIN + batch/lot (LGTIN)

	8 URIs for EPC Pure identity patterns
	8.1 Syntax
	8.2 Semantics

	9 Memory Organisation of Gen 2 RFID tags
	9.1 Types of Tag Data
	9.2 Gen 2 Tag Memory Map
	9.3 PC bits
	9.4 XPC bits

	10 Filter Value
	10.1 Use of "Reserved" and "All Others" Filter Values
	10.2 Filter Values for SGTIN and DSGTIN+ EPC Tags
	10.3 Filter Values for SSCC EPC Tags
	10.4 Filter Values for SGLN EPC Tags
	10.5 Filter Values for GRAI EPC Tags
	10.6 Filter Values for GIAI EPC Tags
	10.7 Filter Values for GSRN and GSRNP EPC Tags
	10.8 Filter Values for GDTI EPC Tags
	10.9 Filter Values for CPI EPC Tags
	10.10 Filter Values for SGCN EPC Tags
	10.11 Filter Values for ITIP EPC Tags
	10.12 Filter Values for GID EPC Tags
	10.13 Filter Values for DOD EPC Tags
	10.14 Filter Values for ADI EPC Tags

	11 Attribute bits (refer to 9.3 and 9.4)
	12 EPC Tag URI and EPC Raw URI
	12.1 Structure of the EPC Tag URI and EPC Raw URI
	12.2 Control Information
	12.2.1 Filter Values
	12.2.2 Other control information fields

	12.3 EPC Tag URI and EPC Pure Identity URI
	12.3.1 EPC Binary Coding Schemes
	12.3.2 EPC Pure Identity URI to EPC Tag URI
	12.3.3 EPC Tag URI to EPC Pure Identity URI

	12.4 Grammar

	13 URIs for EPC Tag Encoding patterns
	13.1 Syntax
	13.2 Semantics

	14 EPC Binary Encoding
	14.1 Overview of Binary Encoding
	14.2 EPC Binary Headers
	14.3 Encoding procedure
	14.3.1 "Integer" Encoding Method
	14.3.2 "String" Encoding method
	14.3.3 "Partition Table" Encoding method
	14.3.4 "Unpadded Partition Table" Encoding method
	14.3.5 "String Partition Table" Encoding method
	14.3.6 "Numeric String" Encoding method
	14.3.7 "6-bit CAGE/DODAAC" Encoding method
	14.3.8 "6-Bit Variable String" Encoding method
	14.3.9 "6-Bit Variable String Partition Table" Encoding method
	14.3.10 "Fixed Width Integer" Encoding Method

	14.4 Decoding procedure
	14.4.1 "Integer" Decoding method
	14.4.2 "String" Decoding method
	14.4.3 "Partition Table" Decoding method
	14.4.4 "Unpadded Partition Table" Decoding method
	14.4.5 "String Partition Table" Decoding method
	14.4.6 "Numeric String" Decoding method
	14.4.7 "6-Bit CAGE/DoDAAC" Decoding method
	14.4.8 "6-Bit Variable String" Decoding method
	14.4.9 "6-Bit Variable String Partition Table" Decoding method
	14.4.10 "Fixed Width Integer" Decoding method

	14.5 Encoding/Decoding methods introduced in TDS 2.0
	14.5.1 "+AIDC Data Toggle Bit"
	14.5.1.1 Encoding:
	14.5.1.2 Decoding:

	14.5.2 "Fixed-Bit-Length Numeric String"
	14.5.2.1 Encoding
	14.5.2.2 Decoding

	14.5.3 "Prioritised Date"
	14.5.3.1 Encoding
	14.5.3.2 Decoding

	14.5.4 "Fixed-Length Numeric"
	14.5.4.1 Encoding
	14.5.4.2 Decoding

	14.5.5 "Delimited/Terminated Numeric"
	14.5.5.1 Encoding
	14.5.5.2 Decoding

	14.5.6 "Variable-length alphanumeric"
	14.5.6.1 "Variable-length numeric string"
	14.5.6.1.1 Encoding
	14.5.6.1.2 Decoding

	14.5.6.2 "Variable-length upper case hexadecimal"
	14.5.6.2.1 Encoding
	14.5.6.2.2 Decoding

