
 1

2

3
4

5
6
7
8
9

10
11
12
13
14
15
16

EPCglobal Tag Data Standards Version 1.4
Ratified on June 11, 2008

Disclaimer
EPCglobal Inc™ is providing this document as a service to interested industries.
This document was developed through a consensus process of interested parties.
Although efforts have been to assure that the document is correct, reliable, and
technically accurate, EPCglobal Inc. makes NO WARRANTY, EXPRESS OR
IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT REQUIRE
MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL ADVANCES DICTATE,
OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN ANY
APPLICATION, OR OTHERWISE. Use of this document is with the understanding
that EPCglobal Inc. has no liability for any claim to the contrary, or for any damage
or loss of any kind or nature.

Copyright notice 17

18 © 2006, 2007, 2008 EPCglobal Inc.

19 All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not
20 permitted. Requests for permission to reproduce should be addressed to
21 epcglobal@epcglobalinc.org.
22
23 EPCglobal Inc.TM is providing this document as a service to interested industries. This document
24 was developed through a consensus process of interested parties. Although efforts have been to
25 assure that the document is correct, reliable, and technically accurate, EPCglobal Inc. makes NO
26 WARRANTY, EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT
27 REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL ADVANCES DICTATE,
28 OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN ANY APPLICATION, OR
29 OTHERWISE. Use of this Document is with the understanding that EPCglobal Inc. has no liability
30

31

32

for any claim to the contrary, or for any damage or loss of any kind or nature

DOCUMENT HISTORY

Document Number:

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 1 of 120

mailto:epcglobal@epcglobalinc.org

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 2 of 120

Document Version: 1.4
Document Date : June 11, 2008

 33

34
35
36

37

Document Summary

Document Title: EPCTM Tag Data Standards Version 1.4
Owner: Tag Data and Translation Standard Work Group
Status: (check one box) DRAFT X Approved

 38

39

40

Document Change History

Date of
Change

Version Reason for
Change

Summary of Change

9/19/2007 1.3.1 Editorial Changes • GRAI-170, GIAI-202,SGLN-195, GRAI-96
10/19/2007 1.4 New Identities • GSRN-96, GDTI-96, GDTI-113
03/28/2008 1.4 Recognition • Appendix G: Participants and Opted-in

Companies
04/07/08 1.4 Approval • Proposed Spec. advanced to RS by TSC & BSC
 •

 41

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 3 of 120

42

43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

59
60
61

62
63

64
65

66
67

68

69

70
71

Abstract
This document defines the EPC Tag Data Standards version 1.4. It applies to RFID tags
conforming to “EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID
Protocol for Communications at 860 MHz-960MHz Version 1.1.0” (“Gen2 Specification”).
Such tags will be referred to as “Gen 2 Tags” in the remainder of this document. These
standards define completely that portion of EPC tag data that is standardized, including how
that data is encoded on the EPC tag itself (i.e. the EPC Tag Encodings), as well as how it is
encoded for use in the information systems layers of the EPC Systems Network (i.e. the EPC
URI or Uniform Resource Identifier Encodings).

The EPC Tag Encodings include a Header field followed by one or more Value Fields. The
Header field defines the overall length and format of the Values Fields. The Value Fields
contain a unique EPC Identifier and a required Filter Value when the latter is judged to be
important to encode on the tag itself.

The EPC URI Encodings provide the means for applications software to process EPC Tag
Encodings either literally (i.e. at the bit level) or at various levels of semantic abstraction that
is independent of the tag variations. This document defines four categories of URI:

1. URIs for pure identities sometimes called “canonical forms.” These contain only the
unique information that identifies a specific physical object, location or organization,
and are independent of tag encodings.

2. URIs that represent specific tag encodings. These are used in software applications
where the encoding scheme is relevant, as when commanding software to write a tag.

3. URIs that represent patterns, or sets of EPCs. These are used when instructing
software how to filter tag data.

4. URIs that represent raw tag information, generally used only for error reporting
purposes.

Status of this document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at EPCglobal. See http://www.epcglobalinc.org/standards/tds/. 72

73
74
75
76
77
78

On June 11th, the Recommended Specification was reviewed and ratified by the EPCglobal
Board. It is now a Ratified Standard and can be fully implemented and referenced.

Further comments or potential errata found pertaining to this document should be sent to the
EPCglobal Software Action Group’s Tag Data & Translation Standards Working Group at
the following mailing list: sag_tdts_wg@lists.epcglobalinc.org . 79

80

http://www.epcglobalinc.org/standards/tds/
mailto:sag_tdts_wg@lists.epcglobalinc.org

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 4 of 120

81 Changes from Previous Versions
Version 1.4 82

83
84
85

86

87

88
89

90
91

92
93
94
95

96
97
98

99
100

101
102

103

104

105

106

107

108
109
110

111

This update to the Tag Data Standards provides support for two GS1 identities: The Global
Service Relation Number (GSRN) and the Global Document Type Identifier (GDTI).
Changes are as follows

1. Sections 2.1.2.6 (GSRN) and 2.1.2.7 (GDTI) describe the new Identity Types.

2. The Header Table 1 has three new entries: x2C for GSRN-96, x2D for GDTI-96 and
x3A for GDTI-113.

3. A new filter value of “100” has been added to the SGTIN filter Table in Section
3.5.1.

4. The Encoding and Decoding procedures for the GRAI-96 and GRAI-170 have been
changed in sections 3.8.1.1, 3.8.1.2, 3.8.2.1 and 3.8.2.2 to eliminate a leading 0 that
has been encoded as a filler 0 character in the GRAI. This leading “0” is not part of
the GRAI in the GS1 General Specifications.

5. Changes from a value “168-126” to a value of “168-148” in table 22 in section 3.9.2
and the GIAI Summary table in Appendix A have been made to correct an error in
version 1.3.1.

6. Section 3.10 is the detailed definition and encoding and decoding procedures for the
Global Service Relation Number (GSRN).

7. Section 3.11 is the detailed definition and encoding and decoding procedures for the
Global Document Type Identifier (GDTI).

8. Section 4 has been updated to include the URI forms for the new identities.

9. Section 5 has been updated to include the translations for the new identities

10. Appendix A and B have been updated with new tables for the new identities

11. References to EAN.UCC have been changed to GS1 throughout the document.

12. The Sunset date of July 1, 2009 for 64 bit Header values has been added.

13. Deleted Appendix B which was the bit allocation table because it is too
implementation specific for this TDTS document. This table, if needed, will be
published by EPCglobal.

Version 1.3.1 112

113

114
115

116

This update to the Tag Data Standards provides errata changes found since Version 1.3 was
published. Changes are as follows

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 5 of 120

117
118
119

120
121
122
123
124
125

126
127

128
129
130

131
132

133
134
135

136

1. In section 3.8.2.2 GRAI-170 Decoding Procedure, the bit numbering has been
corrected. For instance “00110111 b162b161…b0“ has been corrected to read
“00110111 b161b160…b0 “ and so forth throughout the section.

2. The GIAI-202 Table 23 and the Associated Summary Table in Appendix A did not
add up to a total of 188 bits for each Company Prefix/Individual Asset Reference
which is what the encoding/decoding procedure expects. The Individual Asset
Reference Bits column has been changed so each row adds to 188 bits. For example,
for Partition value 0 the Individual Asset Reference bits value “126” was changed to
“148”.

3. An addition error in the Appendix B table, SGLN-195 row, has been corrected. The
Total bits required column was changed from 333 to 336.

4. A typographical error in line three of the section 3.8.1.1 GRAI-96 Encoding
Procedure has been corrected. The formula “15 <= K 3 <= 0” was replaced with
“15 <= K <= 30”.

5. In Section 5.4 (Gen 2 Tag EPC Memory into Tag or Raw URI) step 8 line 4 a
missing dot (.) character after the value of A has been corrected.

6. The arrows in Appendix B between the Bar Code symbol and the SGTIN-96 have
been adjusted to reflect the connections between the Company Prefix, Item Reference
and Serial Number.

Version 1.3 137

138

139
140
141
142

143

144

145

146

147

148
149

150

This Tag Data Standards Version 1.3 is aimed for use in Gen 2 Tags, whereas the previous
Version 1.1, was aimed for use in UHF Class 1 Generation 1 tags. Version 1.3 maintains
compatibility with version 1.1 in the identity level. In other words, this version will continue
to support the GS1 system and DoD identity types.

However, in Version 1.3, there are significant changes to prior versions, including:

1. The deprecation of 64 bit encodings.

2. The elimination of tiered header rules.

3. The encoding of EPC to fit the structure of Gen 2 Tags

4. The addition of the Extension Component to the SGLN

5. Addition of SGTIN-198, SGLN-195, GRAI-170, GIAI-202 and corresponding
changes in URI expression for alpha-numeric serial number encoding.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 6 of 120

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Table of Contents
1 Introduction ..9

2 Identity Concepts..10

2.1 Pure Identities ..12

2.1.1 General Types ...12

2.1.2 GS1 System Identity Types ..13

2.1.2.1 Serialized Global Trade Item Number (SGTIN)..13

2.1.2.2 Serial Shipping Container Code (SSCC) ...15

2.1.2.3 Serialized Global Location Number (SGLN)...16

2.1.2.4 Global Returnable Asset Identifier (GRAI) ...18

2.1.2.5 Global Individual Asset Identifier (GIAI)..18

2.1.2.6 Global Service Relation Number (GSRN) ...19

2.1.2.7 Global Document Type Identifier (GDTI) ...20

2.1.3 DoD Identity Type ..20

3 EPC Tag Bit-level Encodings ..20

3.1 Headers ..21

3.2 Use of EPCs on UHF Class 1 Generation 2 Tags..23

3.2.1 EPC Memory Contents ...24

3.2.2 The Length Bits...25

3.3 Notational Conventions ...26

3.4 General Identifier (GID-96)...27

3.4.1.1 GID-96 Encoding Procedure..28

3.4.1.2 GID-96 Decoding Procedure..28

3.5 Serialized Global Trade Item Number (SGTIN) ...29

3.5.1 SGTIN-96 ...29

3.5.1.1 SGTIN-96 Encoding Procedure ...31

3.5.1.2 SGTIN-96 Decoding Procedure ...32

3.5.2 SGTIN-198 ...33

3.5.2.1 SGTIN-198 Encoding Procedure ...34

3.5.2.2 SGTIN-198 Decoding Procedure ...35

3.6 Serial Shipping Container Code (SSCC)...36

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 7 of 120

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

3.6.1 SSCC-96 ...36

3.6.1.1 SSCC-96 Encoding Procedure ...38

3.6.1.2 SSCC-96 Decoding Procedure ...38

3.7 Serialized Global Location Number (SGLN)..39

3.7.1 SGLN-96...40

3.7.1.1 SGLN-96 Encoding Procedure...42

3.7.1.2 SGLN-96 Decoding Procedure ..43

3.7.2 SGLN-195...44

3.7.2.1 SGLN-195 Encoding Procedure...45

3.7.2.2 SGLN-195 Decoding Procedure ..45

3.8 Global Returnable Asset Identifier (GRAI)...46

3.8.1 GRAI-96 ...47

3.8.1.1 GRAI-96 Encoding Procedure ...49

3.8.1.2 GRAI-96 Decoding Procedure ...49

3.8.2 GRAI-170 ...50

3.8.2.1 GRAI-170 Encoding Procedure ...51

3.8.2.2 GRAI-170 Decoding Procedure ...52

3.9 Global Individual Asset Identifier (GIAI) ...53

3.9.1 GIAI-96...53

3.9.1.1 GIAI-96 Encoding Procedure...55

3.9.1.2 GIAI-96 Decoding Procedure ..56

3.9.2 GIAI-202...56

3.9.2.1 GIAI-202 Encoding Procedure...58

3.9.2.2 GIAI-202 Decoding Procedure ..59

3.10 Global Service Relation Number (GSRN) ...60

3.10.1 GSRN-96 ...60

3.10.1.1 GSRN-96 Encoding Procedure ..62

3.10.1.2 GSRN-96 Decoding Procedure..62

3.11 Global Document Type Identifier (GDTI) ...63

3.11.1 GDTI-96 ..63

3.11.1.1 GDTI-96 Encoding Procedure ...65

3.11.1.2 GDTI-96 Decoding Procedure...66

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 8 of 120

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

3.11.2 GDTI-113 ..66

3.11.2.1 GDTI-113 Encoding Procedure ...67

3.11.2.2 GDTI-113 Decoding Procedure...68

3.12 DoD Tag Data Constructs ..69

3.12.1 DoD-96 ..69

4 URI Representation ..70

4.1 URI Forms for Pure Identities ...71

4.2 URI Forms for Related Data Types...73

4.2.1 URIs for EPC Tags ...73

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags ..74

4.2.2.1 Use of the Raw URI with Gen 2 Tags..75

4.2.2.2 The Length Field of a Raw URI when using Gen 2 Tags (non-normative).76

4.2.3 URIs for EPC Patterns ..76

4.2.4 URIs for EPC Pure Identity Patterns ..77

4.3 Syntax ..78

4.3.1 Common Grammar Elements ...78

4.3.2 EPCGID-URI..79

4.3.3 SGTIN-URI...79

4.3.4 SSCC-URI...79

4.3.5 SGLN-URI..79

4.3.6 GRAI-URI...79

4.3.7 GIAI-URI..80

4.3.8 GSRN-URI..80

4.3.9 GDTI-URI...80

4.3.10 EPC Tag URI...81

4.3.11 Raw Tag URI...82

4.3.12 EPC Pattern URI..82

4.3.13 EPC Identity Pattern URI ..83

4.3.14 DoD Construct URI ...84

4.3.15 Summary (non-normative) ..85

5 Translation between EPC-URI and Other EPC Representations88

5.1 Bit string into EPC-URI (pure identity) ..89

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 9 of 120

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260
261

263
264
265
266
267

268
269
270
271
272
273
274
275
276

5.2 Bit String into Tag or Raw URI...91

5.3 Gen 2 Tag EPC Memory into EPC-URI (pure identity) ...94

5.4 Gen 2 Tag EPC Memory into Tag or Raw URI ..95

5.5 URI into Bit String ..95

5.6 URI into Gen 2 Tag EPC Memory ..100

6 Semantics of EPC Pattern URIs ...100

7 Background Information (non-normative) ...101

8 References ..102

Appendix A: Encoding Scheme Summary Tables (non-normative)103

Appendix B: Example of a Specific Trade Item <SGTIN> (non-normative)110

Appendix C: Decimal values of powers of 2 Table (non-normative)...................................113

Appendix D: List of Abbreviations...114

Appendix E: GS1 General Specifications Version 7.1 (non-normative).............................115

Appendix F: GS1 Alphanumeric Character Set...116

Appendix G: Acknowledgement of Contributors and Companies Opted-in during the
Creation of this Standard (Informative)..117

1 Introduction 262
The Electronic Product Code™ (EPC™) is an identification scheme for universally
identifying physical objects via Radio Frequency Identification (RFID) tags and other means.
The standardized EPC Tag Encodings consists of an EPC (or EPC Identifier) that uniquely
identifies an individual object, as well as a Filter Value when judged to be necessary to
enable effective and efficient reading of the EPC tags.

The EPC Identifier is a meta-coding scheme designed to support the needs of various
industries by accommodating both existing coding schemes where possible and defining*
new schemes where necessary. The various coding schemes are referred to as Domain
Identifiers, to indicate that they provide object identification within certain domains such as
a particular industry or group of industries. As such, the Electronic Product Code represents
a family of coding schemes (or “namespaces”) and a means to make them unique across all
possible EPC-compliant tags. The various GS1 coding schemes and their associated data
structures and applications are defined in the Section 8 reference [GS1GS]. These concepts
are depicted in the chart below.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 10 of 120

277

278
279

280
281
282
283
284
285

286
287

288
289
290

291

 EPC or EPC Identifier

e.g. SGTIN, SGLN, SSCC, GID

Standard EPC Tag Encoding
Header Domain Identifier Filter and

Partition Value

Key Terminology

Figure A. EPC Terminology

 In this version of the EPCglobal Tag Data Standard 1.4 – the specific coding schemes
include a General Identifier (GID), a serialized version of the Global Trade Item Number
(GTIN®), the Serial Shipping Container Code (SSCC®), the Global Location Number
(GLN®), the Global Returnable Asset Identifier (GRAI®), the Global Individual Asset
Identifier (GIAI®), the Global Service Relation Number (GSRN®), the Global Document
Type Identifier (GDTI®) and the DOD Construct.

In the following sections, we will describe the structure and organization of the EPC and
provide illustrations to show its recommended use.

The EPCglobal Tag Data Standard 1.4 has been approved by GS1 with the restrictions
outlined in the GS1 General Specifications (Version 7.1) Section 3.7, which is excerpted into
Tag Data Standard Appendix E.

The latest version of this specification can be obtained from EPCglobal at
http://www.epcglobalinc.org/standards/tds/ 292

294
295
296
297

2 Identity Concepts 293
To better understand the overall framework of the EPC Tag Data Standards, it’s helpful to
distinguish between three levels of identification (See Figure B). Although this specification
addresses the pure identity and encoding layers in detail, all three layers are described below
to explain the layer concepts and the context for the encoding layer.

…

http://www.epcglobalinc.org/standards/tds/

Pure Identity Layer

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 11 of 120

298

299

300
301
302
303
304

305
306
307

308
309
310
311
312
313
314

315
316

Figure B. Defined Identity Namespaces, Encodings, and Realizations.

• Pure identity -- the identity associated with a specific physical or logical entity,
independent of any particular encoding vehicle such as an RF tag, bar code or database
field. As such, a pure identity is an abstract name or number used to identify an entity.
A pure identity consists of the information required to uniquely identify a specific
entity, and no more.

• Identity URI -- a representation of a pure identity as a Uniform Resource Identifier
(URI). A URI is a character string representation that is commonly used to exchange
identity data between software components of a larger system.

• Encoding -- a pure identity, together with additional information such as filter value,
rendered into a specific syntax (typically consisting of value fields of specific sizes). A
given pure identity may have a number of possible encodings, such as a Barcode
Encoding, various Tag Encodings, and various URI Encodings. Encodings may also
incorporate additional data besides the identity (such as the Filter Value used in some
encodings), in which case the encoding scheme specifies what additional data it can
hold.

• Physical Realization of an Encoding -- an encoding rendered in a concrete
implementation suitable for a particular machine-readable form, such as a specific kind

Physical Realization Layer

Encoding Layer

Identity
Namespace

Additional
Information

Realization

Encoding
Procedure

Identity URN

URI Encoding

Realization

Tag Encoding

Identity
Namespace
 Identity

Encoding
Procedure

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 12 of 120

317
318

319
320
321
322

323
324
325

326
327
328
329
330
331
332

334
335

337
338
339
340
341

342
343
344
345

346
347
348
349
350

351
352
353

of RF tag or specific database field. A given encoding may have a number of possible
physical realizations.

For example, the Serial Shipping Container Code (SSCC) format as defined by the GS1
System is an example of a pure identity. An SSCC encoded into the EPC-SSCC 96-bit
format is an example of an encoding. That 96-bit encoding, written onto a UHF Class 1 RF
Tag, is an example of a physical realization.

A particular encoding scheme may implicitly impose constraints on the range of identities
that may be represented using that encoding. In general, each encoding scheme specifies
what constraints it imposes on the range of identities it can represent.

Conversely, a particular encoding scheme may accommodate values that are not valid with
respect to the underlying pure identity type, thereby requiring an explicit constraint. For
example, the EPC-SSCC 96-bit encoding provides 24 bits to encode a 7-digit company
prefix. In a 24-bit field, it is possible to encode the decimal number 10,000,001, which is
longer than 7 decimal digits. Therefore, this does not represent a valid SSCC, and is
forbidden. In general, each encoding scheme specifies what limits it imposes on the value
that may appear in any given encoded field.

2.1 Pure Identities 333
This section defines the pure identity types for which this document specifies encoding
schemes.

2.1.1 General Types 336
This version of the EPC Tag Data Standards defines one general identity type. The General
Identifier (GID-96) is independent of any known, existing specifications or identity schemes.
The General Identifier is composed of three fields - the General Manager Number, Object
Class and Serial Number. Encodings of the GID include a fourth field, the header, to
guarantee uniqueness in the EPC namespace.

The General Manager Number identifies an organizational entity (essentially a company,
manager or other organization) that is responsible for maintaining the numbers in subsequent
fields – Object Class and Serial Number. EPCglobal assigns the General Manager Number to
an entity, and ensures that each General Manager Number is unique.

The Object Class is used by an EPC managing entity to identify a class or “type” of thing.
These object class numbers, of course, must be unique within each General Manager
Number domain. Examples of Object Classes could include case Stock Keeping Units of
consumer-packaged goods or different structures in a highway system, like road signs,
lighting poles, and bridges, where the managing entity is a County.

Finally, the Serial Number code, or serial number, is unique within each object class. In
other words, the managing entity is responsible for assigning unique, non-repeating serial
numbers for every instance within each object class.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 13 of 120

355
356

357
358

359
360
361
362
363
364
365
366
367

368
369
370
371
372
373
374
375
376
377
378

379
380
381
382

383
384
385

387
388
389
390
391

2.1.2 GS1 System Identity Types 354
This version of the EPC Tag Data Standards defines seven EPC identity types derived from
the GS1 System family of product codes, each described in the subsections below.

The rules regarding the usage of the GS1 codes can be found in the GS1 General
Specifications. This document only explains the incorporation of these numbers in EPC tags.

GS1 System codes have a common structure, consisting of a fixed number of decimal digits
that encode the identity, plus one additional “check digit” which is computed algorithmically
from the other digits. Within the non-check digits, there is an implicit division into two
fields: a Company Prefix assigned by GS1 to a managing entity, and the remaining digits,
which are assigned by the managing entity. (The digits apart from the Company Prefix are
called by a different name by each of the GS1 System codes.) The number of decimal digits
in the Company Prefix varies from 6 to 12 depending on the particular Company Prefix
assigned. The number of remaining digits therefore varies inversely so that the total number
of digits is fixed for a particular GS1 System code type.

The GS1 recommendations for the encoding of GS1 System identities into bar codes, as well
as for their use within associated data processing software, stipulate that the digits
comprising a GS1 System code should always be processed together as a unit, and not parsed
into individual fields. This recommendation, however, is not appropriate within the EPC
Network, as the ability to divide a code into the part assigned to the managing entity (the
Company Prefix in GS1 System types) versus the part that is managed by the managing
entity (the remainder) is essential to the proper functioning of the Object Name Service
(ONS). In addition, the ability to distinguish the Company Prefix is believed to be useful in
filtering or otherwise securing access to EPC-derived data. Hence, the EPC Tag Encodings
for GS1 code types specified herein deviate from the aforementioned recommendations in
the following ways:

• EPC Tag Encodings carry an explicit division between the Company Prefix and the
remaining digits, with each individually encoded into binary. Hence, converting from
the traditional decimal representation of a GS1 System code and an EPC Tag Encoding
requires independent knowledge of the length of the Company Prefix.