	14.5.6.3 "Variable-length lower case hexadecimal"
	14.5.6.3.1 Encoding
	14.5.6.3.2 Decoding

	14.5.6.4 "Variable-length 6-bit file-safe URI-safe base 64"
	14.5.6.4.1 Encoding
	14.5.6.4.2 Decoding

	14.5.6.5 "Variable-length URN Code 40"
	14.5.6.5.1 Encoding
	14.5.6.5.2 Decoding

	14.5.6.6 "Variable-length 7-bit ASCII"
	14.5.6.6.1 Encoding
	14.5.6.6.2 Decoding

	14.5.7 "Single data bit"
	14.5.7.1 Encoding
	14.5.7.2 Decoding

	14.5.8 "6-digit date YYMMDD"
	14.5.8.1 Encoding
	14.5.8.2 Decoding

	14.5.9 "10-digit date+time YYMMDDhhmm"
	14.5.9.1 Encoding
	14.5.9.2 Decoding

	14.5.10 "Variable-format date / date range"
	14.5.10.1 Encoding
	14.5.10.2 Decoding

	14.5.11 "Variable-precision date+time"
	14.5.11.1 Encoding
	14.5.11.2 Decoding

	14.5.12 "Country code (ISO 3166-1 alpha-2)"
	14.5.12.1 Encoding
	14.5.12.2 Decoding

	14.5.13 "Variable-length numeric string without encoding indicator"
	14.5.13.1 Encoding
	14.5.13.2 Decoding

	14.5.14 "Optional minus sign in 1 bit"
	14.5.14.1 Encoding
	14.5.14.2 Decoding

	14.5.15 "Sequence indicator"
	14.5.15.1 Encoding
	14.5.15.2 Decoding

	14.6 EPC Binary coding tables
	14.6.1 Serialised Global Trade Item Number (SGTIN)
	14.6.1.1 SGTIN-96 coding table
	14.6.1.2 SGTIN-198 coding table
	14.6.1.3 SGTIN+
	14.6.1.4 DSGTIN+

	14.6.2 Serial Shipping Container Code (SSCC)
	14.6.2.1 SSCC-96
	14.6.2.2 SSCC+

	14.6.3 Global Location Number with or without Extension (SGLN)
	14.6.3.1 SGLN-96 coding table
	14.6.3.2 SGLN-195 coding table
	14.6.3.3 SGLN+

	14.6.4 Global Returnable Asset Identifier (GRAI)
	14.6.4.1 GRAI-96 coding table
	14.6.4.2 GRAI-170 coding table
	14.6.4.3 GRAI+

	14.6.5 Global Individual Asset Identifier (GIAI)
	14.6.5.1 GIAI-96 Partition Table and coding table
	14.6.5.2 GIAI-202 Partition Table and coding table
	14.6.5.3 GIAI+ Coding table

	14.6.6 Global Service Relation Number - Recipient (GSRN)
	14.6.6.1 GSRN-96
	14.6.6.2 GSRN+

	14.6.7 Global Service Relation Number - Provider (GSRNP)
	14.6.7.1 GSRNP-96
	14.6.7.2 GSRNP+

	14.6.8 Global Document Type Identifier (GDTI)
	14.6.8.1 GDTI-96 coding table
	14.6.8.2 GDTI-113 coding table
	14.6.8.3 GDTI-174 coding table
	14.6.8.4 GDTI+

	14.6.9 CPI Identifier (CPI)
	14.6.9.1 CPI-96 coding table
	14.6.9.2 CPI-var coding table
	14.6.9.3 CPI+ coding table

	14.6.10 Global Coupon Number (SGCN)
	14.6.10.1 SGCN-96 coding table
	14.6.10.2 SGCN+

	14.6.11 Individual Trade Item Piece (ITIP)
	14.6.11.1 ITIP-110 coding table
	14.6.11.2 ITIP-212 coding table
	14.6.11.3 ITIP+

	14.6.12 General Identifier (GID)
	14.6.12.1 GID-96 coding table

	14.6.13 DoD Identifier
	14.6.14 ADI Identifier (ADI)
	14.6.14.1 ADI-var coding table

	15 EPC Memory Bank contents
	15.1 Encoding procedures
	15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank
	15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank

	15.2 Decoding procedures
	15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI
	15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI
	15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI
	15.2.4 Decoding of control information