• EPC Tag Encodings do not include the check digit. Hence, converting from an EPC Tag
Encoding to a traditional decimal representation of a code requires that the check digit
be recalculated from the other digits.

2.1.2.1 Serialized Global Trade Item Number (SGTIN) 386
The Serialized Global Trade Item Number is a new identity type based on the GS1 Global
Trade Item Number (GTIN) code defined in the GS1 General Specifications. A GTIN by
itself does not fit the definition of an EPC pure identity, because it does not uniquely identify
a single physical object. Instead, a GTIN identifies a particular class of object, such as a
particular kind of product or SKU.

All representations of SGTIN support the full 14-digit GTIN format. This means that the zero 392
indicator-digit and leading zero in the Company Prefix for GTIN-12, and the zero indicator-393
digit for GTIN-13, can be encoded and interpreted accurately from an EPC Tag Encoding. 394

GTIN-8 is not currently supported in EPC, but would be supported in full 14-digit GTIN 395
format as well. 396

397
398
399
400

401

402
403

404
405
406
407

408
409

410

To create a unique identifier for individual objects, the GTIN is augmented with a serial
number, which the managing entity is responsible for assigning uniquely to individual object
classes. The combination of GTIN and a unique serial number is called a Serialized GTIN
(SGTIN).

The SGTIN consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GTIN decimal code.

• The Item Reference, assigned by the managing entity to a particular object class. The
Item Reference for the purposes of EPC Tag Encoding is derived from the GTIN by
concatenating the Indicator Digit of the GTIN and the Item Reference digits, and
treating the result as a single integer.

• The Serial Number, assigned by the managing entity to an individual object. The serial
number is not part of the GTIN code, but is formally a part of the SGTIN.

 411
412

413
414
415
416
417
418
419
420
421
422
423

424
425
426
427
428

Figure C. How the parts of the decimal SGTIN are extracted, rearranged, and augmented for
encoding.

The SGTIN is not explicitly defined in the GS1 General Specifications. However, it may be
considered equivalent to a GS1-128 bar code that contains both a GTIN (Application
Identifier 01) and a serial number (Application Identifier 21). GS1-128 and the term
Application Identifier (AI) and the associated data structures and applications are defined in
the Section 8 reference [GS1GS]. Serial numbers in AI 21 consist of one to twenty
characters, where each character can be a digit, uppercase or lowercase letter, or one of a
number of allowed punctuation characters. The complete set of characters allowed is
illustrated in Appendix F. The complete AI 21 syntax is supported by the pure identity URI
syntax specified in Section 4.3.1.

When representing serial numbers in 96-bit tags, however, only a subset of the serial
numbers allowed in the GS1 General Specifications for Application Identifier 21 are
permitted. Specifically, the permitted serial numbers are those consisting of one or more
digits with no leading zeros, and whose value when considered as an integer fits within the
range restrictions of the 96-bit tag encodings.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 14 of 120

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 15 of 120

429
430
431
432

433
434
435

While these limitations exist for 96-bit tag encodings, other tag encodings allow a wider
range of serial numbers. Therefore, application authors and database designers should take
the GS1 specifications for Application Identifier 21 into account in order to accommodate
the full range of allowed serial numbers.

For the requirement of using longer serial number, or alphabet and other non numeric
codings allowed in Application Identifier 21, this specification includes a 198-bit tag
encoding for SGTIN.

Explanation (non-normative): The restrictions are necessary for 96-bit tags in order for 436
serial numbers to fit within the small number of bits available in commonly available 96-bit 437
tags. The serial number range is restricted to numeric values and alphanumeric serial 438
numbers are disallowed. Leading zeros are forbidden so that the serial number can be 439
considered as a decimal integer when encoding the integer value in binary. By considering 440
it to be a decimal integer, "00034", "034", or "34" (for example) can’t be distinguished as 441
different integer values. In order to insure that every encoded value can be decoded 442
uniquely, serial numbers can't have leading zeros. Then, when the bits 443
0000000000000000000010010 on the tag are seen, the serial number as "34" (not "034" or 444
"00034") is decoded. 445

447
448
449

2.1.2.2 Serial Shipping Container Code (SSCC) 446
The Serial Shipping Container Code (SSCC) is defined by the GS1 General Specifications.
Unlike the GTIN, the SSCC is already intended for assignment to individual objects and
therefore does not require any additional fields to serve as an EPC pure identity.

Note (Non-Normative): Many applications of SSCC have historically included the 450
Application Identifier (00) in the SSCC identifier field when stored in a database. This is not 451
a standard requirement, but a widespread practice. The Application Identifier is a sort of 452
header used in bar code applications, and can be inferred directly from EPC headers 453
representing SSCC. In other words, an SSCC EPC can be interpreted as needed to include 454
the (00) as part of the SSCC identifier or not. 455

456

457
458

459
460
461
462

463

The SSCC consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 SSCC decimal code.

• The Serial Reference, assigned uniquely by the managing entity to a specific shipping
unit. The Serial Reference for the purposes of EPC Tag Encoding is derived from the
SSCC by concatenating the Extension Digit of the SSCC and the Serial Reference
digits, and treating the result as a single integer.

 464
465

467
468

469
470
471
472

473
474
475

476
477
478
479

480

481
482

483
484

485

486
487
488

489

Figure D. How the parts of the decimal SSCC are extracted and rearranged for encoding.

2.1.2.3 Serialized Global Location Number (SGLN) 466
The Global Location Number (GLN) is defined by the GS1 General Specifications as an
identifier of physical or legal entities.

A GLN can represent either a discrete, unique physical location such as a dock door or a
warehouse slot, or an aggregate physical location such as an entire warehouse. In addition, a
GLN can represent a logical entity such as an “organization” that performs a business
function such as placing an order.

Within the GS1 system, high capacity data carriers use Application Identifiers (AI) to
distinguish data elements encoded within a single data carrier. The GLN can be associated
with many AI’s including physical location, ship to location, invoice to location etc.

Recognizing these variables, the EPC SGLN (serialized GLN) represents only the physical
location sub-type of GLN AI (414). The serial component is represented by the GLN
Extension AI (254). Rules regarding the allocation of a SGLN can be found within the GS1
General Specifications.

The SGLN consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GLN decimal code.

• The Location Reference, assigned uniquely by the managing entity to an aggregate or
specific physical location.

• The GLN Extension, assigned by the managing entity to an individual unique location.

 The use of the GLN Extension is intended for internal purposes. For communication
between trading partners a GLN will be used. The rules defining the use of the
SGLN are described in Section 3.7.

.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 16 of 120

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 17 of 120

490
491

492
493
494
495
496
497
498

499
500
501
502
503

504
505
506
507

508
509
510

SGLN Bit-level Encoding Company Prefix

Company Prefix

Location Reference

Location Reference Check
Digit

Extension
Component

Extension
Component

GLN Identity Structure

Figure E. How the parts of the decimal SGLN are extracted and rearranged for encoding

The SGLN is not explicitly defined in the GS1 General Specifications. However, it may be
considered equivalent to a GS1-128 bar code that contains both a GLN (Application
Identifier 414) and an Extension Component (Application Identifier 254). Extension
Components in AI 254 consist of one to twenty characters, where each character can be a
digit, uppercase or lowercase letter, or one of a number of allowed punctuation characters.
The complete set of characters allowed is illustrated in Appendix F. The complete AI 254
syntax is supported by the pure identity URI syntax specified in Section 4.3.1.

When representing Extension Components in 96-bit tags, however, only a subset of the
Extension Component allowed in the GS1 General Specifications for Application Identifier
254 is permitted. Specifically, the permitted Extension Component are those consisting of
one or more digits characters, with no leading zeros, and whose value when considered as an
integer fits within the range restrictions of the 96-bit tag encodings.

While these limitations exist for 96-bit tag encodings, other tag encodings allow a wider
range of Extension Component. Therefore, application authors and database designers
should take the GS1 specifications for Application Identifier 254 into account in order to
accommodate the full range of allowed extension components.

For the requirement of using a longer Extension Component, or alphabet and other non
numeric codings allowed in Application Identifier 254, this specification includes a 195-bit
tag encoding for SGLN.

Explanation (non-normative): The restrictions are necessary for 96-bit tags in order for the 511
Extension Component to fit within the small number of bits available in commonly available 512
96-bit tags. The Extension Component range is restricted to numeric values and an 513
alphanumeric Extension Component is disallowed. Leading zeros are forbidden so that the 514
Extension Component can be considered as a decimal integer when encoding the integer 515
value in binary. By considering it to be a decimal integer, "00034", "034", or "34" (for 516
example) can’t be distinguished as different integer values. In order to insure that every 517
encoded value can be decoded uniquely, Extension Components can't have leading zeros. 518
Then, when the bits 0000000000000000000010010 occurs on the tag, the Extension 519
Component as "34" (not "034" or "00034") is decoded. 520

521 .

2.1.2.4 Global Returnable Asset Identifier (GRAI) 522

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 18 of 120

523
524
525

526

527

528
529

530

531
532
533
534
535
536
537

The Global Returnable Asset Identifier is (GRAI) is defined by the GS1 General
Specifications. Unlike the GTIN, the GRAI is already intended for assignment to individual
objects and therefore does not require any additional fields to serve as an EPC pure identity.

The GRAI consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GRAI decimal code.

• The Asset Type, assigned by the managing entity to a particular class of asset.

• The Serial Number, assigned by the managing entity to an individual object. The GRAI-
96 representation is only capable of representing a subset of Serial Numbers allowed in
the GS1 General Specifications. Specifically, only those Serial Numbers consisting of
one or more digits, with no leading zeros, are permitted [see Appendix E for details].
For the requirement of using longer serial number, or alphabet and other non numeric
codings allowed in Application Identifier 8003, this version of specification includes
longer bit encoding format GRAI-170.

 538
539

541
542
543

544

545

546
547

548
549
550
551
552
553

Figure F. How the parts of the decimal GRAI are extracted and rearranged for encoding.

2.1.2.5 Global Individual Asset Identifier (GIAI) 540
The Global Individual Asset Identifier (GIAI) is defined by the GS1 General Specifications.
Unlike the GTIN, the GIAI is already intended for assignment to individual objects and
therefore does not require any additional fields to serve as an EPC pure identity.

The GIAI consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GIAI decimal code.

• The Individual Asset Reference, assigned uniquely by the managing entity to a specific
asset. The GIAI-96 representation is only capable of representing a subset of Individual
Asset References allowed in the GS1 General Specifications. Specifically, only those
Individual Asset References consisting of one or more digits, with no leading zeros, are
permitted.
For the requirement of using longer serial number, or alphabet and other non numeric

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 19 of 120

554
555

codings allowed in Application Identifier 8004, this version of specification includes
the longer bit encoding format GIAI-202.

 556
557

559
560
561

Figure G. How the parts of the decimal GIAI are extracted and rearranged for encoding.

2.1.2.6 Global Service Relation Number (GSRN) 558
The Global Service Relation Number (GSRN) is defined by the GS1 General Specifications.
Unlike the GTIN, the GSRN is already intended for assignment to individual objects and
therefore does not require any additional fields to serve as an EPC pure identity.

Note (Non-Normative): Many applications of GSRN have historically included the 562
Application Identifier (8018) in the GSRN identifier field when stored in a database. This is 563
not a standard requirement, but a widespread practice. The Application Identifier is a sort of 564
header used in bar code applications, and can be inferred directly from EPC headers 565
representing GSRN. In other words, a GSRN EPC can be interpreted as needed to include 566
the (8018) as part of the GSRN identifier or not. 567

568

569
570

571
572
573
574

575

576
577

578

579

The GSRN consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GSRN decimal code.

• The Service Reference, assigned uniquely by the managing entity to identify a specific
Service Relation. The Service Reference for the purposes of EPC Tag Encoding is
derived from the GSRN Serial Reference digits, and treating the result as a single
integer.

Company Prefix Service Reference

Company Prefix
GSRN Identity Structure Check

Digit
Service Reference

GSRN Bit-Level Encoding

Figure H. How the parts of the decimal GSRN are extracted and rearranged for encoding.

2.1.2.7 Global Document Type Identifier (GDTI) 580

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 20 of 120

581
582
583

584

585

586
587

588

589
590
591
592
593
594
595
596

597

598
599

601

602
603
604
605
606
607

The Global Document Type Identifier (GDTI) is defined by the GS1 General Specifications.
Unlike the GTIN, the GDTI is already intended for assignment to individual objects and
therefore does not require any additional fields to serve as an EPC pure identity.

The GDTI consists of the following information elements:

• The Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the
same as the Company Prefix digits within a GS1 GRAI decimal code.

• The Document Type, assigned by the managing entity to a particular type of document.

• The Serial Number, optionally assigned by the managing entity to an individual
document. The GDTI-96 representation is only capable of representing a subset of
Serial Numbers allowed in the GS1 General Specifications. Specifically, only those
Serial Numbers consisting of one or more digits, with no leading zeros, are permitted
[see Appendix E for details].
For the requirement of using longer numeric serial numbers, or numeric codings
allowed in Application Identifier 253, this specification includes a 113-bit tag encoding
for GDTI.

•

GDTI Bit-Level

Company Prefix
GDTI Identity
Structure Document Type Check

Digit

Document Type

Serial Number

Serial Number Company Prefix

Figure I. How the parts of the decimal GDTI are extracted and rearranged for encoding.

2.1.3 DoD Identity Type 600
The DoD Construct identifier is defined by the United States Department of Defense.

This tag data construct may be used to encode 96-bit Class 1 tags for shipping goods to the
United States Department of Defense by a supplier who has already been assigned a CAGE
(Commercial and Government Entity) code.
At the time of this writing, the details of what information to encode into these fields is
explained in a document titled "United States Department of Defense Supplier's Passive
RFID Information Guide" that can be obtained at the United States Department of Defense's
website http://www.dodrfid.org/supplierguide.htm . 608

610
611

3 EPC Tag Bit-level Encodings 609
The general structure of EPC Tag Encodings on a tag is as a string of bits (i.e., a binary
representation), consisting of a fixed length (8-bits) header followed by a series of numeric

http://www.dodrfid.org/supplierguide.htm

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 21 of 120

612
613
614

615

617
618
619
620
621
622

fields (Figure J) whose overall length, structure, and function are completely determined by
the header value. For future expansion purpose, a header value of 11111111 is defined, to
indicate that longer header beyond 8-bits is used.

Figure J. The general structure of EPC encodings is as a string of bits, consisting
of a fixed length header followed by a series of value fields, whose overall
length, structure, and function are completely determined by the header value.

He ader Numbers

3.1 Headers 616
As previously stated, the Header defines the overall length, identity type, and structure of the
EPC Tag Encoding. Headers defined in this version of the Tag Data Standard are eight bits
in length. The value of 11111111 in the header bits, however, is reserved for future
expansion of header space, so that more than 256 headers may be accommodated by using
longer headers. Therefore, the present specification provides for up to 255 8-bit headers, plus
a currently undetermined number of longer headers.

Back-compatibility note (non-normative) In a prior version of the Tag Data Standard, the 623
header was of variable length, using a tiered approach in which a zero value in each tier 624
indicated that the header was drawn from the next longer tier. For the encodings defined in 625
the earlier specification, headers were either 2 bits or 8 bits. Given that a zero value is 626
reserved to indicate a header in the next longer tier, the 2-bit header had 3 possible values 627
(01, 10, and 11, not 00), and the 8-bit header had 63 possible values (recognizing that the 628
first 2 bits must be 00 and 00000000 is reserved to allow headers that are longer than 8 bits). 629
The 2-bit headers were only used in conjunction with certain 64-bit EPC Tag Encodings. 630

In this version of the Tag Data Standard, the tiered header approach has been abandoned. 631
Also, all 64-bit encodings (including all encodings that used 2-bit headers) have been 632
deprecated, and should not be used in new applications. To facilitate an orderly transition, 633
the portions of header space formerly occupied by 64-bit encodings are reserved in this 634
version of the Tag Data Standard, with the intention that they be reclaimed after a “sunset 635
date” has passed. After the “sunset date,” tags containing 64-bit EPCs with 2-bit headers 636
and tags with 64-bit headers starting with 00001 will no longer be properly interpreted. 637

638
639
640
641

Fourteen encoding schemes have been defined in this version of the EPC Tag Data Standard,
as shown in Table 1 below. The table also indicates header values that are currently
unassigned, as well as header values that have been reserved to allow for an orderly “sunset”
of 64-bit encodings defined in prior versions of the EPC Tag Data Standard. These will not

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 22 of 120

642
643

be available for assignment until after the “sunset date” has passed. The “sunset date” as
published by EPCglobal July 1, 2006 is July 1, 2009.

Header Value
(binary)

Header
Value
(hex)

Encoding
Length

(bits)

Encoding Scheme

0000 0000 00 NA Unprogrammed Tag

0000 0001
0000 001x
0000 01xx

01

02,03

04,05

06,07

NA

NA

NA

NA

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

0000 1000 08 64 Reserved until 64bit Sunset <SSCC-64>

0000 1001 09 64 Reserved until 64bit Sunset <SGLN-64>

0000 1010 0A 64 Reserved until 64bit Sunset <GRAI-64>

0000 1011 0B 64 Reserved until 64bit Sunset <GIAI-64>

0000 1100
to
0000 1111

0C

to

0F

 Reserved until 64 bit Sunset

Due to 64 bit encoding rule in Gen 1

0001 0000
to
0010 1011

10

to

2B

NA

NA

Reserved for Future Use

0010 1100 2C 96 GDTI-96

0010 1101 2D 96 GSRN-96

0010 1110 2E 96 Reserved for Future Use

0010 1111 2F 96 DoD-96

0011 0000 30 96 SGTIN-96

0011 0001 31 96 SSCC-96

0011 0010 32 96 SGLN-96

0011 0011 33 96 GRAI-96

0011 0100 34 96 GIAI-96

0011 0101 35 96 GID-96

0011 0110 36 198 SGTIN-198

0011 0111 37 170 GRAI-170

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 23 of 120

Header Value
(binary)

Header
Value
(hex)

Encoding
Length

(bits)

Encoding Scheme

0011 1000 38 202 GIAI-202

0011 1001 39 195 SGLN-195

0011 1010 3A 113 GDTI-113

0011 1011
to
0011 1111

3B

to

3F

 Reserved for future Header values

0100 0000
to
0111 1111

40

to

7F

 Reserved until 64 bit Sunset

1000 0000
to
1011 1111

80

to

BF

64 Reserved until 64 bit Sunset <SGTIN-64>

(64 header values)

1100 0000
to
1100 1101

C0

to

CD

 Reserved until 64 bit Sunset

1100 1110 CE 64 Reserved until 64 bit Sunset <DoD-64>

1100 1111
to
1111 1110

CF

to

FE

 Reserved until 64 bit Sunset

1111 1111 FF NA Reserved for future headers longer than 8 bits

 Table 1. Electronic Product Code Headers 644
645

646

648
649

650
651
652

3.2 Use of EPCs on UHF Class 1 Generation 2 Tags 647
This section defines how the Electronic Product Code is encoded onto RFID tags conforming
to the Gen 2 Specification.

In the Gen 2 Specification, the tag memory is separated into four distinct banks, each of
which may comprise one or more memory words, where each word is 16 bits long. These
memory banks are described as “Reserved”, “EPC”, “TID” and “User”. The “Reserved”

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 24 of 120

653
654
655
656

657
658
659
660
661
662

664
665

666
667
668

669

670
671

672
673

674

675
676
677
678

679
680
681

682
683
684
685

686
687
688
689
690
691

memory bank contains kill and access passwords, the “EPC” memory bank contains data
used for identifying the object to which the tag is or will be attached, the “TID” memory
bank contains data that can be used by the reader to identify the tag’s capability, and “User”
memory bank is intended to contain user-specific data.

This version of the Tag Data Standards specifies normatively how Electronic Product Codes
(EPC) are encoded in the EPC memory bank of Gen 2 Tags. It is anticipated that EPCs may
also be used in the User memory bank, but such use is not addressed in this version of the
specification. Normative descriptions for encoding of the Reserved and User memory bank
will be addressed in future versions of this specification. For encodings of the TID memory
bank refer to the Gen 2 Specification.

3.2.1 EPC Memory Contents 663
The EPC memory bank of a Gen 2 Tag holds an EPC, plus additional control information.
The complete contents of the EPC memory bank consist of:

• CRC-16 (16 bits) Bits that represent the error check code and are auto-calculated by the
Tag. (For further details of the CRC, refer to UHF Class 1 Generation 2 Tag Protocol
specification Section 6.3.2.1.3)

• Protocol-Control (PC) (16 bits total) which is subdivided into:

• Length (5 bits) Represents the number of 16-bit words comprising the PC field and
the EPC field (below). See discussion below for the encoding of this field.

• Reserved for Future Use (RFU) (2 bits) Always zero in the current version of the
UHF Class 1 Generation 2 Tag Protocol Specification.

• Numbering System Identifier (NSI) (9 bits total) which is further subdivided into:

• Toggle bit (1 bit) Boolean flag indicating whether the next 8 bits of the NSI
represents reserved memory or an ISO 15961 Application Family Identifier (AFI).
If set to “zero” indicates that the NSI contains reserved memory, if set to “one”
indicates that the NSI contains an ISO AFI.

• Reserved/AFI (8 bits) Based on the value of the Toggle Bit above, these 8 bits
are either Reserved and must all be set to zero, or contain an AFI whose value is
defined under the authority of ISO.

• EPC (variable length) When the Toggle Bit is set to zero, an EPC Tag Encoding as
defined in the remaining sections of this chapter is contained here. When the Toggle
Bit is set to “one”, these bits are part of a non-EPC coding scheme identified by the
AFI field (see above) whose interpretation is outside the scope of this specification.

• Zero fill (variable length) If there is any additional memory beyond EPC Tag Encoding
required to meet the 16 bit word boundaries specified in Gen 2 Specification, it is filled
with zeros. An implementation shall not put any data into EPC memory following the
EPC Tag Encoding and any required zero fill (15 bits or less); if it does, it is not in
compliance with the specification and risks the possibility of incompatibility with a
future version of the spec.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 25 of 120

692

693
694
695

696
697

698

699
700

701
702

704
705
706
707
708

709
710
711
712
713

714
715
716
717
718

The following figure depicts the complete contents of the EPC bank of a Gen 2 Tag,
including the EPC and the surrounding control information, when an EPC is encoded into the
EPC bank:

x00
x10

x14
x15

x16
x17

x18 x1F
x20

xF

CRC Length

RFU – always zero

Toggle – always zero for EPC

EPC Tag
Encoding

Zero Fill
to the
word

boundary

Reserved
/AFI

PC

NSI

 always zero for EPC

Figure K. Complete contents of EPCmemory bank of a Gen 2 Tag.