	15.3 '+AIDC data' following new EPC schemes in the EPC/UII memory bank

	16 Tag Identification (TID) Memory Bank Contents
	16.1 Short Tag Identification (TID)
	16.2 Extended Tag identification (XTID)
	16.2.1 XTID Header
	16.2.2 XTID Serialisation
	16.2.3 Optional Command Support segment
	16.2.4 BlockWrite and BlockErase segment
	16.2.5 User Memory and BlockPermaLock segment
	16.2.6 Optional Lock Bit segment

	16.3 Serialised Tag Identification (STID)
	16.3.1 STID URI grammar
	16.3.2 Decoding procedure: TID Bank Contents to STID URI

	17 User Memory Bank Contents
	18 Conformance
	18.1 Conformance of RFID Tag Data
	18.1.1 Conformance of Reserved Memory Bank (Bank 00)
	18.1.2 Conformance of EPC Memory Bank (Bank 01)
	18.1.3 Conformance of TID Memory Bank (Bank 10)
	18.1.4 Conformance of User Memory Bank (Bank 11)

	18.2 Conformance of Hardware and Software Components
	18.2.1 Conformance of hardware and software Components That Produce or Consume Gen 2 Memory Bank Contents
	18.2.2 Conformance of hardware and software Components that Produce or Consume URI Forms of the EPC
	18.2.3 Conformance of hardware and software components that translate between EPC Forms

	18.3 Conformance of Human Readable Forms of the EPC and of EPC Memory Bank contents
	A Character Set for Alphanumeric Serial Numbers
	B Glossary (non-normative)
	C References
	D Extensible Bit Vectors
	E (non-normative) Examples: EPC encoding and decoding
	E.1 Encoding a Serialised Global Trade Item Number (SGTIN) to SGTIN-96
	E.2 Decoding an SGTIN-96 to a Serialised Global Trade Item Number (SGTIN)
	E.3 Summary Examples of All EPC schemes

	F Packed objects ID Table for Data Format 9
	F.1 Tabular Format (non-normative)
	F.2 Comma-Separated-Value (CSV) format

	G 6-Bit Alphanumeric Character Set
	H (Intentionally Omitted)
	I Packed Objects structure
	I.1 Overview
	I.2 Overview of Packed Objects documentation
	I.3 High-Level Packed Objects format design
	I.3.1 Overview
	I.3.2 Descriptions of each section of a Packed Object’s structure

	I.4 Format Flags section
	I.4.1 Data terminating flag pattern
	I.4.2 Format flag section starting bit patterns
	I.4.3 IDLPO Format Flags
	I.4.4 Patterns for use between Packed Objects

	I.5 Object Info section
	I.5.1 Object Info formats
	I.5.2 Length Information
	I.5.3 General description of ID values
	I.5.4 ID Values representation in an ID Value-list Packed Object
	I.5.5 ID Values representation in an ID Map Packed Object
	I.5.6 Optional Addendum subsection of the Object Info section

	I.6 Secondary ID Bits section
	I.7 Aux Format section
	I.7.1 Support for No-Directory compaction methods
	I.7.2 Support for the packed-object compaction method

	I.8 Data section
	I.8.1 Known-length-Numerics subsection of the data section
	I.8.2 Alphanumeric subsection of the data section

	I.9 ID Map and Directory encoding options
	I.9.1 ID Map Section structure
	I.9.2 Directory Packed Objects

	J Packed Objects ID tables
	J.1 Packed Objects data format registration file structure
	J.1.1 File Header section
	J.1.2 Table Header section
	J.1.3 ID Table section

	J.2 Mandatory and optional ID table columns
	J.2.1 IDvalue column (Mandatory)
	J.2.2 OIDs and IDstring columns (Optional)
	J.2.3 FormatString column (Optional)
	J.2.4 Interp column (Optional)

	J.3 Syntax of OIDs, IDstring, and FormatString Columns
	J.3.1 Semantics for OIDs, IDString, and FormatString Columns
	J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns

	J.4 OID input/output representation
	J.4.1 "ID Value OID" output representation

	K Packed Objects encoding tables
	L Encoding Packed Objects (non-normative)
	M Decoding Packed Objects (non-normative)
	M.1 Overview
	M.2 Decoding alphanumeric data