Except for the 16 bit CRC it is the responsibility of the application or process
communicating with the reader to provide all the bits to encode in the EPC memory bank.

The complete contents of the EPC are defined by the remaining subsections within this
chapter.

3.2.2 The Length Bits 703
The length field is used to let a reader know how much of the EPC memory is occupied with
valid data. The value of the length field is the number of 16-bit segments occupied with
valid data, not including the CRC, minus one. For example, if set to ‘000000’, the length
field indicates that valid data extends through bit x1F, if set to ‘00001’, the length field
indicates that valid data extends through bit x2F, and so on.

When a Gen 2 Tag contains an EPC Tag Encoding in the EPC bank, the length field is
normally set to the smallest number that would contain the particular kind of EPC Tag
Encoding in use. Specifically, if the EPC bank contains an N-bit EPC Tag Encoding, then
the length field is normally set to N/16, rounded up to the nearest integer. For example, with
a 96-bit EPC Tag Encoding, the length field is normally set to 6 (00110 in binary).

It is important to note that the length of the EPC Tag Encoding is indicated by the EPC
header, not by the length field in the PC bits. This is necessarily so, because the length field
indicates only the nearest multiple of 16 bits, but the actual amount of EPC memory
consumed by the EPC Tag Encoding does not necessarily fall on a multiple-of-16-bit
boundary.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 26 of 120

719
720
721
722
723
724

725

727
728

729

730
731
732
733
734
735
736
737

738
739
740

741
742

743
744

745
746
747

Moreover, there are applications in which the length field may be set to a different value than
the one determined by the formula above. For example, there may be applications in which
the EPC is not written to the EPC bank in one operation, but where a prefix of the EPC is
written in one operation (perhaps excluding the serial number) and subsequently the
remainder of the EPC is written. In such an application, a length field smaller than the
normal value might be used to indicate that the EPC is incompletely written.

3.3 Notational Conventions 726
In the remainder of this section, EPC Tag Encoding schemes are depicted using the
following notation (See Table 2).

*Max. decimal value range of Item Reference field varies with the length of the Company Prefix

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 3 3 20-40 24-4 38 SGTIN-96

0011
0000
(Binary
value)

(Refer to
Table 5
for
values)

(Refer to
Table 6
for
values)

999,999 –
999,999,9
99,999
(Max.
decimal
range*)

9,999,999
– 9
(Max.
decimal
range*)

274,877,906
,943
(Max.
decimal
value)

Table 2. Example of Notation Conventions.

The first column of the table gives the formal name for the encoding. The remaining
columns specify the layout of each field within the encoding. The field in the leftmost
column occupies the most significant bits of the encoding (this is always the header field),
and the field in the rightmost column occupies the least significant bits. Each field is a non-
negative integer, encoded into binary using a specified number of bits. Any unused bits (i.e.,
bits not required by a defined field) are explicitly indicated in the table, so that the columns
in the table are concatenated with no gaps to form the complete binary encoding.

Reading down each column, the table gives the formal name of the field, the number of bits
used to encode the field’s value, and the value or range of values for the field. The value
may represent one of the following:

• The value of a binary number indicated by (Binary value), as is the case for the
Header field in the example table above

• The maximum decimal value indicated by (Max. decimal value) of a fixed length
field. This is calculated as 2^n – 1, where n = the fixed number of bits in the field.

• A range of maximum decimal values indicated by (Max. decimal range). This range
is calculated using the normative rules expressed in the related encoding procedure
section

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 27 of 120

748

749
750
751
752
753
754

755
756

757
758
759

761
762
763
764

765

• A reference to a table that provides the valid values defined for the field.

In some cases, the number of possible values in one field depends on the specific value
assigned to another field. In such cases, a range of maximum decimal values is shown. In the
example above, the maximum decimal value for the Item Reference field depends on the
length of the Company Prefix field; hence the maximum decimal value is shown as a range.
Where a field must contain a specific value (as in the Header field), the last row of the table
specifies the specific value rather than the number of possible values.

Some encodings have fields that are of variable length. The accompanying text specifies
how the field boundaries are determined in those cases.

Following an overview of each encoding scheme are a detailed encoding procedure and
decoding procedure. The encoding and decoding procedure provide the normative
specification for how each type of encoding is to be formed and interpreted.

3.4 General Identifier (GID-96) 760
The General Identifier is defined for a 96-bit EPC, and is independent of any existing
identity specification or convention. In addition to the header which guarantees uniqueness
in the EPC namespace, the General Identifier is composed of three fields - the General
Manager Number, Object Class and Serial Number, as shown in Table 3.

 Header General
Manager

Number

Object Class Serial Number

8 28 24 36 GID-96

0011 0101
(Binary value)

268,435,455

(Max. decimal
value)

16,777,215

(Max. decimal
value)

68,719,476,735

 (Max. decimal
value)

Table 3. The General Identifier (GID-96) includes three fields in addition to the header – the
General Manager Number, Object class and Serial Number numbers.

766
767
768

771
772
773

• The Header is 8-bits, with a binary value of 0011 0101. 769

• The General Manager Number identifies essentially a company, manager or 770
organization; that is an entity responsible for maintaining the numbers in subsequent
fields – Object Class and Serial Number. EPCglobal assigns the General Manager
Number to an entity, and ensures that each General Manager Number is unique.

Note (non-normative): Currently, GS1 is only allocating an integer value in the range 774
from 95,100,000 to 95,199,999 for this number. 775

777
• The Object Class is used by an EPC managing entity to identify a class or “type” of thing. 776

These object class numbers, of course, must be unique within each General Manager

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 28 of 120

778
779

781
782

784

785

789

790
791
792

793
794

795
796
797

799

801

802

806

807

808

809

Number domain. Examples of Object Classes could include case Stock Keeping Units of
consumer-packaged goods and component parts in an assembly.

• The Serial Number code, or serial number, is unique within each object class. In other 780
words, the managing entity is responsible for assigning unique – non-repeating serial
numbers for every instance within each object class code.

3.4.1.1 GID-96 Encoding Procedure 783
The following procedure creates a GID-96 encoding.

Given:

• A General Manager Number M where 0 ≤ M < 228 786

• An Object Class C where 0 ≤ C < 224 787

• A Serial Number S where 0 ≤ S < 236 788

Procedure:

1. Construct the General Manager Number by considering digits d1d2…d8 to be a decimal
integer, M. If the value is outside the range specified above, stop: this GID cannot be
encoded as a valid GID-96

2. If the Object class and/or the Serial Number are provided with a value outside the
acceptable range specified above, stop: this GID cannot be encoded as a valid GID-96

3. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110101, General Manager Number M (28 bits),
Object Class C (24 bits), Serial Number S (36 bits).

3.4.1.2 GID-96 Decoding Procedure 798
Given:

• A GID-96 as a 96-bit string 00110101b87b86…b0 (where the first eight bits 00110101 are 800
the header)

Yields:

• A General Manager Number 803

• An Object Class 804

• A Serial Number 805

Procedure:

1. Bits b87b86…b60, considered as an unsigned integer, are the General Manager Number.

2. Bits b59b58…b36, considered as an unsigned integer, are the Object Class.

3. Bits b35b34…b0, considered as an unsigned integer, are the Serial Number.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 29 of 120

811
812
813

814

816
817

818
819

820

821

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

3.5 Serialized Global Trade Item Number (SGTIN) 810
The EPC Tag Encoding scheme for SGTIN permits the direct embedding of GS1 System
standard GTIN and Serial Number codes on EPC tags. In all cases, the check digit is not
encoded.

3.5.1 SGTIN-96 815
In addition to a Header, the SGTIN-96 is composed of five fields: the Filter Value, Partition,
Company Prefix, Item Reference, and Serial Number, as shown in Table 4.

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 3 3 20-40 24-4 38 SGTIN-96

0011
0000
(Binary
value)

(Refer to
Table 5
for
values)

(Refer to
Table 6
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

9,999,999
– 9

(Max.
decimal
range*)

274,877,906
,943

(Max.
decimal
value)

*Max. decimal value range of Company Prefix and Item Reference fields vary according to the contents of the

Partition field.

Table 4. The EPC SGTIN-96 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0000.

• Filter Value is not part of the SGTIN pure identity, but is additional data that is used for
fast filtering and pre-selection of basic logistics types. The normative specifications
for Filter Values are specified in Table 5. Values marked as “reserved” are reserved
for assignment by EPCglobal in future versions of this specification. Implementations
of the encoding and decoding rules specified below SHALL accept any value of the
filter bits, whether reserved or not. Applications, however, SHOULD NOT direct an
encoder to write a reserved value to a tag, nor rely upon a reserved value decoded from
a tag, as doing so may cause interoperability problems if a reserved value is assigned in
a future revision to this specification..
The value of 000 means “All Others”. That is, a filter value of 000 means that the
object to which the tag is affixed does not match any of the logistic types defined as
other filter values in this specification. It should be noted that tags conforming to
earlier versions of this specification, in which 000 was the only value approved for use,
will have filter value equal to 000, but following the ratification of this standard, the
filter value should be set to match the object to which the tag is affixed, and use 000
only if the filter value for such object does not exist in the specification.
A Standard Trade Item grouping represents all levels of packaging for logistical units.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 30 of 120

839
840
841

The Single Shipping / Consumer Trade item type should be used when the individual
item is also the logistical unit (e.g. Large screen television, Bicycle).

Type Binary Value

All Others 000

Retail Consumer Trade Item 001

Standard Trade Item Grouping 010

Single Shipping/ Consumer Trade Item 011

Inner Trade Item Grouping not to be sold at Point
of Sale

100

Reserved 101

Reserved 110

Reserved 111

Table 5. SGTIN Filter Values . 842

843
844
845
846
847
848
849

850

851
852
853
854
855
856
857

858
859
860
861
862
863
864
865
866

• Partition is an indication of where the subsequent Company Prefix and Item Reference
numbers are divided. This organization matches the structure in the GS1 GTIN in
which the Company Prefix added to the Item Reference number (prefixed by the single
Indicator Digit) totals 13 digits, yet the Company Prefix may vary from 6 to 12 digits
and the concatenation of single Indicator Digit and Item Reference from 7 to 1 digit(s).
The available values of Partition and the corresponding sizes of the Company Prefix
and Item Reference fields are defined in Table 6.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Item Reference contains a literal embedding of the GTIN Item Reference number. The
Indicator Digit is combined with the Item Reference field in the following manner:
Leading zeros on the item reference are significant. Put the Indicator Digit in the
leftmost position available within the field. For instance, 00235 is different than 235.
With the indicator digit of 1, the combination with 00235 is 100235. The resulting
combination is treated as a single integer, and encoded into binary to form the Item
Reference field.

• Serial Number contains a serial number. The SGTIN-96 encoding is only capable of
representing integer-valued serial numbers with limited range. The GS1 specifications
permit a broader range of serial numbers. The GS1-128 barcode symbology provides
for a 20-character alphanumeric serial number to be associated with a GTIN using
Application Identifier (AI) 21 [GS1GS]. It is possible to convert between the serial
numbers in the SGTIN-96 tag encoding and the serial numbers in AI 21 barcodes under
certain conditions. Specifically, such interconversion is possible when the
alphanumeric serial number in AI 21 happens to consist only of digits with no leading
zeros, and whose value when interpreted as an integer falls within the range limitations

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 31 of 120

867
868

869

of the SGTIN-96 tag encoding. These considerations are reflected in the encoding and
decoding procedures below.

Partition
Value

(P)

Company Prefix Indicator Digit and
Item Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

Table 6. SGTIN Partitions. 870

872

873

874

875

876
877

878

879

880
881
882
883
884

885
886

887
888

3.5.1.1 SGTIN-96 Encoding Procedure 871
The following procedure creates an SGTIN-96 encoding.

Given:

• A GS1 GTIN-14 consisting of digits d1d2…d14

• The length L of the Company Prefix portion of the GTIN

• A Serial Number S where 0 ≤ S < 238, or a GS1-128 Application Identifier 21 consisting
of characters s1s2…sK.

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 6) to determine the Partition Value, P, the number of bits M in the
Company Prefix field, and the number of bits N in the Item Reference and Indicator Digit
field. If L is not found in any row of Table 6, stop: this GTIN cannot be encoded in an
SGTIN-96.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering the
result to be a decimal integer, C.

3. Construct the Indicator Digit and Item Reference by concatenating digits
d1d(L+2)d(L+3)…d13 and considering the result to be a decimal integer, I.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 32 of 120

889
890
891
892
893
894
895
896
897

898
899
900
901

903

904
905

906

907

908

909

910

911

912
913

914
915

916
917
918
919

920
921
922
923

924
925

4. When the Serial Number is provided directly as an integer S where 0 ≤ S < 238, proceed to
Step 5. Otherwise, when the Serial Number is provided as a GS1-128 Application Identifier
21 consisting of characters s1s2…sK, construct the Serial Number by concatenating digits
s1s2…sK. If any of these characters is not a digit, stop: this Serial Number cannot be
encoded in the SGTIN-96 encoding. Also, if K > 1 and s1 = 0, stop: this Serial Number
cannot be encoded in the SGTIN-96 encoding (because leading zeros are not permitted
except in the case where the Serial Number consists of a single zero digit). Otherwise,
consider the result to be a decimal integer, S. If S ≥ 238, stop: this Serial Number cannot be
encoded in the SGTIN-96 encoding.

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110000 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Item Reference from
Step 3 (N bits), Serial Number S from Step 4 (38 bits). Note that M+N = 44 bits for all P.

3.5.1.2 SGTIN-96 Decoding Procedure 902
Given:

• An SGTIN-96 as a 96-bit bit string 00110000b87b86…b0 (where the first eight bits
00110000 are the header)

Yields:

• A GS1 GTIN-14

• A Serial Number

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGTIN-96.

3. Look up the Partition Value P in Table 6 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal SGTIN-
96 encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding
leading zeros as necessary to make up L digits in total.

5. Extract the Item Reference and Indicator by considering bits b(81-M) b(80-M)…b38 as an
unsigned integer. If this integer is greater than or equal to 10(13-L), stop: the input bit string
is not a legal SGTIN-96 encoding. Otherwise, convert this integer to a (13-L)-digit decimal
number i1i2…i(13-L), adding leading zeros as necessary to make (13-L) digits.

6. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 5, d2d3…d(L+1) = p1p2…pL
from Step 4, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 5.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 33 of 120

926
927

928

929

930
931
932

934
935

936
937

938

939

940
941
942
943
944
945
946
947
948

949
950
951
952
953

7. Calculate the check digit d14 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13) – (d2 + d4 + d6 + d8 +
d10 + d12)) mod 10.

8. The GS1 GTIN-14 is the concatenation of digits from Steps 6 and 7: d1d2…d14.

9. Bits b37b36…b0, considered as an unsigned integer, are the Serial Number.

10. (Optional) If it is desired to represent the serial number as a GS1-128 Application
Identifier 21, convert the integer from Step 9 to a decimal string with no leading zeros. If the
integer in Step 9 is zero, convert it to a string consisting of the single character “0”.

3.5.2 SGTIN-198 933
In addition to a Header, the SGTIN-198 is composed of five fields: the Filter Value,
Partition, Company Prefix, Item Reference, and Serial Number, as shown in Table 7.

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 3 3 20-40 24-4 140 SGTIN-
198 0011

0110
(Binary
value)

(Refer to
Table 5
for
values)

(Refer to
Table 6
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

9,999,999
– 9

(Max.
decimal
range*)

Up to 20
alphanumeric
characters

*Max. decimal value range of Company Prefix and Item Reference fields vary according to the contents of the

Partition field.

Table 7. The EPC SGTIN-198 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0110.

• Filter Value is not part of the GTIN or EPC identifier, but is used for fast filtering and
pre-selection of basic logistics types. The normative Filter Values for 96-bit and 198-
bit GTIN are specified in Table 5. Values marked as “reserved” are reserved for
assignment by EPCglobal in future versions of this specification. Implementations of
the encoding and decoding rules specified below SHALL accept any value of the filter
bits, whether reserved or not. Applications, however, SHOULD NOT direct an
encoder to write a reserved value to a tag, nor rely upon a reserved value decoded from
a tag, as doing so may cause interoperability problems if a reserved value is assigned in
a future revision to this specification.

• Partition is an indication of where the subsequent Company Prefix and Item Reference
numbers are divided. This organization matches the structure in the GS1 GTIN in
which the Company Prefix added to the Item Reference number (prefixed by the single
Indicator Digit) totals 13 digits, yet the Company Prefix may vary from 6 to 12 digits
and the Item Reference (including the single Indicator Digit) from 7 to 1 digit(s). The

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 34 of 120

954
955

956

957
958
959
960
961
962
963

964
965
966
967

968

970

971

972

973

974

975

976

977
978
979
980
981

982
983

984
985

986
987
988
989
990

available values of Partition and the corresponding sizes of the Company Prefix and
Item Reference fields are defined in Table 6.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Item Reference contains a literal embedding of the GTIN Item Reference number. The
Indicator Digit is combined with the Item Reference field in the following manner:
Leading zeros on the item reference are significant. Put the Indicator Digit in the
leftmost position available within the field. For instance, 00235 is different than 235.
With the indicator digit of 1, the combination with 00235 is 100235. The resulting
combination is treated as a single integer, and encoded into binary to form the Item
Reference field.

• Serial Number contains a serial number. The SGTIN-198 encoding is capable of
representing alphanumeric serial numbers of up to 20 characters, permitting the full
range of serial numbers available in the GS1-128 barcode symbology using
Application Identifier (AI) 21 [GS1GS]. See Appendix F for permitted values.

3.5.2.1 SGTIN-198 Encoding Procedure 969
The following procedure creates an SGTIN-198 encoding.

Given:

• A GS1 GTIN-14 consisting of digits d1d2…d14

• The length L of the Company Prefix portion of the GTIN

• A GS1-128 Application Identifier 21 consisting of characters s1s2…sK, where K ≤ 20.

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 6) to determine the Partition Value, P, the number of bits M in the
Company Prefix field, and the number of bits N in the Item Reference and Indicator Digit
field. If L is not found in any row of Table 6, stop: this GTIN cannot be encoded in an
SGTIN-198.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering the
result to be a decimal integer, C.

3. Construct the Indicator Digit and Item Reference by concatenating digits
d1d(L+2)d(L+3)…d13 and considering the result to be a decimal integer, I.

4. . Check that each of the characters s1s2…sK is one of the 82 characters listed in the table
in Appendix F. If this is not the case, stop: this character string cannot be encoded as an
SGTIN-198. Otherwise construct the Serial Number by concatenating the 7-bit code, as
given in Appendix F, for each of the characters s1s2…sK, yielding 7K bits total. If K < 20,
concatenate additional zero bits to the right to make a total of 140 bits.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 35 of 120

991
992
993
994

996

997
998

999

1000

1001

1002

1003

1004

1005
1006

1007
1008

1009
1010
1011
1012

1013
1014
1015
1016

1017
1018

1019
1020

1021

1022
1023
1024
1025
1026
1027
1028

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110110 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Item Reference from
Step 3 (N bits) and Serial Number from Step 4 (140 bits). Note that M+N = 44 bits for all P.

3.5.2.2 SGTIN-198 Decoding Procedure 995
Given:

• An SGTIN-198 as a 198-bit bit string 00110110b189b188…b0 (where the first eight bits
00110110 are the header)

Yields:

• A GS1 GTIN-14

• A Serial Number

• A Filter Value

Procedure:

1. Bits b189b188b187, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b186b185b184 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGTIN-198.

3. Look up the Partition Value P in Table 6 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b183b182…b(184-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a legal
SGTIN-198 encoding. Otherwise, convert this integer into a decimal number p1p2…pL,
adding leading zeros as necessary to make up L digits in total.

5. Extract the Item Reference and Indicator by considering bits b(183-M) b(182-M)…b140 as an
unsigned integer. If this integer is greater than or equal to 10(13-L), stop: the input bit string
is not a legal SGTIN-198 encoding. Otherwise, convert this integer to a (13-L)-digit decimal
number i1i2…i(13-L), adding leading zeros as necessary to make (13-L) digits.

6. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 5, d2d3…d(L+1) = p1p2…pL
from Step 4, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 5.

7. Calculate the check digit d14 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13) – (d2 + d4 + d6 + d8 +
d10 + d12)) mod 10.

8. The GS1 GTIN-14 is the concatenation of digits from Steps 6 and 7: d1d2…d14.

9. Divide the remaining bits b139b138…b0 into 7-bit segments. The result should consist of K
non-zero segments followed by 20-K zero segments. If this is not the case, stop: this bit
string cannot be decoded as an SGTIN-198. Otherwise, look up each of the non-zero 7-bit
segments in Appendix F to obtain a corresponding character. If any of the non-zero 7-bit
segments has a value that is not in Appendix F, stop: this bit string cannot be decoded as an
SGTIN-198. Otherwise, the K characters so obtained, considered as a character string, is the
value of the GS1 AI 21.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 36 of 120

1029
1030

1031

1032

1034
1035

1037
1038

1039

1040
1041

1042

1043

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

10. The GS1 SGTIN-198 is the concatenation of the digits from Steps 6 and 7 and the
characters from Step 9. : d1d2…d14 s1s2…sK

3.6 Serial Shipping Container Code (SSCC) 1033
The EPC Tag Encoding scheme for SSCC permits the direct embedding of GS1 System
standard SSCC codes on EPC tags. In all cases, the check digit is not encoded.

3.6.1 SSCC-96 1036
In addition to a Header, the EPC SSCC-96 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Serial Reference, as shown in Table 8.

*Max. decimal value range of Company Prefix and Serial Reference fields vary according to the contents of the
Partition field.

 Header Filter
Value

Partition Company
Prefix

Serial
Reference

Unallocated

8 3 3 20-40 38-18 24 SSCC-96

0011
0001
(Binary
value)

(Refer to
Table 9
for
values)

(Refer to
Table 10
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

99,999,999
,999 –
99,999

(Max.
decimal
range*)

[Not Used]

Table 8. The EPC 96-bit SSCC bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0001.

• Filter Value is not part of the SSCC or EPC identifier, but is used for fast filtering and
pre-selection of basic logistics types. The normative specifications for Filter Values
are specified in Table 9. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification.
The value of 000 means “All Others”. That is, a filter value of 000 means that the
object to which the tag is affixed does not match any of the logistic types defined as
other filter values in the specification. It should be noted that tags conforming to earlier

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 37 of 120

1056
1057
1058
1059

versions of this specification, in which 000 was the only value approved for use, will
have filter value equal to 000, but following the ratification of this standard, the filter
value should be set to match the object to which the tag is affixed, and use 000 only if
the filter value for such object does not exist in the specification.

Type Binary Value

All Others 000

Undefined 001

Logistical / Shipping Unit 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 9. SSCC Filter Values 1060

1061
1062
1063
1064
1065
1066
1067

1068

• The Partition is an indication of where the subsequent Company Prefix and Serial
Reference numbers are divided. This organization matches the structure in the GS1
SSCC-18 in which the Company Prefix added to the Serial Reference number (prefixed
by the single Extension Digit) totals 17 digits, yet the Company Prefix may vary from 6
to 12 digits and the Serial Reference from 11 to 5 digits. Table 10 shows allowed
values of the partition value and the corresponding lengths of the company prefix and
serial reference.

Partition
Value

(P)

Company Prefix Extension Digit
and Serial
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 38 of 120

1069

1070

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1081
1082

1084

1085

1086

1087

1088

1089

1090
1091
1092
1093
1094

1095
1096

1097
1098

1099
1100
1101
1102

1104

Table 10. SSCC-96 Partitions.

• Company Prefix contains a literal embedding of the Company Prefix.

• Serial Reference is a unique number for each instance, comprised of the Extension Digit
and the Serial Reference. The Extension Digit is combined with the Serial Reference
field in the following manner: Leading zeros on the Serial Reference are significant.
Put the Extension Digit in the leftmost position available within the field. For instance,
000042235 is different than 42235. With the extension digit of 1, the combination with
000042235 is 1000042235. The resulting combination is treated as a single integer, and
encoded into binary to form the Serial Reference field. To avoid unmanageably large
and out-of-specification serial references, they should not exceed the capacity specified
in GS1 specifications, which are (inclusive of extension digit) 9,999 for company
prefixes of 12 digits up to 9,999,999,999 for company prefixes of 6 digits.

• Unallocated is not used. This field must contain zeros to conform to this version of the
specification.

3.6.1.1 SSCC-96 Encoding Procedure 1083
The following procedure creates an SSCC-96 encoding.

Given:

• An SSCC-18 consisting of digits d1d2…d18

• The length L of the Company Prefix portion of the SSCC

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 10) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Extension Digit and the Serial
Reference. If L is not found in any row of Table 10, stop: this SSCC cannot be encoded in
an SSCC-96.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering the
result to be a decimal integer, C.

3. Construct the Extension Digit and the Serial Reference by concatenating digits
d1d(L+2)d(L+3)…d17 and considering the result to be a decimal integer, S.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110001 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Serial Reference S
from Step 3 (N bits), and 24 zero bits. Note that M+N = 58 bits for all P.

3.6.1.2 SSCC-96 Decoding Procedure 1103
Given:

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 39 of 120

1105
1106

1107

1108

1109

1110

1111

1112
1113

1114
1115

1116
1117
1118
1119

1120
1121
1122
1123

1124
1125

1126
1127

1128

1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140

• An SSCC-96 as a 96-bit bit string 00110001b87b86…b0 (where the first eight bits
00110001 are the header)

Yields:

• An SSCC-18

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SSCC-96.

3. Look up the Partition Value P in Table 10 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal SSCC-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

5. Extract the Serial Reference by considering bits b(81-M) b(80-M)…b24 as an unsigned integer.
If this integer is greater than or equal to 10(17-L), stop: the input bit string is not a legal
SSCC-96 encoding. Otherwise, convert this integer to a (17-L)-digit decimal number
i1i2…i(17-L), adding leading zeros as necessary to make (17-L) digits.

6. Construct a 17-digit number d1d2…d17 where d1 = s1 from Step 5, d2d3…d(L+1) = p1p2…pL
from Step 4, and d(L+2)d(L+3)…d17 = i2 i3…i(17-L) from Step 5.

7. Calculate the check digit d18 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) – (d2 + d4
+ d6 + d8 + d10 + d12 + d14 + d16)) mod 10.

8. The SSCC-18 is the concatenation of digits from Steps 6 and 7: d1d2…d18.

3.7 Serialized Global Location Number (SGLN) 1129
The EPC Tag Encoding scheme for GLN permits the direct embedding of the GS1 System
standard GLN on EPC tags. GS1 has defined the GLN as AI (414) and has defined a GLN
Extension Component as AI (254). The AI (254) uses the Set of Characters defined in
Appendix F.

The use of the GLN Extension Component is intended for internal company purposes. For
communication between trading partners a GLN will be used. Trading partners can only use
the GLN Extension through mutual agreement but would have to establish an “out of band”
exchange of master data describing the extensions. If the GLN only encoding is used, then
the Extension Component shall be set to a fixed value of binary “0” for SGLN-96 and to
binary 0110000 followed by 133 binary “0” bits for SGLN-195 encoding as described in the
following SGLN procedures. In all cases the check digit is not encoded.

3.7.1 SGLN-96 1141

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 40 of 120

1142
1143

1144
1145

1146

1147

1148
1149
1150
1151
1152
1153
1154
1155
1156

In addition to a Header, the SGLN-96 is composed of five fields: the Filter Value, Partition,
Company Prefix, Location Reference, and Extension Component, as shown in Table 11.

 Header Filter
Value

Partition Company
Prefix

Location
Reference

Extension
Component

8 3 3 20-40 21-1 41 SGLN-96

0011
0010
(Binary
value)

(Refer to
Table 12
for
values)

(Refer to
Table 13
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

999,999,999,999(M
ax Decimal Value
allowed)

Minimum Decimal
value=1
Reserved=0
All bits shall be set
to 0 when an
Extension
Component is not
encoded signifying
GLN only.

*Max. decimal value range of Company Prefix and Location Reference fields vary according to contents of the
Partition field.

Table 11. The EPC SGLN-96 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0010.

• Filter Value is not part of the GLN or EPC identifier, but is used for fast filtering and
pre-selection of basic location types. The Filter Values for an SGLN-96 is shown in
Table 12 below. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification.

Type Binary Value

All Others 000

Physical Location 001

Reserved 010

Reserved 011

Reserved 100

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 41 of 120

Type Binary Value

Reserved 101

Reserved 110

Reserved 111

Table 12. SGLN Filter Values. 1157
1158

1159
1160
1161
1162
1163
1164
1165

1166

1167

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

1181

• Partition is an indication of where the subsequent Company Prefix and Location
Reference numbers are divided. This organization matches the structure in the GS1
GLN in which the Company Prefix added to the Location Reference number totals 12
digits, yet the Company Prefix may vary from 6 to 12 digits and the Location
Reference number from 6 to 0 digit(s). The available values of Partition and the
corresponding sizes of the Company Prefix and Location Reference fields are defined
in Table 13.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Location Reference, if present, encodes the GLN Location Reference number.

• Extension Component contains a serial number. If an Extension Component is not used
this value shall be set to a binary value of 0 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000. The SGLN-96 encoding is only capable of representing integer-
valued Extension Components with limited range. The GS1 specifications permit a
broader range of Extension Components. The GS1-128 barcode symbology provides
for a 20-character alphanumeric Extension Component to be associated with a GLN
using Application Identifier (AI) 254 [GS1GS]. It is possible to convert between the
Extension Component in the SGLN-96 tag encoding and the Extension Component in
AI 254 barcodes under certain conditions. Specifically, such interconversion is
possible when the alphanumeric Extension Component in AI 254 happens to consist
only of digits, with no leading zeros, and whose value when interpreted as an integer
falls within the range limitations of the SGLN-96 tag encoding. These considerations
are reflected in the encoding and decoding procedures below.

Partition
Value
(P)

Company Prefix Location Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 42 of 120

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 13. SGLN Partitions. 1182

1184

1185

1186

1187

1188
1189
1190

1191

1192

1193

1194
1195
1196
1197

1198
1199

1200
1201
1202

1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214

3.7.1.1 SGLN-96 Encoding Procedure 1183
The following procedure creates an SGLN-96 encoding.

Given:

• A GS1 GLN consisting of digits d1d2…d13

• The length L of the Company Prefix portion of the GLN

• An Extension Component S where 0 ≤ S < 240, or a GS1-128 Application Identifier 254
consisting of characters s1s2…sK, When the Extension Component S is 0, the Encoding
will be considered as a GLN only.

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 13) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Location Reference field. If L is
not found in any row of Table 13, stop: this GLN cannot be encoded in an SGLN-96.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the result
to be a decimal integer, C.

3. If L < 12 construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. If L = 12 set b41 to 0 since there is no
Location Reference digit.

4. When the Extension Component is provided directly as an integer S where 0 ≤ S < 240,
proceed to Step 5. Otherwise, when the Extension Component is provided as a GS1-128
Application Identifier 254 consisting of characters s1s2…sK, construct the Extension
Component by concatenating characters s1s2…sK. If any of these characters is not a digit,
stop: this Extension Component cannot be encoded in the SGLN-96 encoding. Also, if K >
1 and s1 = 0, stop: this Extension Component cannot be encoded in the SGLN-96 encoding
(because leading zeros are not permitted except in the case where the Extension Component
consists of a single zero digit). Otherwise, consider the result to be a decimal integer, S. If S
≥ 240, stop: this Extension Component cannot be encoded in the SGLN-96 encoding.

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110010 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Location Reference I

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 43 of 120

1215
1216

1218

1219
1220

1221

1222

1223

1224

1225

1226

1227
1228

1229
1230

1231
1232
1233
1234

1235
1236
1237
1238

1239
1240

1241
1242

1243

1244

1245
1246
1247
1248

from Step 3 (N bits) and Extension Component S from Step 4 (41 bits). Note that M+N =
41 bits for all P.

3.7.1.2 SGLN-96 Decoding Procedure 1217
Given:

• An SGLN-96 as a 96-bit bit string 00110010b87b86…b0 (where the first eight bits
00110010 are the header)

Yields:

• A GS1 GLN

• An Extension Component

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGLN-96.

3. Look up the Partition Value P in Table 13 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal SGLN-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

5. If L < 12 extract the Location Reference by considering bits b(81-M) b(80-M)…b41 as an
unsigned integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string
is not a legal SGLN-96 encoding. Otherwise, convert this integer to a (12−L)-digit decimal
number i1i2…i(12-L), adding leading zeros as necessary to make (12−L) digits.

6. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 4, and if L <
12 d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. The GS1 GLN is the concatenation of digits from Steps 6 and 7: d1d2…d13.

9. Bits b40b39…b0, considered as an unsigned integer, are the Extension Component.

10. (Optional) If it is desired to represent the Extension Component as a GS1-128
Application Identifier 254, convert the integer from Step 9 to a decimal string with no
leading zeros. If the integer in Step 9 is zero, convert it to a string consisting of the single
character “0”.

3.7.2 SGLN-195 1249

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 44 of 120

1250
1251

1252
1253

1254

1255

1256
1257
1258
1259
1260
1261
1262
1263
1264

1265
1266
1267
1268
1269
1270
1271

1272

1273

1274
1275
1276
1277

In addition to a Header, the SGLN-195 is composed of five fields: the Filter Value, Partition,
Company Prefix, Location Reference, and Extension Component, as shown in Table 14.

 Head
er

Filter
Value

Partition Company
Prefix

Location
Reference

Extension Component

8 3 3 20-40 21-1 140 SGLN-195

0011
1001
(Bina
ry
value
)

(Refer to
Table 12
for
values)

(Refer to
Table 13
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

Up to 20 alphanumeric
characters

If the Extension
Component is not used this
value must be set to
0110000 followed by 133
binary 0 bits.

*Max. decimal value range of Company Prefix and Location Reference fields vary according to contents of the
Partition field.

Table 14. The EPC SGLN-195 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 1001.

• Filter Value is not part of the GLN or EPC identifier, but is used for fast filtering and
pre-selection of basic location types. The Filter Values for an SGLN-195 is shown in
Table 12. Values marked as “reserved” are reserved for assignment by EPCglobal in
future versions of this specification. Implementations of the encoding and decoding
rules specified below SHALL accept any value of the filter bits, whether reserved or
not. Applications, however, SHOULD NOT direct an encoder to write a reserved
value to a tag, nor rely upon a reserved value decoded from a tag, as doing so may
cause interoperability problems if a reserved value is assigned in a future revision to
this specification

• Partition is an indication of where the subsequent Company Prefix and Location
Reference numbers are divided. This organization matches the structure in the GS1
GLN in which the Company Prefix added to the Location Reference number totals 12
digits, yet the Company Prefix may vary from 6 to 12 digits and the Location
Reference number from 6 to 0 digit(s). The available values of Partition and the
corresponding sizes of the Company Prefix and Location Reference fields are defined
in Table 13.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Location Reference, if present, encodes the GLN Location Reference number.

• Extension Component contains a serial number. If an Extension Component is not used
signifying a GLN only, then this value shall be set to binary 0110000 followed by 133
binary “0” bits. SGLN.-195 encoding is capable of representing alphanumeric
Extension Component of up to 20 characters, permitting the full range of Extension

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 45 of 120

1278
1279

1281

1282

1283

1284

1285
1286
1287

1288

1289

1290
1291
1292
1293

1294
1295

1296
1297
1298

1299
1300
1301
1302
1303

1304
1305
1306
1307
1308

1310

1311
1312

1313

1314

Component available in the GS1-128 barcode symbology using Application Identifier
(AI) 254 [GS1GS]. See Appendix F for permitted values.

3.7.2.1 SGLN-195 Encoding Procedure 1280
The following procedure creates an SGLN-195 encoding.

Given:

• A GS1 GLN consisting of digits d1d2…d13

• The length L of the Company Prefix portion of the GLN

• A GS1-128 Application Identifier 254 consisting of characters s1s2…sK, where K ≤ 20.
If the Application Identifier 254 consists of a single character 0 where K=1, this
Encoding is considered to be a GLN only.

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 13) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Location Reference field. If L is
not found in any row of Table 13, stop: this GLN cannot be encoded in an SGLN-195.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the result
to be a decimal integer, C.

3. If L < 12 construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. If L = 12 set b140 to 0 since there is no
Location Reference digit.

4. . Check that each of the characters s1s2…sK is one of the 82 characters listed in the table
in Appendix F. If this is not the case, stop: this character string cannot be encoded as an
SGLN-195. Otherwise construct the Extension Component by concatenating the 7-bit code,
as given in Appendix F, for each of the characters s1s2…sK, yielding 7K bits total. If K < 20,
concatenate additional zero bits to the right to make a total of 140 bits.

 5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00111001 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Location Reference I
from Step 3 (N bits) and Extension Component S from Step 4 (140 bits). Note that M+N =
41 bits for all P.

3.7.2.2 SGLN-195 Decoding Procedure 1309
Given:

• An SGLN-195 as a 195-bit bit string 00111001b186b185…b0 (where the first eight bits
00111001 are the header)

Yields:

• A GS1 GLN

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 46 of 120

1315

1316

1317

1318

1319
1320

1321
1322

1323
1324
1325
1326

1327
1328
1329
1330

1331
1332

1333
1334

1335

1336
1337
1338
1339
1340
1341
1342
1343

1344
1345

1346

1348
1349
1350
1351
1352

• An Extension Component

• A Filter Value

Procedure:

1. Bits b186b185b184, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b183b182b181 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGLN-195.

3. Look up the Partition Value P in Table 13 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b180b179…b(181-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a legal
SGLN-195 encoding. Otherwise, convert this integer into a decimal number p1p2…pL,
adding leading zeros as necessary to make up L digits in total.

5. When L < 12 extract the Location Reference by considering bits b(180-M) b(179-M)…b140 as
an unsigned integer. If this integer is greater than or equal to 10(12-L), stop: the input bit
string is not a legal SGLN-195 encoding. Otherwise, convert this integer to a (12−L)-digit
decimal number i1i2…i(12-L), adding leading zeros as necessary to make (12−L) digits.

6. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 4, and if L <
12 d(L+1)d(L+2)…d12 = i2 i3…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. The GS1 GLN is the concatenation of digits from Steps 6 and 7: d1d2…d13.

9. Divide the remaining bits b139b138…b0 into 7-bit segments. The result should consist of K
non-zero binary segments followed by 20-K binary zero segments. If this is not the case,
stop: this bit string cannot be decoded as an SGLN-195. Otherwise, look up each of the
non-zero 7-bit segments in Appendix F to obtain a corresponding character. If any of the
non-zero 7-bit segments has a value that is not in Appendix F, stop: this bit string cannot be
decoded as an SGLN-195. If K=1 and s1=0, then this indicates a GLN only with no
Extension Component. Otherwise, the K characters so obtained, considered as a character
string s1s2…sK, is the value of the GS1 AI 254.

10. The GS1 SGLN-195 is the concatenation of the digits from Steps 6 and 7 and the
characters from Step 9. : d1d2…d13 s1s2…sK

3.8 Global Returnable Asset Identifier (GRAI) 1347
The EPC Tag Encoding scheme for GRAI permits the direct embedding of a GS1 System
standard GRAI on EPC tags. In all cases, the check digit is not encoded. Only GRAIs that
include the optional serial number may be represented as EPCs. A GRAI without a serial
number represents an asset class, rather than a specific instance, and therefore may not be
used as an EPC (just as a non-serialized GTIN may not be used as an EPC).

Explanation (non-normative): In the specification of the encoding and decoding procedures 1353
below, a GS1 GRAI is shown consisting of a 13-digit code (including check digit) together 1354
with a variable-length serial number. When a GRAI is encoded into a GS1-128 bar code 1355
using AI 8002, an extra zero digit is prepended to the GRAI. This leading zero is not shown 1356
in the encoding and decoding procedures. The digit d1 in the encoding and decoding 1357
procedures below corresponds to digit N1 in the GS1 General Specifications. Sections 1358
2.3.3.1.1 and 3.6.50. 1359

1360

1362
1363

1364
1365

1366

1367

1368
1369
1370
1371
1372
1373
1374
1375
1376

3.8.1 GRAI-96 1361
In addition to a Header, the GRAI-96 is composed of five fields: the Filter Value, Partition,
Company Prefix, Asset Type, and Serial Number, as shown in Table 15.

 Header Filter
Value

Partition Company
Prefix

Asset Type Serial
Number

8 3 3 20-40 24-4 38 GRAI-96

0011
0011
(Binary
value)

(Refer to
Table 16
for
values)

(Refer to
Table 17
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

274,877,906
,943

(Max.
decimal
value)

*Max. decimal value range of Company Prefix and Asset Type fields vary according to contents of the Partition

field.

Table 15. The EPC GRAI-96 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0011.

• Filter Value is not part of the GRAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 96-bit and 170-bit GRAI are
shown in Table 16. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification.

Type Binary Value

All Others 000

Reserved 001

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 47 of 120

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 48 of 120

Type Binary Value

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 16. GRAI Filter Values 1377

1378
1379
1380
1381
1382
1383

• Partition is an indication of where the subsequent Company Prefix and Asset Type
numbers are divided. This organization matches the structure in the GS1 GRAI in
which the Company Prefix added to the Asset Type number totals 12 digits, yet the
Company Prefix may vary from 6 to 12 digits and the Asset Type from 6 to 0 digit(s).
The available values of Partition and the corresponding sizes of the Company Prefix
and Asset Type fields are defined in Table 17.

Partition
Value

(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 0

1 37 11 7 1

2 34 10 10 2

3 30 9 14 3

4 27 8 17 4

5 24 7 20 5

6 20 6 24 6

Table 17. GRAI Partitions. 1384
1385

1386

1387

1388
1389
1390

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Asset Type, if present, encodes the GRAI Asset Type number.

• Serial Number contains a serial number. The 96-bit tag encodings are only capable of
representing a subset of Serial Numbers allowed in the GS1 General Specifications.
The capacity of this mandatory serial number is less than the maximum GS1 System

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 49 of 120

1391
1392

1394

1395

1396

1397

1398

specification for serial number, no leading zeros are permitted, and only numbers are
permitted.

3.8.1.1 GRAI-96 Encoding Procedure 1393
The following procedure creates a GRAI-96 encoding.

Given:

• A GS1 GRAI consisting of digits d1d2d3…dK, where 14 ≤ K ≤ 25.

• The length L of the Company Prefix portion of the GRAI

• A Filter Value F where 0 ≤ F < 8

Explanation (non-normative): Because a GRAI must include a serial number to be 1399
convertible into an EPC, K must be at least 14 (that is, the serial number must contain at 1400
least one character). 1401

1402

1403
1404
1405
1406

1407
1408

1409
1410

1411
1412
1413
1414
1415
1416

1417
1418
1419
1420

1422

1423
1424

1425

1426

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 17) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in Asset Type field. If L is not found in
any row of Table 17, stop: this GRAI cannot be encoded in a GRAI-96.

2. Construct the Company Prefix by concatenating digits d1d2d3…d(L) and considering the
result to be a decimal integer, C.

3. If L < 12 construct the Asset Type by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. Otherwise set bits b41,b40 ,b39 ,b38 to 0000.

4. Construct the Serial Number by concatenating digits d14d15…dK. If any of these
characters is not a digit, stop: this GRAI cannot be encoded in the GRAI-96 encoding.
Otherwise, consider the result to be a decimal integer, S. If S ≥ 238, stop: this GRAI cannot
be encoded in the GRAI-96 encoding. Also, if K > 14 and d14 = 0, stop: this GRAI cannot be
encoded in the GRAI-96 encoding (because leading zeros are not permitted except in the
case where the Serial Number consists of a single zero digit).

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110011 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Asset Type I from
Step 3 (N bits) and Serial Number S from Step 4 (38 bits). Note that M+N = 44 bits for all P.

3.8.1.2 GRAI-96 Decoding Procedure 1421
Given:

• An GRAI-96 as a 96-bit bit string 00110011b87b86…b0 (where the first eight bits
00110011 are the header)

Yields:

• A GS1 GRAI

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 50 of 120

1427

1428

1429

1430
1431

1432
1433

1434
1435
1436
1437

1438
1439
1440
1441

1442
1443

1444
1445

1446
1447
1448

1449

1451
1452

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GRAI-96.

3. Look up the Partition Value P in Table 17 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal GRAI-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

5. If L < 12 extract the Asset Type by considering bits b(81-M) b(80-M)…b38 as an unsigned
integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a
legal GRAI-96 encoding. Otherwise, convert this integer to a (12-L)-digit decimal number
i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits.

6. Construct a 12-digit number d1d2d3…d12 where d1d2…d(L) = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. Extract the Serial Number by considering bits b37b36…b0 as an unsigned integer. Convert
this integer to a decimal number d14d15…dK, with no leading zeros (exception: if the integer
is equal to zero, convert it to a single zero digit).

9. The GS1 GRAI is the concatenation of the digits from Steps 6, 7, and 8: d1d2d3…dK.

3.8.2 GRAI-170 1450
In addition to a Header, the GRAI-170 is composed of five fields: the Filter Value, Partition,
Company Prefix, Asset Type, and Serial Number, as shown in Table 18.

 Header Filter
Value

Partition Company
Prefix

Asset Type Serial
Number

8 3 3 20-40 24-4 112 GRAI-170

0011
0111
(Binary
value)

(Refer to
Table 16
for
values)

(Refer to
Table 17
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

Up to 16
alphanumeri
c characters

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 51 of 120

1453
1454

1455

1456

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

1467
1468
1469
1470
1471
1472

1473

1474

1475
1476
1477
1478

1480

1481

1482
1483

1484

1485

*Max. decimal value range of Company Prefix and Asset Type fields vary according to contents of the Partition

field.

Table 18. The EPC GRAI-170 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0111

• Filter Value is not part of the GRAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 96-bit and 170-bit GRAI are
shown in Table 16. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification. This specification anticipates that valuable Filter Values will be
determined once there has been time to consider the possible use cases.

• Partition is an indication of where the subsequent Company Prefix and Asset Type
numbers are divided. This organization matches the structure in the GS1 GRAI in
which the Company Prefix added to the Asset Type number totals 12 digits, yet the
Company Prefix may vary from 6 to 12 digits and the Asset Type from 6 to 0 digit(s).
The available values of Partition and the corresponding sizes of the Company Prefix
and Asset Type fields for 96-bit and 170-bit GRAI are defined in Table 17.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Asset Type, if present, encodes the GRAI Asset Type number.

• Serial Number contains a mandatory alphanumeric serial number. The GRAI-170
encoding is capable of representing alphanumeric serial numbers of up to 16 characters,
permitting the full range of serial numbers available in the GS1-128 barcode
symbology using Application Identifier (AI) 8003 [GS1GS].

3.8.2.1 GRAI-170 Encoding Procedure 1479
The following procedure creates a GRAI-170 encoding.

Given:

• A GS1 GRAI consisting of digits d1d2d3…d13, and a variable length alphanumeric serial
number s14s15…sK where 14 ≤ K ≤ 29.

• The length L of the Company Prefix portion of the GRAI

• A Filter Value F where 0 ≤ F < 8

Explanation (non-normative): Because a GRAI must include a serial number to be 1486
convertible into an EPC, K must be at least 14 (that is, the serial number must contain at 1487
least one character). 1488

1489

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 52 of 120

1490

1491
1492
1493
1494

1495
1496

1497
1498

1499
1500
1501
1502
1503

1504
1505
1506
1507
1508

1510

1511
1512

1513

1514

1515

1516

1517

1518
1519

1520
1521

1522
1523
1524
1525

1526
1527

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 17) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in Asset Type field. If L is not found in
any row of Table 17, stop: this GRAI cannot be encoded in a GRAI-170.

2. Construct the Company Prefix by concatenating digits d1d2…d(L) and considering the
result to be a decimal integer, C.

3. If L < 12 construct the Asset Type by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. Otherwise set bits b115,b114 ,b113 ,b112 to 0000.

4. Check that each of the characters s14s15…sK is one of the 82 characters listed in the table
in Appendix F. If this is not the case, stop: this character string cannot be encoded as a
GRAI-170. Otherwise construct the Serial Number by concatenating the 7-bit code, as given
in Appendix F, for each of the characters s14s15…sK, yielding 7*(K-14) bits total. If K < 29,
concatenate additional zero bits to the right to make a total of 112 bits.

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110111 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Asset Type I from
Step 3 (N bits) and Serial Number S from Step 4 (112 bits). Note that M+N = 44 bits for
all P.

3.8.2.2 GRAI-170 Decoding Procedure 1509
Given:

• An GRAI-170 as a 170-bit bit string 00110111b161b160…b0 (where the first eight bits
00110111 are the header)

Yields:

• A GS1 GRAI

• A Filter Value

Procedure:

1. Bits b161b160b159, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b158b157b156 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GRAI-170.

3. Look up the Partition Value P in Table 17 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b155b154…b(156-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a legal
GRAI-170 encoding. Otherwise, convert this integer into a decimal number p1p2…pL,
adding leading zeros as necessary to make up L digits in total.

5. If L < 12 extract the Asset Type by considering bits b(155-M) b(154-M)…b112 as an unsigned
integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 53 of 120

1528
1529

1530
1531

1532
1533

1534
1535
1536
1537
1538
1539
1540

1541
1542

1543

1545
1546

1548
1549

1550

1551

1552
1553

legal GRAI-170 encoding. Otherwise, convert this integer to a (12-L)-digit decimal number
i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits.

6. Construct a 12-digit number d1d2d3…d12 where d1d2…d(L) = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. Divide the remaining bits b111b110…b0 into 7-bit segments. This string should consist of
K non-zero segments followed by 16-K zero segments. If this is not the case, stop: this bit
string cannot be decoded as a GRAI-170. Otherwise, look up each of the non-zero 7-bit
segments in Appendix F to obtain a corresponding character. If any of the non-zero 7-bit
segments has a value that is not in Appendix F, stop: this bit string cannot be decoded as a
GRAI-170. Otherwise, the first K characters considered as a character string is the serial
number s14s15…sK.

9. The GS1 GRAI is the concatenation of the digits from Steps 6 and 7 and the characters
from Step 8. : d1d2…d13 s14s15…sK

3.9 Global Individual Asset Identifier (GIAI) 1544
The EPC Tag Encoding scheme for GIAI permits the direct embedding of GS1 System
standard GIAI codes on EPC tags.

3.9.1 GIAI-96 1547
In addition to a Header, the EPC GIAI-96 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Individual Asset Reference, as shown in Table 19.

 Header Filter
Value

Partition Company
Prefix

Individual Asset
Reference

8 3 3 20-40 62-42 GIAI-96

0011
0100
(Binary
value)

(Refer to
Table 20
for
values)

(Refer to
Table 21
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

4,611,686,018,427,
387,903 –
4,398,046,511,103

(Max. decimal
range*)

*Max. decimal value range of Company Prefix and Individual Asset Reference fields vary according to contents
of the Partition field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 54 of 120

1554

1555

1556
1557
1558
1559
1560
1561
1562
1563
1564

Table 19. The EPC 96-bit GIAI bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 0100.

• Filter Value is not part of the GIAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 96-bit and 202-bit GIAI are the
same shown in Table 20. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification.

Type Binary Value

All Others 000

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 20. GIAI Filter Values 1565

1566
1567
1568
1569
1570

• The Partition is an indication of where the subsequent Company Prefix and Individual
Asset Reference numbers are divided. This organization matches the structure in the
GS1 GIAI in which the Company Prefix may vary from 6 to 12 digits. The available
values of Partition and the corresponding sizes of the Company Prefix and Asset
Reference fields are defined in Table 21.

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 42 13

1 37 11 45 14

2 34 10 48 15

3 30 9 52 16

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 55 of 120

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

4 27 8 55 17

5 24 7 58 18

6 20 6 62 19

Table 21. GIAI-96 Partitions. 1571

1572

1573
1574
1575
1576
1577

1579

1580

1584

1585
1586
1587
1588

1589
1590

1591
1592
1593
1594
1595
1596

1597
1598

• Company Prefix contains a literal embedding of the Company Prefix.

• Individual Asset Reference is a mandatory unique number for each instance. The EPC
representation is only capable of representing a subset of asset references allowed in
the GS1 General Specifications. The capacity of this asset reference is less than the
maximum GS1 System specification for asset references, no leading zeros are
permitted, and only numbers are permitted.

3.9.1.1 GIAI-96 Encoding Procedure 1578
The following procedure creates a GIAI-96 encoding.

Given:

• A GS1 GIAI consisting of digits d1d2…dK, where K ≤ 30. 1581

• The length L of the Company Prefix portion of the GIAI 1582

• A Filter Value F where 0 ≤ F < 8 1583

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 21) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Individual Asset Reference field.
If L is not found in any row of Table 21, stop: this GIAI cannot be encoded in a GIAI-96.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the result
to be a decimal integer, C.

3. Construct the Individual Asset Reference by concatenating digits d(L+1)d(L+2)…dK. If any
of these characters is not a digit, stop: this GIAI cannot be encoded in the GIAI-96 encoding.
Otherwise, consider the result to be a decimal integer, S. If S ≥ 2N, stop: this GIAI cannot be
encoded in the GIAI-96 encoding. Also, if K > L+1 and d(L+1) = 0, stop: this GIAI cannot be
encoded in the GIAI-96 encoding (because leading zeros are not permitted except in the case
where the Individual Asset Reference consists of a single zero digit).

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110100 (8 bits), Filter Value F (3 bits), Partition

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 56 of 120

1599
1600

1602

1604

1605

1608

1609

1610
1611

1612
1613

1614
1615
1616
1617

1618
1619
1620
1621
1622

1623
1624

1626
1627

1628

Value P from Step 2 (3 bits), Company Prefix C from Step 3 (M bits) and Individual Asset
Number S from Step 4 (N bits). Note that M+N = 82 bits for all P.

3.9.1.2 GIAI-96 Decoding Procedure 1601
Given:

• A GIAI-96 as a 96-bit bit string 00110100b87b86…b0 (where the first eight bits 1603
00110100 are the header)

Yields:

• A GS1 GIAI 1606

• A Filter Value 1607

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GIAI-96.

3. Look up the Partition Value P in Table 21 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal GIAI-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

5. Extract the Individual Asset Reference by considering bits b(81-M) b(80-M)…b0 as an
unsigned integer. If this integer is greater than or equal to 10(30-L), stop: the input bit string
is not a legal GIAI-96 encoding. Otherwise, convert this integer to a decimal number
s1s2…sJ, with no leading zeros (exception: if the integer is equal to zero, convert it to a single
zero digit).

6. Construct a K-digit number d1d2…dK where d1d2…dL = p1p2…pL from Step 4, and
d(L+1)d(L+2)…dK = s1s2…sJ from Step 5. This K-digit number, where K ≤ 30, is the GS1 GIAI.

3.9.2 GIAI-202 1625
In addition to a Header, the EPC GIAI-202 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Individual Asset Reference, as shown in Table 22.

 Header Filter
Value

Partition Company
Prefix

Individual Asset
Reference

8 3 3 20-40 168-148 GIAI-202

0011
1000
(Binary
value)

(Refer to
Table 20
for
values)

(Refer to
Table 21
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

Up to 24
alphanumeric
characters

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 57 of 120

1629

1630
1631

1632

1633

1634
1635
1636
1637
1638
1639
1640
1641
1642

1643
1644
1645
1646

1647

*Max. decimal value range of Company Prefix and Individual Asset Reference fields vary according to contents
of the Partition field.

Table 22. The EPC 202-bit GIAI bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0011 1000.

• Filter Value is not part of the GIAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 96-bit and 202-bit GIAI are the
same shown in Table 20. Values marked as “reserved” are reserved for assignment by
EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification.

• The Partition is an indication of the size of the subsequent Company Prefix. This
organization matches the structure in the GS1 GIAI in which the Company Prefix may
vary from 6 to 12 digits. The available values of Partition and the corresponding size
of the Company Prefix field is defined in Table 23.

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Characters

0 40 12 148 18

1 37 11 151 19

2 34 10 154 20

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 58 of 120

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Characters

3 30 9 158 21

4 27 8 161 22

5 24 7 164 23

6 20 6 168 24

 1648

1649

1650

1651
1652
1653
1654

1655
1656

1658

1659

1660

1661
1662

1663

1664

1665

1666
1667
1668
1669

1670
1671

1672
1673

Table 23. GIAI-202 Partitions.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Individual Asset Reference contains a mandatory alphanumeric asset reference number.
The GIAI-202 encoding is capable of representing alphanumeric serial numbers of up
to 24 characters, permitting the full range of serial numbers available in the GS1-128
barcode symbology using Application Identifier (AI) 8004 [GS1GS].

• Company Prefix and Individual Asset Reference should never total more than 30
characters.

3.9.2.1 GIAI-202 Encoding Procedure 1657

The following procedure creates a GIAI-202 encoding.

Given:

• A GS1 GIAI consisting of digits d1d2d3…dL, and a variable length alphanumeric serial
number sL+1sL+2…sK where L+1 ≤ K≤ 30.

• The length L of the Company Prefix portion of the GIAI

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. . Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 23) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Individual Asset Reference field.
If L is not found in any row of Table 23, stop: this GIAI cannot be encoded in a GIAI-202.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the result
to be a decimal integer, C.

3. Check that each of the characters s(L+1)s(L+2)…sK is one of the 82 characters listed in the
table in Appendix F. If this is not the case, stop: this character string cannot be encoded as a

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 59 of 120

1674
1675
1676
1677
1678

1679
1680
1681
1682

1683

1685

1687

1688

1691

1692

1693
1694

1695
1696

1697
1698
1699
1700

1701
1702
1703
1704
1705
1706
1707
1708
1709

1710
1711
1712

GIAI-202. Otherwise construct the Individual Asset Reference by concatenating the 7-bit
code, as given in Appendix F, for each of the characters s(L+1)s(L+2)…sK yielding 7*(K-L)
bits total. Concatenate additional zero bits to the right, if necessary, to make a total of (188-
M) bits, where M is the number of bits in the Company Prefix portion as determined in Step
1.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00111000 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits) and Individual Asset
Number S from Step 3 (188-M bits).

3.9.2.2 GIAI-202 Decoding Procedure 1684
Given:

• A GIAI-202 as a 202-bit bit string 00111000b193b192…b0 (where the first eight bits 1686
00111000 are the header)

Yields:

• A GS1 GIAI 1689

• A Filter Value 1690

Procedure:

1. Bits b193b192b191, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b190b189b188 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GIAI-202.

3. Look up the Partition Value P in Table 23 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b187b186…b(188-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a legal
GIAI-202 encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding
leading zeros as necessary to make up L digits in total.

5. Extract the Individual Asset Reference by dividing the remaining bits b(187-M) b(186-M)…b0
into 7 bit segments beginning with the segment b(187-M) b(186-M)…b(181-M) , and continuing as
far as possible (there may be up to four bits left over at the end).. The result should consist
of J non-zero segments followed by zero or more zero-valued segments, with any remaining
bits also being zeros. If this is not the case, stop: this bit string cannot be decoded as a GIAI
-202. Otherwise, look up each of the non-zero 7-bit segments in Appendix F to obtain a
corresponding character. If any of the non-zero 7-bit segments has a value that is not in
Appendix F, stop: this bit string cannot be decoded as a GIAI-202. Otherwise, the first J
characters considered as a character string is the Asset Reference Number s(1)s(2)…sJ.

6. Construct a K-character string s1s2…sK where s1s2…sL = p1p2…pL from Step 4, and where
s(L+1)s(L+2)…sK = s(1)s(2)…sJ from Step 5. This K-character string, where K ≤ 30, is the GS1
GIAI.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 60 of 120

1713

1715
1716

1718
1719

1720

1721

1722
1723

1724

1725

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

3.10 Global Service Relation Number (GSRN) 1714
The EPC Tag Encoding scheme for GSRN permits the direct embedding of GS1 System
standard GSRN codes on EPC tags. In all cases, the check digit is not encoded.

3.10.1 GSRN-96 1717
In addition to a Header, the EPC GSRN-96 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Service Reference, as shown in Table 24.

 Header Filter
Value

Partition Company
Prefix

Service
Reference

Unallocated

8 3 3 20-40 38-18 24 GSRN-96

0010
1101
(Binary
value)

(Refer to
Table 25
for
values)

(Refer to
Table 26
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

99,999,999
,999 –
99,999

(Max.
decimal
range*)

[Not Used]

*Max. decimal value range of Company Prefix and Service Reference fields vary according to the contents of the
Partition field.

Table 24. The EPC 96-bit GSRN bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0010 1101.

• Filter Value is not part of the GSRN or EPC identifier, but is used for fast filtering and
pre-selection of basic document types. The normative specifications for GSRN Filter
Values are specified in Table 25. Values marked as “reserved” are reserved for
assignment by EPCglobal in future versions of this specification. Implementations of
the encoding and decoding rules specified below SHALL accept any value of the filter
bits, whether reserved or not. Applications, however, SHOULD NOT direct an
encoder to write a reserved value to a tag, nor rely upon a reserved value decoded from
a tag, as doing so may cause interoperability problems if a reserved value is assigned in
a future revision to this specification.

Type Binary Value

All Others 000

Reserved 001

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 61 of 120

Type Binary Value

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 25. GSRN Filter Values 1736

1737
1738
1739
1740
1741
1742

1743

• The Partition is an indication of where the subsequent Company Prefix and Serial
Reference numbers are divided. This organization matches the structure in the GS1
GSRN in which the Company Prefix added to the Service Reference number totals 17
digits, yet the Company Prefix may vary from 6 to 12 digits and the Service Reference
from 11 to 5 digits. Table 26 shows allowed values of the partition value and the
corresponding lengths of the company prefix and service reference.

Partition
Value

(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

Table 26. GSRN-96 Partitions. 1744

1745

1746
1747
1748
1749

1750
1751

• Company Prefix contains a literal embedding of the Company Prefix.

• Service Reference, a unique number for each instance, is treated as a single integer, and
encoded into binary to form the Service Reference field. The Service Reference must
not exceed the capacity specified in GS1 specifications, which are 99,999 for company
prefixes of 12 digits up to 99,999,999,999 for company prefixes of 6 digits.

• Unallocated is not used. This field must contain zeros to conform to this version of the
specification.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 62 of 120

1753

1754

1755

1756

1757

1758

1759
1760
1761
1762

1763
1764

1765
1766

1767
1768
1769
1770

1772

1773
1774

1775

1776

1777

1778

1779

1780
1781

1782
1783

1784
1785
1786
1787

3.10.1.1 GSRN-96 Encoding Procedure 1752
The following procedure creates a GSRN-96 encoding.

Given:

• A GS1 GSRN consisting of digits d1d2…d18

• The length L of the Company Prefix portion of the GSRN

• A Filter Value F where 0 ≤ F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 26) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in the Service Reference. If L is not
found in any row of Table 26, stop: this GSRN cannot be encoded in a GSRN-96.

2. Construct the Company Prefix by concatenating digits d1d2…d(L) and considering the
result to be a decimal integer, C.

3. Construct the Service Reference by concatenating digits d(L+1)d(L+2)…d17 and considering
the result to be a decimal integer, S.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00101101 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Service Reference S
from Step 3 (N bits), and 24 zero bits. Note that M+N = 58 bits for all P.

3.10.1.2 GSRN-96 Decoding Procedure 1771
Given:

• A GSRN-96 as a 96-bit bit string 00101101b87b86…b0 (where the first eight bits
00101101 are the header)

Yields:

• A GS1 GSRN

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GSRN-96.

3. Look up the Partition Value P in Table 10 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal GSRN-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 63 of 120

1788
1789
1790
1791

1792
1793

1794
1795

1796

1798
1799
1800
1801
1802

1804
1805

1806
1807

1808

1809

1810
1811
1812
1813

5. Extract the Service Reference by considering bits b(81-M) b(80-M)…b24 as an unsigned
integer. If this integer is greater than or equal to 10(17-L), stop: the input bit string is not a
legal GSRN-96 encoding. Otherwise, convert this integer to a (17-L)-digit decimal number
i1i2…i(17-L), adding leading zeros as necessary to make (17-L) digits.

6. Construct a 17-digit number d1d2…d17 where d1d2…d(L) = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d17 = i1 i2…i(17-L) from Step 5.

7. Calculate the check digit d18 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) – (d2 + d4
+ d6 + d8 + d10 + d12 + d14 + d16)) mod 10.

8. The GS1 GSRN is the concatenation of digits from Steps 6 and 7: d1d2…d18.

3.11 Global Document Type Identifier (GDTI) 1797
The EPC Tag Encoding scheme for GDTI permits the direct embedding of GS1 System
standard GDTI on EPC tags. In all cases, the check digit is not encoded. Only GDTIs that
include the optional serial number may be represented as EPCs. A GDTI without a serial
number represents an document class, rather than a specific instance, and therefore may not
be used as an EPC (just as a non-serialized GTIN may not be used as an EPC).

3.11.1 GDTI-96 1803
In addition to a Header, the GDTI-96 is composed of five fields: the Filter Value, Partition,
Company Prefix, Document Type, and Serial Number, as shown in Table 27.

 Header Filter
Value

Partition Company
Prefix

Document
Type

Serial
Number

8 3 3 20-40 21-1 41 GDTI-96

0010
1100
(Binary
value)

(Refer to
Table 28
for
values)

(Refer to
Table 29
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

2,199,023,2
55,551

(Max.
decimal
value)

*Max. decimal value range of Company Prefix and Asset Type fields vary according to contents of the Partition

field.

Table 27. The EPC GDTI-96 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 0010 1100.

• Filter Value is not part of the GDTI or EPC identifier, but is used for fast filtering and
pre-selection of basic document types. The Filter Values for 96-bit and 113-bit GDTI
are the same shown in Table 28. Values marked as “reserved” are reserved for
assignment by EPCglobal in future versions of this specification. Implementations of

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 64 of 120

1814
1815
1816
1817
1818

the encoding and decoding rules specified below SHALL accept any value of the filter
bits, whether reserved or not. Applications, however, SHOULD NOT direct an
encoder to write a reserved value to a tag, nor rely upon a reserved value decoded from
a tag, as doing so may cause interoperability problems if a reserved value is assigned in
a future revision to this specification.

Type Binary Value

All Others 000

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 28. GDTI Filter Values 1819

1820
1821
1822
1823
1824
1825

• Partition is an indication of where the subsequent Company Prefix and Document Type
numbers are divided. This organization matches the structure in the GS1 GDTI in
which the Company Prefix added to the Document Type number totals 12 digits, yet
the Company Prefix may vary from 6 to 12 digits and the Document Type from 6 to 0
digit(s). The available values of Partition and the corresponding sizes of the Company
Prefix and Document Type fields are defined in Table 29.

Partition
Value

(P)

Company Prefix Document Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 29. GDTI Partitions. 1826

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 65 of 120

1827

1828

1829

1830
1831
1832
1833

1835

1836

1837

1838

1839

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Document Type, if present, encodes the GDTI Document Type number.

• Serial Number contains a numeric serial number. The 96-bit tag encodings are only
capable of representing a subset of Serial Numbers allowed in the GS1 General
Specifications. The capacity of this numeric serial number is less than the maximum
GS1 System specification for this serial number and no leading zeros are permitted.

3.11.1.1 GDTI-96 Encoding Procedure 1834
The following procedure creates a GDTI-96 encoding.

Given:

• A GS1 GDTI consisting of digits d1d2…dK, where 14 ≤ K ≤ 26.

• The length L of the Company Prefix portion of the GDTI

• A Filter Value F where 0 ≤ F < 8

Explanation (non-normative): Because a GDTI must include a serial number to be 1840
convertible into an EPC, K must be at least 14 (that is, the serial number must contain at 1841
least one character). 1842

1843

1844

1845
1846
1847
1848

1849
1850

1851
1852
1853

1854
1855
1856
1857
1858
1859

1860
1861
1862
1863
1864

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 17) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in Document Type field. If L is not
found in any row of Table 17, stop: this GDTI cannot be encoded in a GDTI-96.

2. Construct the Company Prefix by concatenating digits d1d2…d(L) and considering the
result to be a decimal integer, C.

3. If L < 12 construct the Document Type by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. If L = 12 set bit b41 to 0 since there is no
Document Type digit.

4. Construct the Serial Number by concatenating digits d14d15…dK. If any of these
characters is not a digit, stop: this GDTI cannot be encoded in the GDTI-96 encoding.
Otherwise, consider the result to be a decimal integer, S. If S ≥ 241, stop: this GDTI cannot
be encoded in the GDTI-96 encoding. Also, if K > 14 and d14 = 0, stop: this GDTI cannot be
encoded in the GDTI-96 encoding (because leading zeros are not permitted except in the
case where the Serial Number consists of a single zero digit).

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00101100 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Document Type I
from Step 3 (N bits) and Serial Number S from Step 4 (41 bits). Note that M+N = 41 bits for
all P.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 66 of 120

1866

1867
1868

1869

1870

1871

1872

1873

1874
1875

1876
1877

1878
1879
1880
1881

1882
1883
1884
1885

1886
1887

1888
1889

1890
1891
1892

1893

1895
1896

3.11.1.2 GDTI-96 Decoding Procedure 1865
Given:

• A GDTI-96 as a 96-bit bit string 00101100b87b86…b0 (where the first eight bits
00101100 are the header)

Yields:

• A GS1 GDTI

• A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GDTI-96.

3. Look up the Partition Value P in Table 17 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal GDTI-96
encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding leading
zeros as necessary to make up L digits in total.

5. If L < 12 extract the Document Type by considering bits b(81-M) b(80-M)…b41 as an
unsigned integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string
is not a legal GDTI-96 encoding. Otherwise, convert this integer to a (12-L)-digit decimal
number i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits.

6. Construct a 12-digit number d1d2…d12 where d1d2…d(L) = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. Extract the Serial Number by considering bits b40b39…b0 as an unsigned integer. Convert
this integer to a decimal number d14d15…dK, with no leading zeros (exception: if the integer
is equal to zero, convert it to a single zero digit).

9. The GS1 GDTI is the concatenation of the digits from Steps 6, 7, and 8: d1d2…dK.

3.11.2 GDTI-113 1894
In addition to a Header, the GDTI-113 is composed of five fields: the Filter Value, Partition,
Company Prefix, Asset Type, and Serial Number, as shown in Table 30.

 Header Filter
Value

Partition Company
Prefix

Document
Type

Serial
Number

8 3 3 20-40 21-1 58 GDTI-113

0011
1010
(Binary
value)

(Refer to
Table 28
for
values)

(Refer to
Table 29
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

Up to 17
numeric
characters

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 67 of 120

1897
1898

1899

1900

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

1911
1912
1913
1914
1915
1916

1917

1918

1919
1920
1921
1922

1924

*Max. decimal value range of Company Prefix and Asset Type fields vary according to contents of the Partition

field.

Table 30. The EPC GDTI-113 bit allocation, header, and maximum decimal values.

• Header is 8-bits, with a binary value of 00111010

• Filter Value is not part of the GDTI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 96-bit and 113-bit GDTI are
the same shown in Table 28. Values marked as “reserved” are reserved for assignment
by EPCglobal in future versions of this specification. Implementations of the encoding
and decoding rules specified below SHALL accept any value of the filter bits, whether
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so
may cause interoperability problems if a reserved value is assigned in a future revision
to this specification. This specification anticipates that valuable Filter Values will be
determined once there has been time to consider the possible use cases.

• Partition is an indication of where the subsequent Company Prefix and Document Type
numbers are divided. This organization matches the structure in the GS1 GDTI in
which the Company Prefix added to the Document Type number totals 12 digits, yet
the Company Prefix may vary from 6 to 12 digits and the Document Type from 6 to 0
digit(s). The available values of Partition and the corresponding sizes of the Company
Prefix and Document Type fields for 96-bit and 113-bit GDTI are defined in Table 29.

• Company Prefix contains a literal embedding of the GS1 Company Prefix.

• Document Type, if present, encodes the GDTI Document Type number.

• Serial Number contains a numeric serial number. The GDTI-113 encoding is capable of
representing numeric serial numbers of up to 17 numeric characters including leading
zeros, permitting the full range of serial numbers specified in GS1 Standards using
Application Identifier (AI) 253 [GS1GS].

3.11.2.1 GDTI-113 Encoding Procedure 1923
The following procedure creates a GDTI-113 encoding.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 68 of 120

1925

1926
1927

1928

1929

Given:

• A GS1 GDTI consisting of digits d1d2…d13, and a variable length numeric serial number
s14s15…sK where 14 ≤ K ≤ 30.

• The length L of the Company Prefix portion of the GDTI

• A Filter Value F where 0 ≤ F < 8

Explanation (non-normative): Because a GDTI must include a serial number to be 1930
convertible into an EPC, K must be at least 14 (that is, the serial number must contain at 1931
least one character). 1932

1933

1934
1935
1936
1937

1938
1939

1940
1941
1942

1943
1944
1945

1946
1947
1948
1949
1950

1951

1953

1954
1955

1956

1957

1958

1959

1960

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column of
the Partition Table (Table 17) to determine the Partition Value, P, the number of bits M in
the Company Prefix field, and the number of bits N in Document Type field. If L is not
found in any row of Table 17, stop: this GDTI cannot be encoded in a GDTI-113.

2. Construct the Company Prefix by concatenating digits d1d2…d(L) and considering the
result to be a decimal integer, C.

3. If L < 12 construct the Document Type by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. If L = 12 set bit b58 to 0 since there is no
Document Type digit.

4. Construct the Serial Number by concatenating the digit 1 with digits d14d15…dK. If any of
these characters is not a digit, stop: this GDTI cannot be encoded in the GDTI-113 encoding.
Otherwise, consider the result to be a decimal integer, S.

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00111010 (8 bits), Filter Value F (3 bits), Partition
Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Document Type I
from Step 3 (N bits) and Serial Number S from Step 4 (58 bits). Note that M+N = 41 bits for
all P.

3.11.2.2 GDTI-113 Decoding Procedure 1952
Given:

• A GDTI-113 as a 113-bit bit string 00111010b104b103…b0 (where the first eight bits
00111010 are the header)

Yields:

• A GS1 GDTI

• A Filter Value

Procedure:

1. Bits b104b103b102, considered as an unsigned integer, are the Filter Value.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 69 of 120

1961
1962

1963
1964

1965
1966
1967
1968

1969
1970
1971
1972

1973
1974

1975
1976

1977
1978
1979
1980

1981

1982

1983

1984

1987
1988
1989
1990
1991
1992

2. Extract the Partition Value P by considering bits b101b100b99 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GDTI-113.

3. Look up the Partition Value P in Table 17 to obtain the number of bits M in the Company
Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b98b97…b(99-M) as an unsigned integer.
If this integer is greater than or equal to 10L, stop: the input bit string is not a legal GDTI-
113 encoding. Otherwise, convert this integer into a decimal number p1p2…pL, adding
leading zeros as necessary to make up L digits in total.

5. If L < 12 extract the Document Type by considering bits b(98-M) b(97-M)…b58 as an
unsigned integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string
is not a legal GDTI-113 encoding. Otherwise, convert this integer to a (12-L)-digit decimal
number i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits.

6. . Construct a 12-digit number d1d2…d12 where d1d2…d(L) = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + d9 +
d11)) mod 10.

8. Extract the Serial Number by considering bits b57b56…b0 as an unsigned integer. Convert
this integer to a decimal number dxd14d15…dK. adding no leading zeros. If the first digit dx is
not equal to 1, stop: the input text string is not a legal GDTI-113. Otherwise, remove the
leading 1 digit leaving d14d15…dK.

9. The GS1 GDTI is the concatenation of the digits from Steps 6, 7, and 8: d1d2…dK.

3.12 DoD Tag Data Constructs 1985

3.12.1 DoD-96 1986
This tag data construct may be used to encode Class 1 tags for shipping goods to the United
States Department of Defense by an entity who has already been assigned a CAGE
(Commercial and Government Entity) code.
At the time of this writing, the details of what information to encode into these fields is
explained in a document titled "United States Department of Defense Supplier's Passive
RFID Information Guide" that can be obtained at the United States Department of Defense's
website http://www.dodrfid.org/supplierguide.htm . 1993

1994 The current encoding structure of DoD-96 Tag Data Construct is shown in Table 31 below.

http://www.dodrfid.org/supplierguide.htm

 Header Filter
Value

Government Managed
Identifier

Serial Number

8 4 48 36 DoD-96

0010
1111
(Binary
value)

(Consult
proper US
Dept.
Defense
document
for details)

Encoded with supplier
CAGE code in 8-bit
ASCII format
(Consult US Dept.
Defense doc for details)

68,719,476,735

(Max. decimal
value)

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 70 of 120

1995
1996

1998
1999
2000
2001
2002
2003

Table 31. The DoD-96 bit allocation, header, and maximum decimal values

4 URI Representation 1997
This section defines standards for the encoding of the Electronic Product Code™ as a
Uniform Resource Identifier (URI). The URI Encoding complements the EPC Tag
Encodings defined for use within RFID tags and other low-level architectural components.
URIs provide a means for application software to manipulate Electronic Product Codes in a
way that is independent of any particular tag-level representation, decoupling application
logic from the way in which a particular Electronic Product Code was obtained from a tag.

Explanation (non-normative): The pure identity URI for a given EPC is the same regardless 2004
of the encoding. For example, the following pure identity URI 2005
urn:epc:id:sgtin:0064141.112345.400 is the same regardless of whether it is encoded into a 2006
tag as an SGTIN-96 or an SGTIN-198. Other representations than the pure identity URI for 2007
use above the reader or middleware layer shall not be used, because they can lead to 2008
misinterpretations in the information system. Exclusively on the reader layer and below the 2009
encoding schemes including header, filter value and partition must be considered for 2010
filtering or writing processes. 2011

2012
2013
2014
2015
2016
2017
2018
2019

2020
2021

2022
2023

This section defines four categories of URI. The first are URIs for pure identities,
sometimes called “canonical forms.” These contain only the unique information that
identifies a specific physical object, and are independent of tag encodings. The second
category is URIs that represent specific tag encodings. These are used in software
applications where the encoding scheme is relevant, as when commanding software to write
a tag. The third category is URIs that represent patterns, or sets of EPCs. These are used
when instructing software how to filter tag data. The last category is a URI representation
for raw tag information, generally used only for error reporting purposes.

All categories of URIs are represented as Uniform Resource Names (URNs) as defined by
[RFC2141], where the URN Namespace is epc.

This section complements Section 3, EPC Bit-level Encodings, which specifies the currently
defined tag-level representations of the Electronic Product Code.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 71 of 120

2025
2026

2027
2028
2029

2030
2031
2032

2033
2034
2035
2036
2037

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052
2053
2054
2055

2056
2057
2058
2059
2060
2061
2062
2063

4.1 URI Forms for Pure Identities 2024
(This section is non-normative; the formal specifications for the URI types are given in
Sections 4.2.4 and 5.)

URI forms are provided for pure identities, which contain just the EPC fields that serve to
distinguish one object from another. These URIs take the form of Uniform Resource Names
(URNs), with a different URN namespace allocated for each pure identity type.

For the EPC General Identifier (Section 2.1.1), the pure identity URI representation is as
follows:
urn:epc:id:gid:GeneralManagerNumber.ObjectClass.SerialNumber

In this representation, the three fields GeneralManagerNumber, ObjectClass, and
SerialNumber correspond to the three components of an EPC General Identifier as
described in Section 2.1.1. In the URI representation, each field is expressed as a decimal
integer, with no leading zeros (except where a field’s value is equal to zero, in which case a
single zero digit is used).

There are also pure identity URI forms defined for identity types corresponding to certain
types within the GS1 System family of codes as defined in Section 2.1.2; namely, the
Serialized Global Trade Item Number (SGTIN), the Serial Shipping Container Code (SSCC),
the Serialized Global Location Number (SGLN), the Global Reusable Asset Identifier
(GRAI), the Global Individual Asset Identifier (GIAI), the Global Service Relation Number
(GSRN) and the Global Document Type Identifier (GDTI). The URI representations
corresponding to these identifiers are as follows:
urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber

urn:epc:id:sscc:CompanyPrefix.SerialReference

urn:epc:id:sgln:CompanyPrefix.LocationReference.ExtensionComponent

urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber

urn:epc:id:giai:CompanyPrefix.IndividualAssetReference

urn:epc:id:gsrn:CompanyPrefix.ServiceReference

urn:epc:id:gdti:CompanyPrefix.DocumentType.SerialNumber

In these representations, CompanyPrefix corresponds to a GS1 company prefix assigned
to a manufacturer by GS1. (A UCC company prefix is converted to a GS1 company prefix
by adding one leading zero at the beginning.) The number of digits in this field is significant,
and leading zeros are included as necessary.

The ItemReference, SerialReference, LocationReference, AssetType,
ServiceReference and DocumentType fields correspond to the similar fields of the
GTIN, SSCC, GLN, GRAI, GSRN and GDTI respectively. Like the CompanyPrefix
field, the number of digits in these fields is significant, and leading zeros are included as
necessary. The number of digits in these fields, when added to the number of digits in the
CompanyPrefix field, always total the same number of digits according to the identity
type: 13 digits total for SGTIN, 17 digits total for SSCC, 12 digits total for SGLN, 12
characters total for the GRAI, 17 digits total for GSRN and 12 characters total for the GDTI.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 72 of 120

2064
2065
2066
2067

2068
2069
2070
2071
2072
2073

2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

2086
2087
2088
2089
2090

2091
2092

2093
2094

2095
2096
2097

2098
2099

2100
2101

(The ItemReference field of the SGTIN includes the GTIN Indicator (PI) digit,
appended to the beginning of the item reference. The SerialReference field includes
the SSCC Extension Digit (ED), followed by the serial reference. In no case are check digits
included in URI representations.)

The SerialNumber field of the SGTIN and GRAI , the ExtensionComponent of the
SGLN, as well as the IndividualAssetReference field of the GIAI, may include
digits, letters, and certain other characters. In order for an SGTIN, SGLN, GRAI, or GIAI to
be encoded on a 96-bit tag, however, these fields must consist only of digits with no leading
zeros. These restrictions are defined in the encoding procedures for these types, as well as in
Appendix E.

An SGTIN, SSCC, etc in this form is said to be in SGTIN-URI form, SSCC-URI form, etc
form, respectively. Here are examples:
urn:epc:id:sgtin:0652642.800031.400

urn:epc:id:sscc:0652642.0123456789

urn:epc:id:sgln:0652642.12345.40 (Use this form when Extension
Component is used)

urn:epc:id:sgln:0652642.12345.0 (Use this form when Extension
Component is not used)

urn:epc:id:grai:0652642.12345.1234

urn:epc:id:giai:0652642.123456

urn:epc:id:gsrn:0652642.0123456789

urn:epc:id:gdti:0652642.12345.1234

Referring to the first example, the corresponding GTIN-14 code is 80652642000311. This
divides as follows: the first digit (8) is the PI digit, which appears as the first digit of the
ItemReference field in the URI, the next seven digits (0652642) are the
CompanyPrefix, the next five digits (00031) are the remainder of the ItemReference,
and the last digit (1) is the check digit, which is not included in the URI.

Referring to the second example, the corresponding SSCC is 006526421234567896 and the
last digit (6) is the check digit, not included in the URI.

Referring to the third and fourth examples, the corresponding GLN is 0652642123458,
where the last digit (8) is the check digit, not included in the URI.

Referring to the fifth example, the corresponding GRAI is 06526421234581234. The digit
(8) which is the check digit and the zero padding digit that is used in the GS1-128 bar code
representation of the GRAI are not included in the URI.

Referring to the sixth example, the corresponding GIAI is 0652642123456. (GIAI codes do
not include a check digit.)

Referring to the seventh example, the corresponding GSRN is 065264201234567894, where
the last digit (4) is the check digit, not included in the URI.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 73 of 120

2102
2103

2104
2105
2106
2107
2108
2109

2110
2111
2112

2113
2114
2115
2116
2117
2118

2119

2121
2122

2123
2124
2125
2126
2127

2128
2129
2130

2132
2133
2134
2135
2136
2137

2138
2139

Referring to the eighth example, the corresponding GDTI is 06526421234581234, where the
digit (8) is the check digit, not included in the URI.

Note that all eight URI forms have an explicit indication of the division between the
company prefix and the remainder of the code. This is necessary so that the URI
representation may be converted into tag encodings. In general, the URI representation may
be converted to the corresponding GS1 numeric form (by combining digits and calculating
the check digit), but converting from the GS1 numeric form to the corresponding URI
representation requires independent knowledge of the length of the company prefix.

For the DoD identifier as defined in Section 3.9, the pure identity URI representation is as
follows:
urn:epc:id:usdod:CAGECodeOrDODAAC.serialNumber

where CAGECodeOrDODAAC is the five-character CAGE code or six-character DoDAAC,
and serialNumber is the serial number represented as a decimal integer with no leading
zeros (except that a serial number whose value is zero should be represented as a single zero
digit). Note that a space character is never included as part of CAGECodeOrDODAAC in the
URI form, even though on a 96-bit tag a space character is used to pad the five-character
CAGE code to fit into the six-character field on the tag.

4.2 URI Forms for Related Data Types 2120
(This section is non-normative; the formal specifications for the URI types are given in
Sections 4.3 and Section 5.)

There are several data types that commonly occur in applications that manipulate Electronic
Product Codes, which are not themselves Electronic Product Codes but are closely related.
This specification provides URI forms for those as well. The general form of the epc URN
Namespace is
urn:epc:type:typeSpecificPart

The type field identifies a particular data type, and typeSpecificPart encodes
information appropriate for that data type. Currently, there are three possibilities defined for
type, discussed in the next three sections.

4.2.1 URIs for EPC Tags 2131
In some cases, it is desirable to encode in URI form a specific tag encoding of an EPC. For
example, an application may wish to report to an operator what kinds of tags have been read.
In another example, an application responsible for programming tags needs to be told not
only what Electronic Product Code to put on a tag, but also the encoding scheme to be used.
Finally, applications that wish to manipulate any additional data fields on tags need some
representation other than the pure identity forms.

EPC Tag URIs are encoded by setting the type field to tag, with the entire URI having
this form:

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 74 of 120

2140

2141
2142
2143
2144

2145
2146
2147
2148
2149

2150
2151
2152
2153
2154
2155

2156
2157

2158

2159
2160

2161
2162

2163

2165

2166
2167

2168
2169
2170
2171

2172
2173

2174
2175
2176
2177

urn:epc:tag:EncName:EncodingSpecificFields

where EncName is the name of an EPC Tag Encoding scheme, and
EncodingSpecificFields denotes the data fields required by that encoding scheme,
separated by dot characters. Exactly what fields are present depends on the specific
encoding scheme used.

In general, there are one or more encoding schemes (and corresponding EncName values)
defined for each pure identity type. For example, the SGTIN Identifier has two encodings
defined: sgtin-96 and sgtin-198, corresponding to the 96-bit encoding and the 198-
bit encoding. Note that these encoding scheme names are in one-to-one correspondence with
unique tag Header values, which are used to represent the encoding schemes on the tag itself.

The EncodingSpecificFields, in general, include all the fields of the corresponding
pure identity type, possibly with additional restrictions on numeric range, plus additional
fields supported by the encoding. For example, all of the defined encodings for the
Serialized GTIN include an additional Filter Value that applications use to do tag filtering
based on object characteristics associated with (but not encoded within) an object’s pure
identity.

Here is an example: a Serialized GTIN 96-bit encoding:
urn:epc:tag:sgtin-96:3.0652642.800031.400

In this example, the number 3 is the Filter Value.

The tag URI for the DoD identifier is as follows:
urn:epc:tag:tagType:filter.CAGECodeOrDODAAC.serialNumber

where tagType is usdod-96, filter is the filter value represented as one or two
decimal digits (0-15), and the other two fields are as defined above in 4.1.

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags 2164
Certain bit strings do not correspond to legal encodings. Here are several examples:

• If the most significant bits of a bit string cannot be recognized as a valid EPC header, the
bit-level pattern is not a legal EPC Tag Encoding.

• If the most significant bits of a bit string are recognized as a valid EPC header, but the
binary value of a field in the corresponding tag encoding is greater than the value that
can be contained in the number of decimal digits in that field in the URI form, the bit
level pattern is not a legal EPC Tag Encoding.

• A Gen 2 Tag whose “toggle bit” is set to one (see Section 3.2) by definition does not
contain an EPC Tag Encoding.

While in these situations a bit string is not a legal EPC Tag Encoding, software may wish to
report such invalid bit-level patterns to users or to other software. For such cases, a
representation of invalid bit-level patterns as URIs is provided. The raw form of the URI has
this general form:

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 75 of 120

2178

2179
2180
2181
2182
2183
2184
2185

2186
2187
2188
2189

2190
2191
2192

urn:epc:raw:BitLength.Value

where BitLength is the number of bits in the invalid representation, and Value is the
entire bit-level representation converted to a single hexadecimal number and preceded by the
letter “x”. For example, this bit string:
0000000000000000000100100011010011011110101011011011111011101111

which is invalid because no valid header begins with 0000 0000, corresponds to this raw
URI:
urn:epc:raw:64.x00001234DEADBEEF

In order to ensure that a given bit string has only one possible raw URI representation, the
number of digits in the hexadecimal value is required to be equal to the BitLength divided
by four and rounded up to the nearest whole number. Moreover, only uppercase letters are
permitted for the hexadecimal digits A, B, C, D, E, and F.

It is intended that this URI form be used only when reporting errors associated with reading
invalid tags and when representing partially written tag. It is not intended to be a general
mechanism for communicating arbitrary bit strings for other purposes.

Explanation (non-normative): The reason for recommending against using the raw URI for 2193
general purposes is to avoid having an alternative representation for legal tag encodings. 2194

2195
2196
2197
2198

2200
2201
2202
2203

2204
2205
2206
2207

2208
2209
2210

2211
2212
2213
2214

Earlier versions of this specification described a decimal, as opposed to hexadecimal, version
of the raw URI. This is still supported for back-compatibility, but its use is no longer
recommended. The “x” character is included so that software may distinguish between the
decimal and hexadecimal forms.

4.2.2.1 Use of the Raw URI with Gen 2 Tags 2199
The EPC memory of a Gen 2 Tag may contain either an EPC Tag Encoding or a value from
a different numbering system for which an ISO Application Family Identifier (AFI) has been
assigned. The “toggle” bit (bit 17x) of EPC memory distinguishes between these two
possibilities (see Section 3.2).

The Raw URI as described above is intended primarily to represent undecodable EPC Tag
Encodings or partially written tags. For a Gen 2 Tag, therefore, the Raw URI described
above is used only when the toggle bit is a zero, indicating that the tag is supposed to contain
an EPC Tag Encoding.

For completeness, an alternative form of the Raw URI is provided to represent the contents
of a UHF Class 1 Gen 2 Tag whose toggle bit is a one. It has the following form:
urn:epc:raw:BitLength.AFI.Value

where BitLength is the number of bits in the non-EPC representation (not including the
AFI), AFI is the Application Family Identifier represented as a two-digit hexadecimal
number and preceded by the letter “x”, and Value is the remainder of EPC memory
converted to a single hexadecimal number and preceded by the letter “x”.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 76 of 120

2216
2217

2218
2219
2220
2221

2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232

2233
2234
2235
2236
2237
2238
2239
2240

2241
2242

2244
2245
2246
2247
2248

2249
2250
2251

2252
2253
2254

4.2.2.2 The Length Field of a Raw URI when using Gen 2 Tags (non-normative) 2215
(This non-normative section explains a subtle interaction between the Raw URI and the
length indication on Gen 2 Tags.)

Unlike earlier generations of RFID tags, the Gen 2 Tag is designed so that the length of the
EPC Tag Encoding stored on the tag is not necessarily the same as the total length of EPC
memory provided. The Gen 2 Specification provides a five-bit length indication, that
indicates the length of the EPC memory to the nearest multiple of 16 bits (see Section 3.2.2).

Because of the way the EPC Tag Encoding aligns in the Gen 2 Tag’s EPC memory, the five-
bit length indication does not necessarily indicate the length of the EPC Tag Encoding. This
is because the length indication is limited to expressing multiples of 16 bits, including the
first 16 bits in the protocol control (PC) bits which is not part of the EPC Tag Encoding. For
example, if a Gen 2 Tag contains an SGTIN-198 EPC, the EPC Tag Encoding is 198 bits,
which means there are total of 214 bits is considered when calculating the length indicator
(198 EPC Tag Encoding bits plus the 16 PC bits). The nearest round up length indicator
value is 01101 (binary), which indicates a total length of 224 bits. Working in the other
direction, if a length indicator of 01101 is read from a Gen 2 Tag, it indicates a total of 224
bits including the 16 PC bits, and therefore appears to indicate an EPC Tag Encoding of 208
bits.

This does not present a problem when a Gen 2 Tag contains a valid EPC. The procedures in
Sections 5.3 and 5.4 use the header table in Section 3.1 to determine the length of the EPC,
and discard any extra bits that may be implied by the length indication. When the contents
of a Gen 2 Tag are converted to a Raw URI, however, the length indication on the tag is used
to calculate the length in the URI. Therefore the length representation in the raw URI will
have different bit length to the EPC Tag Encoding bits. Also one must consider the fact that
value field in the raw URI may be different, because the values from Gen 2 tags may also
include excess bits that are filled with zeros up to the word boundary.

For these and other reasons, Raw URIs should never be used within information systems to
represent valid EPCs.

4.2.3 URIs for EPC Patterns 2243
Certain software applications need to specify rules for filtering lists of tags according to
various criteria. This specification provides a pattern URI form for this purpose. A pattern
URI does not represent a single tag encoding, but rather refers to a set of tag encodings. A
typical pattern looks like this:
urn:epc:pat:sgtin-96:3.0652642.[102400-204700].*

This pattern refers to any EPC SGTIN Identifier 96-bit tag, whose Filter field is 3, whose
Company Prefix is 0652642, whose Item Reference is in the range 102400 ≤ itemReference
≤ 204700, and whose Serial Number may be anything at all.

In general, there is a pattern form corresponding to each tag encoding form (Section 4.2.1),
whose syntax is essentially identical except that ranges or the star (*) character may be used
in each field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 77 of 120

2255
2256
2257
2258
2259
2260
2261
2262

For the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN and GDTI patterns, the pattern syntax
slightly restricts how wildcards and ranges may be combined. Only two possibilities are
permitted for the CompanyPrefix field. One, it may be a star (*), in which case the
following field (ItemReference, SerialReference, LocationReference,
AssetType,IndividualAssetReference, ServiceReference or
DocumentType) must also be a star. Two, it may be a specific company prefix, in which
case the following field may be a number, a range, or a star. A range may not be specified
for the CompanyPrefix.

Explanation (non-normative): Because the company prefix is variable length, a range may 2263
not be specified, as the range might span different lengths. When a particular company 2264
prefix is specified, however, it is possible to match ranges or all values of the following field, 2265
because its length is fixed for a given company prefix. The other case that is allowed is when 2266
both fields are a star, which works for all tag encodings because the corresponding tag 2267
fields (including the Partition field, where present) are simply ignored. 2268

2269
2270
2271

2272
2273
2274
2275

2277
2278
2279
2280
2281

2282
2283
2284

2285
2286
2287
2288

2289
2290

2291

The pattern URI for the DoD Construct is as follows:
urn:epc:pat:tagType:filterPat.CAGECodeOrDODAACPat.serialNumber
Pat

where tagType is as defined above in 4.2.1, filterPat is either a filter value, a range of
the form [lo-hi], or a * character; CAGECodeOrDODAACPat is either a CAGE
Code/DODAAC or a * character; and serialNumberPat is either a serial number, a
range of the form [lo-hi], or a * character.

4.2.4 URIs for EPC Pure Identity Patterns 2276
Certain software applications need to specify rules for filtering lists of EPC pure identities
according to various criteria. This specification provides a pure identity pattern URI form
for this purpose. A pure identity pattern URI does not represent a single EPC, but rather
refers to a set of EPCs. A typical pure identity pattern looks like this:
urn:epc:idpat:sgtin:0652642.*.*

This pattern refers to any EPC SGTIN, whose Company Prefix is 0652642, whose Item
Reference and Serial Number may be anything at all. The tag length and filter bits are not
considered at all in matching the pattern to EPCs.

In general, there is a pattern form corresponding to each pure identity form (Section 4.1),
whose syntax is essentially identical except any number of fields starting at the right may be
a star (*). This is more restrictive than tag patterns (Section 4.2.3), in that the star characters
must occupy adjacent rightmost fields and the range syntax is not allowed at all.

The pure identity pattern URI for the DoD Construct is as follows:
urn:epc:idpat:usdod:CAGECodeOrDODAACPat.serialNumberPat

with similar restrictions on the use of star (*).

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 78 of 120

2293
2294

2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319

2320
2321
2322
2323
2324
2325
2326
2327
2328
2329

4.3 Syntax 2292
The syntax of the EPC-URI and the URI forms for related data types are defined by the
following grammar.

4.3.1 Common Grammar Elements 2295
NumericComponent ::= ZeroComponent | NonZeroComponent

ZeroComponent ::= “0”

NonZeroComponent ::= NonZeroDigit Digit*

PaddedNumericComponent ::= Digit+

Digit ::= “0” | NonZeroDigit

NonZeroDigit ::= “1” | “2” | “3” | “4”
 | “5” | “6” | “7” | “8” | “9”

UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G”
 | “H” | “I” | “J” | “K” | “L” | “M” | “N”
 | “O” | “P” | “Q” | “R” | “S” | “T” | “U”
 | “V” | “W” | “X” | “Y” | “Z”

LowerAlpha ::= “a” | “b” | “c” | “d” | “e” | “f” | “g”
 | “h” | “i” | “j” | “k” | “l” | “m” | “n”
 | “o” | “p” | “q” | “r” | “s” | “t” | “u”
 | “v” | “w” | “x” | “y” | “z”

OtherChar ::= “!” | “’” | “(“ | “)“ | “*” | “+” | “,” | “-“
 | “.” | “:” | “;” | “=” | “_”

UpperHexChar ::= Digit | “A” | “B” | “C” | “D” | “E” | “F”

HexComponent ::= UpperHexChar+

Escape ::= “%” HexChar HexChar

HexChar ::= UpperHexChar | “a” | “b” | “c” | “d” | “e” | “f”

GS3A3Char ::= Digit | UpperAlpha | LowerAlpha | OtherChar
 | Escape

GS3A3Component ::= GS3A3Char+

The syntactic construct GS3A3Component is used to represent fields of GS1 codes that
permit alphanumeric and other characters as specified in Figure 3A3-1 of the GS1 General
Specifications (see Appendix F). Owing to restrictions on URN syntax as defined by
[RFC2141], not all characters permitted in the GS1 General Specifications may be
represented directly in a URN. Specifically, the characters “ (double quote), % (percent), &
(ampersand), / (forward slash), < (less than), > (greater than), and ? (question mark) are
permitted in the GS1 General Specifications but may not be included directly in a URN. To
represent one of these characters in a URN, escape notation must be used in which the
character is represented by a percent sign, followed by two hexadecimal digits that give the
ASCII character code for the character.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 79 of 120

2331
2332

2334
2335

2336
2337

2338
2339
2340
2341
2342
2343

2345
2346
2347

2348
2349

2351
2352

2353
2354

2355
2356
2357
2358
2359
2360

2362
2363

4.3.2 EPCGID-URI 2330
EPCGID-URI ::= “urn:epc:id:gid:” 2*(NumericComponent “.”)
NumericComponent

4.3.3 SGTIN-URI 2333
SGTIN-URI ::= “urn:epc:id:sgtin:” SGTINURIBody

SGTINURIBody ::= 2*(PaddedNumericComponent “.”) GS3A3Component

The number of characters in the two PaddedNumericComponent fields must total 13
(not including any of the dot characters).

The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, which
permits the representation of all characters permitted in the GS1-128 Application Identifier
21 Serial Number according to the GS1 General Specifications. SGTIN-URIs that are
derived from 96-bit tag encodings, however, will have Serial Numbers that consist only of
digits and which have no leading zeros. These limitations are described in the encoding
procedures, and in Appendix E.

4.3.4 SSCC-URI 2344
SSCC-URI ::= “urn:epc:id:sscc:” SSCCURIBody

SSCCURIBody ::= PaddedNumericComponent “.”
PaddedNumericComponent

The number of characters in the two PaddedNumericComponent fields must total 17
(not including any of the dot characters).

4.3.5 SGLN-URI 2350
SGLN-URI ::= “urn:epc:id:sgln:” SGLNURIBody

SGLNURIBody ::= 2*(PaddedNumericComponent “.”) GS3A3Component

The number of characters in the two PaddedNumericComponent fields must total 12
(not including any of the dot characters).

The GLN Extension Component field of the SGLN-URI is expressed as a
GS3A3Component, which permits the representation of all characters permitted in the
GS1-128 Application Identifier 254 Extension Component according to the GS1 General
Specifications. SGLN-URIs that are derived from 96-bit tag encodings, however, will have
Extension Component that consist only of digits and which have no leading zeros. These
limitations are described in the encoding procedures, and in Appendix E

4.3.6 GRAI-URI 2361
GRAI-URI ::= “urn:epc:id:grai:” GRAIURIBody

GRAIURIBody ::= 2*(PaddedNumericComponent “.”) GS3A3Component

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 80 of 120

2364
2365

2366
2367
2368
2369
2370
2371

2373
2374

2375
2376
2377

2378
2379
2380
2381
2382
2383

2384

2386
2387
2388

2389
2390

2391

2392

2394
2395
2396

2397
2398

The number of characters in the two PaddedNumericComponent fields must total 12
(not including any of the dot characters).

The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which
permits the representation of all characters permitted in the Serial Number field of the GRAI
according to the GS1 General Specifications. GRAI-URIs that are derived from 96-bit tag
encodings, however, will have Serial Numbers that consist only of digit characters and which
have no leading zeros. These limitations are described in the encoding procedures, and in
Appendix E.

4.3.7 GIAI-URI 2372
GIAI-URI ::= “urn:epc:id:giai:” GIAIURIBody

GIAIURIBody ::= PaddedNumericComponent “.” GS3A3Component

The total number of characters in the PaddedNumericComponent and
GS3A3Component fields must not exceed 30 (not including the dot character that separates
the two fields).

The Individual Asset Reference field of the GIAI-URI is expressed as a GS3A3Component,
which permits the representation of all characters permitted in the Individual Asset
Reference field of the GIAI according to the GS1 General Specifications. GIAI-URIs that is
derived from 96-bit tag encodings, however, will have Individual Asset References that
consist only of digit characters and which have no leading zeros. These limitations are
described in the encoding procedures, and in Appendix E.

4.3.8 GSRN-URI 2385
GSRN-URI ::= “urn:epc:id:gsrn:” GSRNURIBody

GSRNURIBody ::= PaddedNumericComponent “.”
PaddedNumericComponent

The number of characters in the two PaddedNumericComponent fields must total 17
(not including any of the dot characters).

4.3.9 GDTI-URI 2393
GDTI-URI ::= “urn:epc:id:gdti:” GDTIURIBody

GDTIURIBody ::= 2*(PaddedNumericComponent “.”)
PaddedNumericComponent

The number of characters in the first two PaddedNumericComponent fields must total
12 (not including any of the dot characters).

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 81 of 120

2399
2400
2401
2402
2403
2404

2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435

The third field, which is the Serial Number field of the GDTI-URI is expressed as a
PaddedNumericComponent, which permits the representation of all numeric characters.
GDTI-URIs that are derived from 113-bit tag encodings allow Serial Numbers that consist
only of digits but allow leading zeros. GDTI-URIs that are derived from 96-bit tag encodings,
however, will have Serial Numbers that consist only of digits and which have no leading
zeros. These limitations are described in the encoding procedures, and in Appendix E.

4.3.10 EPC Tag URI 2405
TagURI ::= “urn:epc:tag:” TagURIBody

TagURIBody ::= GIDTagURIBody | SGTINSGLNGRAI96TagURIBody |
SGTINSGLNGRAIAlphaTagURIBody | SSCCTagURIBody |
GIAI96TagURIBody | GIAIAlphaTagURIBody | GSRNTagURIBody |
GDTITagURIBody

GIDTagURIBody ::= GIDTagEncName “:” 2*(NumericComponent “.”)
NumericComponent

GIDTagEncName ::= “gid-96”

SGTINSGLNGRAITag96URIBody ::= SGTINSGLNGRAI96TagEncName “:”
NumericComponent “.” 2*(PaddedNumericComponent “.”)
NumericComponent

SGTINSGLNGRAITagAlphaURIBody ::= SGTINSGLNGRAIAlphaTagEncName
“:” NumericComponent “.” 2*(PaddedNumericComponent “.”)
GS3A3Component

SGTINSGLNGRAI96TagEncName ::= “sgtin-96” | “sgln-96”| ”grai-
96”

SGTINSGLNGRAIAlphaTagEncName ::= “sgtin-198” | “sgln-195”|
“grai-170”

SSCCTagURIBody ::= SSCCTagEncName “:” NumericComponent 2*(“.”
PaddedNumericComponent)

SSCCTagEncName ::= “sscc-96”

GIAI96TagURIBody ::= GIAI96TagEncName “:” NumericComponent “.”
PaddedNumericComponent “.” NumericComponent

GIAIAlphaTagURIBody ::= GIAIAlphaTagEncName “:”
NumericComponent “.” PaddedNumericComponent “.” GS3A3Component

GIAI96TagEncName ::= “giai-96”

GIAIAlphaTagEncName ::= “giai-202”

GSRNTagURIBody ::= GSRNTagEncName “:”NumericComponent 2*(“.”
PaddedNumericComponent)

GSRNTagEncName ::= “gsrn-96”

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 82 of 120

2436
2437
2438
2439

2441
2442
2443
2444
2445
2446
2447

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

GDTITagURIBody ::= GDTITagEncName “:”NumericComponent 3*(“.”
PaddedNumericComponent)

GDTITagEncName ::= “gdti-96” | “gdti-113”

4.3.11 Raw Tag URI 2440
RawURI ::= “urn:epc:raw:” RawURIBody

RawURIBody ::= DecimalRawURIBody | HexRawURIBody |
AFIRawURIBody)

DecimalRawURIBody ::= NonZeroComponent “.” NumericComponent
HexRawURIBody ::= NonZeroComponent “.x” HexComponent
AFIRawURIBody ::= NonZeroComponent “.x” HexComponent “.x”
HexComponent

4.3.12 EPC Pattern URI 2448
PatURI ::= “urn:epc:pat:” PatBody

PatBody ::= GIDPatURIBody | SGTINSGLNGRAI96PatURIBody |
SGTINSGLNGRAIAlphaPatURIBody | SSCCPatURIBody |
GIAI96PatURIBody | GIAIAlphaPatURIBody | GSRNPatURIBody |
GDTIPatURIBody

GIDPatURIBody ::= GIDTagEncName “:” 2*(PatComponent “.”)
PatComponent

SGTINSGLNGRAI96PatURIBody ::= SGTINSGLNGRAI96TagEncName “:”
PatComponent “.” GS1PatBody “.” PatComponent

SGTINSGLNGRAIAlphaPatURIBody ::= SGTINSGLNGRAIAlphaTagEncName
“:” PatComponent “.” GS1PatBody “.” GS3A3PatComponent

SSCCPatURIBody ::= SSCCTagEncName “:” PatComponent “.”
GS1PatBody

GIAI96PatURIBody ::= GIAI96TagEncName “:” PatComponent “.”
GS1PatBody

GIAIAlphaPatURIBody ::= GIAIAlphaTagEncName “:” PatComponent
“.” GS1GS3A3PatBody

GSRNPatURIBody ::= GSRNTagEncName “:” PatComponent “.”
GS1PatBody

GDTIPatURIBody ::= GDTI96PatURIBody | GDTI113PatURIBody

GDTI96PatURIBody ::= “GDTI-96:” PatComponent “.”GS1PatBody “.”
PatComponent

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 83 of 120

2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484

2485
2486

2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506

GDTI113PatURIBody ::= “GDTI-113:” PatComponent “.”GS1PatBody
“.” NumericOrStarComponent

NumericOrStarComponent ::= NumericComponent | StarComponent

GS1PatBody ::= “*.*” | (PaddedNumericComponent “.”
PatComponent)

GS1GS3A3PatBody ::= “*.*” | (PaddedNumericComponent “.”
GS3A3PatComponent)

PatComponent ::= NumericComponent
 | StarComponent
 | RangeComponent

GS3A3PatComponent ::= GS3A3Component | StarComponent

StarComponent ::= “*”

RangeComponent ::= “[“ NumericComponent “-“
 NumericComponent “]”

For a RangeComponent to be legal, the numeric value of the first NumericComponent
must be less than or equal to the numeric value of the second NumericComponent.

4.3.13 EPC Identity Pattern URI 2487
IDPatURI ::= “urn:epc:idpat:” IDPatBody

IDPatBody ::= GIDIDPatURIBody | SGTINIDPatURIBody |
SGLNIDPatURIBody | GIAIIDPatURIBody | SSCCIDPatURIBody |
GRAIIDPatURIBody | GSRNIDPatURIBody | GDTIIDPatURIBody

GIDIDPatURIBody ::= “gid:” GIDIDPatURIMain

GIDIDPatURIMain ::=
 2*(NumericComponent “.”) NumericComponent
 | 2*(NumericComponent “.”) “*”
 | NumericComponent “.*.*”
 | “*.*.*”

SGTINIDPatURIBody ::= “sgtin:” SGTINSGLNGRAIIDPatURIMain

GRAIIDPatURIBody ::= “grai:” SGTINSGLNGRAIIDPatURIMain

SGLNIDPatURIBody ::= “sgln:” SGTINSGLNGRAIIDPatURIMain

SGTINSGLNGRAIIDPatURIMain ::=
 2*(PaddedNumericComponent “.”) GS3A3Component
 | 2*(PaddedNumericComponent “.”) “*”
 | PaddedNumericComponent “.*.*”
 | “*.*.*”

SCCIDPatURIBody ::= “sscc:” SSCCIDPatURIMain

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 84 of 120

2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

SSCCIDPatURIMain ::=
 PaddedNumericComponent “.” PaddedNumericComponent
 | PaddedNumericComponent “.*”
 | “*.*”

GIAIIDPatURIBody ::= “giai:” GIAIIDPatURIMain

GIAIIDPatURIMain ::=
 PaddedNumericComponent “.” GS3A3Component
 | PaddedNumericComponent “.*”
 | “*.*”

GSRNIDPatURIBody ::= “gsrn:” GSRNIDPatURIMain

GSRNIDPatURIMain ::=
 PaddedNumericComponent “.” PaddedNumericComponent
 | PaddedNumericComponent “.*”
 | “*.*”

GDTIIDPatURIBody ::= “gdti:” GDTIIDPatURIMain

GDTIIDPatURIMain ::=
 2*(PaddedNumericComponent “.”) PaddedNumericComponent
 | 2*(PaddedNumericComponent “.”) “*”
 | PaddedNumericComponent “.*.*”
 | “*.*.*”

4.3.14 DoD Construct URI 2529
DOD-URI ::= “urn:epc:id:usdod:” CAGECodeOrDODAAC “.”
DoDSerialNumber

DODTagURI ::= “urn:epc:tag:” DoDTagType “:” DoDFilter “.”
CAGECodeOrDODAAC “.” DoDSerialNumber

DODPatURI ::= “urn:epc:pat:” DoDTagType “:” DoDFilterPat “.”
CAGECodeOrDODAACPat “.” DoDSerialNumberPat

DODIDPatURI ::= “urn:epc:idpat:usdod:” DODIDPatMain

DODIDPatMain ::=
 CAGECodeOrDODAAC “.” DoDSerialNumber
 | CAGECodeOrDODAAC “.*”
 | “*.*”

DoDTagType ::= “usdod-96”

DoDFilter ::= NumericComponent

CAGECodeOrDODAAC ::= CAGECode | DODAAC

CAGECode ::= CAGECodeOrDODAACChar*5

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 85 of 120

2545
2546
2547
2548
2549
2550
2551
2552

2553

2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577

DODAAC ::= CAGECodeOrDODAACChar*6

DoDSerialNumber ::= NumericComponent

DoDFilterPat ::= PatComponent

CAGECodeOrDODAACPat ::= CAGECodeOrDODAAC | StarComponent

DoDSerialNumberPat ::= PatComponent

CAGECodeOrDODAACChar ::= Digit | “A” | “B” | “C” | “D” | “E” |
“F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | “Q” |
“R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z”

4.3.15 Summary (non-normative) 2554
The syntax rules above can be summarized informally as follows:
urn:epc:id:gid:MMM.CCC.SSS

urn:epc:id:sgtin:PPP.III.AAA

urn:epc:id:sscc:PPP.III

urn:epc:id:sgln:PPP.III.AAA

urn:epc:id:grai:PPP.III.AAA

urn:epc:id:giai:PPP.AAA

urn:epc:id:gsrn:PPP.III

urn:epc:id:gdti:PPP.III.DDD

urn:epc:id:usdod:TTT.SSS

urn:epc:tag:gid-96:MMM.CCC.SSS

urn:epc:tag:sgtin-96:FFF.PPP.III.SSS

urn:epc:tag:sgtin-198:FFF.PPP.III.AAA

urn:epc:tag:sscc-96:FFF.PPP.III

urn:epc:tag:sgln-96:FFF.PPP.III.SSS

urn:epc:tag:sgln-195:FFF.PPP.III.AAA

urn:epc:tag:grai-96:FFF.PPP.III.SSS

urn:epc:tag:grai-170:FFF.PPP.III.AAA

urn:epc:tag:giai-96:FFF.PPP.SSS

urn:epc:tag:giai-202:FFF.PPP.AAA

urn:epc:tag:gsrn-96:FFF.PPP.III

urn:epc:tag:gdti-96:FFF.PPP.III.SSS

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 86 of 120

2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

urn:epc:tag:gdti-113:FFF.PPP.III.DDD

urn:epc:tag:usdod-96:FFF.TTT.SSS

urn:epc:raw:LLL.BBB
urn:epc:raw:LLL.HHH

urn:epc:raw:LLL.HHH.HHH

urn:epc:idpat:gid:MMM.CCC.SSS

urn:epc:idpat:gid:MMM.CCC.*

urn:epc:idpat:gid:MMM.*.*

urn:epc:idpat:gid:*.*.*

urn:epc:idpat:sgtin:PPP.III.AAA

urn:epc:idpat:sgtin:PPP.III.*

urn:epc:idpat:sgtin:PPP.*.*

urn:epc:idpat:sgtin:*.*.*

urn:epc:idpat:sscc:PPP.III

urn:epc:idpat:sscc:PPP.*

urn:epc:idpat:sscc:*.*

urn:epc:idpat:sgln:PPP.III.AAA

urn:epc:idpat:sgln:PPP.III.*

urn:epc:idpat:sgln:PPP.*.*

urn:epc:idpat:sgln:*.*.*

urn:epc:idpat:grai:PPP.III.AAA

urn:epc:idpat:grai:PPP.III.*

urn:epc:idpat:grai:PPP.*.*

urn:epc:idpat:grai:*.*.*

urn:epc:idpat:giai:PPP.AAA

urn:epc:idpat:giai:PPP.*

urn:epc:idpat:giai:*.*

urn:epc:idpat:gsrn:PPP.III

urn:epc:idpat:gsrn:PPP.*

urn:epc:idpat:gsrn:*.*

urn:epc:idpat:gdti:PPP.III.DDD

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 87 of 120

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643

urn:epc:idpat:gdti:PPP.III.*

urn:epc:idpat:gdti:PPP.*.*

urn:epc:idpat:gdti:*.*.*

urn:epc:idpat:usdod:TTT.SSS

urn:epc:idpat:usdod:TTT.*

urn:epc:idpat:usdod:*.*

urn:epc:pat:gid-96:MMMpat.CCCpat.SSSpat

urn:epc:pat:sgtin-96:FFFpat.PPP.IIIpat.SSSpat

urn:epc:pat:sgtin-96:FFFpat.*.*.SSSpat

urn:epc:pat:sgtin-198:FFFpat.PPP.IIIpat.AAApat

urn:epc:pat:sgtin-198:FFFpat.*.*.AAApat

urn:epc:pat:sscc-96:FFFpat.PPP.IIIpat

urn:epc:pat:sscc-96:FFFpat.*.*

urn:epc:pat:sgln-96:FFFpat.PPP.IIIpat.SSSpat

urn:epc:pat:sgln-96:FFFpat.*.*.SSSpat

urn:epc:pat:sgln-195:FFFpat.PPP.IIIpat.AAApat

urn:epc:pat:sgln-195:FFFpat.*.*.AAApat

urn:epc:pat:grai-96:FFFpat.PPP.IIIpat.SSSpat

urn:epc:pat:grai-96:FFFpat.*.*.SSSpat

urn:epc:pat:grai-170:FFFpat.PPP.IIIpat.AAApat

urn:epc:pat:grai-170:FFFpat.*.*.AAApat

urn:epc:pat:giai-96:FFFpat.PPP.SSSpat

urn:epc:pat:giai-96:FFFpat.*.*

urn:epc:pat:giai-202:FFFpat.PPP.AAApat

urn:epc:pat:giai-202:FFFpat.*.*

urn:epc:pat:gsrn-96:FFFpat.PPP.IIIpat

urn:epc:pat:gsrn-96:FFFpat.*.*

urn:epc:pat:gdti-96:FFFpat.PPP.IIIpat.SSSpat

urn:epc:pat:gdti-96:FFFpat.*.*.SSSpat

urn:epc:pat:gdti-113:FFFpat.PPP.IIIpat.DDDpat

urn:epc:pat:gdti-113:FFFpat.*.*.DDDpat

urn:epc:pat:usdod-96:FFFpat.TTT.SSSpat

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 88 of 120

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653
2654
2655
2656

2657
2658

2659
2660

2661

2662

2663
2664

2665
2666
2667

2668

2669
2670
2671
2672

2673
2674

2676
2677
2678

urn:epc:pat:usdod-96:FFFpat.*.SSSpat

where

 MMM denotes a General Manager Number

 CCC denotes an Object Class number

 SSS denotes a numeric Serial Number or GIAI Individual Asset Reference

 AAA denotes an alphanumeric Serial Number or GIAI Individual Asset reference

 DDD denotes a numeric Serial Number that may include leading zeros

 PPP denotes a GS1 Company Prefix

 TTT denotes a US DoD assigned CAGE code or DODAAC

 III denotes an SGTIN Item Reference (prefixed by the Indicator Digit), an SSCC
Shipping Container Serial Number (prefixed by the Extension Digit (ED)), a SGLN Location
Reference, a GRAI Asset Type, a GSRN Service Relation Number or a GDTI Document
Type.

 FFF denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN,
GDTI and DoD tag encodings

 XXXpat is the same as XXX but allowing * and [lo-hi] pattern syntax in addition
(exception: [lo-hi] syntax is not allowed for AAApat or DDDpat).

 LLL denotes the number of bits of an uninterpreted bit sequence

 BBB denotes the literal value of an uninterpreted bit sequence converted to decimal

 HHH denotes the literal value of an uninterpreted bit sequence converted to hexadecimal
and preceded by the character ‘x’.

and where all numeric fields are in decimal with no leading zeros (unless the overall value of
the field is zero, in which case it is represented with a single 0 character), with the exception
of the hexadecimal raw representation and DDD.

Exceptions:

1. The length of PPP and III is significant, and leading zeros are used as necessary.
The length of PPP is the length of the company prefix as assigned by GS1. The
length of III plus the length of PPP must equal 13 for SGTIN, 17 for SSCC, 12 for
GLN, 12 for GRAI, 17 for GSRN or 12 for GDTI.

2. The Value field of urn:epc:raw is expressed in hexadecimal if the value is
preceded by the character ‘x’.

5 Translation between EPC-URI and Other EPC 2675
Representations

This section defines the semantics of EPC-URI encodings, by defining how they are
translated into other EPC representations and vice versa.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 89 of 120

2680

2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693

2694
2695
2696
2697
2698

2699
2700
2701
2702
2703
2704
2705
2706

2707

2708
2709
2710
2711

2712
2713
2714
2715

2716

2717
2718
2719
2720

5.1 Bit string into EPC-URI (pure identity) 2679
The following procedure translates a bit-level encoding into an EPC-URI:

1. Determine the identity type and encoding scheme by finding the row in Table 1
(Section 3.1) that matches the most significant bits of the bit string. If the most
significant bits do not match any row of the table, stop: the bit string is invalid and
cannot be translated into an EPC-URI. If the encoding scheme indicates one of the
DoD Tag Data Constructs, consult the appropriate U.S. Department of Defense
document for specific encoding and decoding rules. Otherwise, if the encoding
scheme is SGTIN-96 or SGTIN-198, proceed to Step 2; if the encoding scheme is
SSCC-96, proceed to Step 5; if the encoding scheme is SGLN-96 pr SGLN-195,
proceed to Step 8; if the encoding scheme is GRAI-96 or GRAI-170, proceed to
Step 11; if the encoding scheme is GIAI-96 or GIAI-202, proceed to Step 14; if the
encoding scheme is GSRN-96, proceed to Step 17; if the encoding scheme is GDTI-
96 or GDTI-113, proceed to Step 20;if the encoding scheme is GID-96, proceed to
Step 23.

2. Follow the decoding procedure given in Section 3.5.1.2 (for SGTIN-96) or in
Section 3.5.2.2 (for SGTIN-198) to obtain the decimal Company Prefix p1p2...pL, the
decimal Item Reference and Indicator i1i2…i(13-L), and the Serial Number S. If the
decoding procedure fails, stop: the bit-level encoding cannot be translated into an
EPC-URI.

3. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sgtin:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, the Item Reference and Indicator i1i2…i(13-L) (handled similarly), a dot (.)
character, and the Serial Number S as a decimal integer (SGTIN-96) or alphanumeric
character (SGTIN-198). For SGTIN-96 the portion corresponding to the Serial
Number must have no leading zeros, except where the Serial Number is itself zero in
which case the corresponding URI portion must consist of a single zero character.

4. Go to Step 25.

5. Follow the decoding procedure given in Section 3.6.1.2 (for SSCC-96) to obtain the
decimal Company Prefix p1p2...pL, and the decimal Serial Reference s1s2…s(17-L). If
the decoding procedure fails, stop: the bit-level encoding cannot be translated into an
EPC-URI.

6. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sscc:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, and the Serial Reference s1s2…s(17-L) (handled similarly).

7. Go to Step 25.

8. Follow the decoding procedure given in Section 3.7.1.2 (for SGLN-96) or in Section
3.7.2.2 (for SGLN-195) to obtain the decimal Company Prefix p1p2...pL, the decimal
Location Reference i1i2…i(12-L), and the Extension Component S. If the decoding
procedure fails, stop: the bit-level encoding cannot be translated into an EPC-URI.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 90 of 120

2721
2722
2723
2724
2725
2726
2727
2728
2729
2730

2731

2732
2733
2734
2735

2736
2737
2738
2739
2740
2741
2742
2743
2744
2745

2746

2747
2748
2749
2750

2751
2752
2753
2754
2755
2756
2757
2758

2759

2760
2761

9. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sgln:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, for L < 12 the Location Reference, i1i2…i(12-L) (handled similarly), a dot
(.) character, and the Extension Component S as a decimal integer (SGLN-96) or
alphanumeric character (SGLN-195). For SGLN-96 the portion corresponding to the
Extension Component must have no leading zeros, except where the Extension
Component is itself zero in which case the corresponding URI portion must consist of
a single zero character. If a Location Reference does not exist (where L = 12), leave
no blank space between the two dot (.) characters.

10. Go to Step 25.

11. Follow the decoding procedure given in Section 3.8.1.2 (for GRAI-96) or in Section
3.8.2.2 (for GRAI-170) to obtain the decimal Company Prefix p1p2...pL, the decimal
Asset Type i1i2…i(12-L), and the Serial Number S. If the decoding procedure fails,
stop: the bit-level encoding cannot be translated into an EPC-URI.

12. Create an EPC-URI by concatenating the following: the string
urn:epc:id:grai:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, for L < 12 the Asset Type i1i2…i(12-L) (handled similarly), a dot (.)
character, and the Serial Number S as a decimal integer (GRAI-96) or alphanumeric
character (GRAI-170). For GRAI-96 the portion corresponding to the Serial Number
must have no leading zeros, except where the Serial Number is itself zero in which
case the corresponding URI portion must consist of a single zero character. If an
Asset Type does not exist (where L = 12), leave no blank space between the two dot
(.) characters.

13. Go to Step 25.

14. Follow the decoding procedure given in Section 3.9.1.2 (for GIAI-96) or in 3.9.2.2
(for GIAI-202) to obtain the decimal Company Prefix p1p2...pL, and the Individual
Asset Reference S. If the decoding procedure fails, stop: the bit-level encoding
cannot be translated into an EPC-URI.

15. Create an EPC-URI by concatenating the following: the string
urn:epc:id:giai:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, and the Individual Asset Reference S as a decimal integer (GIAI-96) or
alphanumeric character (GIAI-202). For GIAI-96 the portion corresponding to the
Individual Asset Reference must have no leading zeros, except where the Individual
Asset Reference is itself zero in which case the corresponding URI portion must
consist of a single zero character.

16. Go to Step 25.

17. Follow the decoding procedure given in Section 3.10.1.2 (for GSRN-96) to obtain the
decimal Company Prefix p1p2...pL, and the decimal Service Reference s1s2…s(17-L). If

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 91 of 120

2762
2763

2764
2765
2766
2767

2768

2769
2770
2771
2772
2773

2774
2775
2776
2777
2778

2779

2780
2781

2782
2783
2784
2785
2786
2787

2788

2790
2791

2792
2793
2794
2795
2796
2797
2798
2799
2800
2801

the decoding procedure fails, stop: the bit-level encoding cannot be translated into an
EPC-URI.

18. Create an EPC-URI by concatenating the following: the string
urn:epc:id:gsrn:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, and the Service Reference i1i2…i(17-L) (handled similarly).

19. Go to Step 25

20. Follow the decoding procedure given in Section 3.11.1.2 (for GDTI-96) or in
Section 3.11.2.2 (for GDTI-113) to obtain the decimal Company Prefix p1p2...pL, the
decimal Document Type i1i2…i(12-L), and the Serial Number d14d15…dK. If the
decoding procedure fails, stop: the bit-level encoding cannot be translated into an
EPC-URI.

21. Create an EPC-URI by concatenating the following: the string
urn:epc:id:gdti:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, the Document Type i1i2…i(12-L) (handled similarly), a dot (.) character, and
the Serial Number d14d15…dK .

22. Go to Step 25.

23. Follow the decoding procedure given in Section 3.4.1.2 to obtain the General
Manager Number M, the Object Class C, and the Serial Number S.

24. Create an EPC-URI by concatenating the following: the string
urn:epc:id:gid:, the General Manager Number as a decimal integer, a dot (.)
character, the Object Class as a decimal integer, a dot (.) character, and the Serial
Number S as a decimal integer. Each decimal number must have no leading zeros,
except where the integer is itself zero in which case the corresponding URI portion
must consist of a single zero character.

25. The translation is now complete.

5.2 Bit String into Tag or Raw URI 2789
The following procedure translates a bit string of N bits into either an EPC Tag URI or a
Raw Tag URI:

1. Determine the identity type, encoding scheme, and encoding length (K) by finding
the row in Table 1 (Section 3.1) that matches the most significant bits of the bit string.
If N < K, proceed to Step 20; otherwise, continue with the remainder of this
procedure, using the most significant K bits of the bit string. If the encoding scheme
indicates one of the DoD Tag Data Constructs, consult the appropriate U.S.
Department of Defense document for specific encoding and decoding rules. If the
encoding scheme is SGTIN-96 or SGTIN-198, proceed to Step 2; if the encoding
scheme is SSCC-96, proceed to Step 5; if the encoding scheme is SGLN-96 or
SGLN-195, proceed to Step 8; if the encoding scheme is GRAI-96 or GRAI-170,
proceed to Step 11, if the encoding scheme is GIAI-96 or GIAI-202, proceed to Step

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 92 of 120

2802
2803
2804

2805
2806
2807
2808

2809
2810
2811
2812
2813
2814
2815
2816
2817
2818

2819

2820
2821
2822
2823

2824
2825
2826
2827
2828

2829

2830
2831
2832
2833
2834

2835
2836
2837
2838
2839
2840
2841
2842
2843

14; if the encoding scheme is GSRN-96, proceed to Step 17; if the encoding scheme
is GDTI-96 or GDTI-113, proceed to Step 20; if the encoding scheme is GID-96,
proceed to Step 23; otherwise, proceed to Step 26.

2. Follow the decoding procedure given in Section 3.5.1.2 (for SGTIN-96) or 3.5.2.2
(for SGTIN-198) to obtain the decimal Company Prefix p1p2...pL, the decimal Item
Reference and Indicator i1i2…i(13-L), the Filter Value F, and the Serial Number S. If
the decoding procedure fails, proceed to Step 20, otherwise proceed to the next step.

3. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (sgtin-96 or sgtin-198), a colon (:) character, the Filter
Value F as a decimal integer, a dot (.) character, the Company Prefix p1p2...pL where
each digit (including any leading zeros) becomes the corresponding ASCII digit
character, a dot (.) character, the Item Reference and Indicator i1i2…i(13-L) (handled
similarly), a dot (.) character, and the Serial Number S as a decimal integer (SGTIN-
96) or alphanumeric character (SGTIN-198). For SGTIN-96 the portions
corresponding to the Filter Value and Serial Number must have no leading zeros,
except where the corresponding integer is itself zero in which case a single zero
character is used.

4. Go to Step 27.

5. Follow the decoding procedure given in Section 3.6.1.2 (for SSCC-96) to obtain the
decimal Company Prefix p1p2...pL, and the decimal Serial Reference i1i2…i(17-L), and
the Filter Value F. If the decoding procedure fails, proceed to Step 20, otherwise
proceed to the next step.

6. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (sscc-96), a colon (:) character, the Filter Value F as a
decimal integer, a dot (.) character, the Company Prefix p1p2...pL where each digit
(including any leading zeros) becomes the corresponding ASCII digit character, a dot
(.) character, and the Serial Reference i1i2…i(17-L) (handled similarly).

7. Go to Step 27.

8. Follow the decoding procedure given in Section 3.7.1.2 (for SGLN-96) or Section
3.7.2.2 (for SGLN-195) to obtain the decimal Company Prefix p1p2...pL, the decimal
Location Reference i1i2…i(12-L), the Filter Value F, and the Extension Component S.
If the decoding procedure fails, proceed to Step 20, otherwise proceed to the next
step.

9. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (sgln-96 or sgln-195), a colon (:) character, the Filter
Value F as a decimal integer, a dot (.) character, the Company Prefix p1p2...pL where
each digit (including any leading zeros) becomes the corresponding ASCII digit
character, a dot (.) character, when L < 12 the Location Reference i1i2…i(12-L)
(handled similarly), a dot (.) character, and the Extension Component S as a decimal
integer (SGLN-96) or alphanumeric character (SGLN-198). For SGLN-96 the
portions corresponding to the Filter Value and Extension Component must have no
leading zeros, except where the corresponding integer is itself zero in which case a

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 93 of 120

2844
2845

2846

2847
2848
2849
2850

2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

2862

2863
2864
2865
2866

2867
2868
2869
2870
2871
2872
2873
2874

2875

2876
2877
2878
2879

2880
2881
2882
2883
2884

single zero character is used. If a Location Reference does not exist where L = 12
leave no blank space between the two dot (.) characters.

10. Go to Step 27.

11. Follow the decoding procedure given in Section 3.8.1.2 (for GRAI-96) or 3.8.2.2 (for
GRAI-170) to obtain the decimal Company Prefix p1p2...pL, the decimal Asset Type
i1i2…i(12-L), the Filter Value F, and the Serial Number d14d15…dK. If the decoding
procedure fails, proceed to Step 20, otherwise proceed to the next step.

12. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (grai-96 or grai-170), a colon (:) character, the Filter
Value F as a decimal integer, a dot (.) character, the Company Prefix p1p2...pL where
each digit (including any leading zeros) becomes the corresponding ASCII digit
character, a dot (.) character, for L < 12 the Asset Type i1i2…i(12-L) (handled
similarly), a dot (.) character, and the Serial Number d14d15…dK as a decimal integer
(GRAI-96) or alphanumeric character string s14s15…sK (GRAI-170). For GRAI-96
the portions corresponding to the Filter Value and Serial Number must have no
leading zeros, except where the corresponding integer is itself zero in which case a
single zero character is used. If an Asset Type does not exist where L = 12 leave no
blank space between the two dot (.) characters.

13. Got to Step 27.

14. Follow the decoding procedure given in Section 3.9.1.2 (for GIAI-96) or 3.9.2.2 (for
GIAI-202) to obtain the decimal Company Prefix p1p2...pL, the Individual Asset
Reference s1s2…sJ, and the Filter Value F. If the decoding procedure fails, proceed
to Step 20, otherwise proceed to the next step.

15. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (giai-96 or giai-202), a colon (:) character, the Filter
Value F as a decimal integer, a dot (.) character, the Company Prefix p1p2...pL where
each digit (including any leading zeros) becomes the corresponding ASCII digit
character, a dot (.) character, and the Individual Asset Reference s1s2…sJ (handled
similarly). For GIAI-96 the portion corresponding to the Filter Value and the
Individual Asset Reference must have no leading zeros, except where the
corresponding integer is itself zero in which case a single zero character is used.

16. Go to Step 27.

17. Follow the decoding procedure given in Section 3.10.1.2 (for GSRN-96) to obtain the
decimal Company Prefix p1p2...pL, and the decimal Service Reference i1i2…i(17-L),
and the Filter Value F. If the decoding procedure fails, proceed to Step 20, otherwise
proceed to the next step.

18. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (gsrn-96), a colon (:) character, the Filter Value F as a
decimal integer, a dot (.) character, the Company Prefix p1p2...pL where each digit
(including any leading zeros) becomes the corresponding ASCII digit character, a dot
(.) character, and the Service Reference i1i2…i(17-L) (handled similarly). The portion

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 94 of 120

2885
2886

2887

2888
2889
2890
2891

2892
2893
2894
2895
2896
2897
2898
2899

2900

2901
2902

2903
2904
2905
2906
2907
2908

2909

2910
2911
2912
2913
2914
2915
2916

2917

2918

2920
2921

2922

corresponding to the Filter Value must have no leading zeros, except where the
corresponding integer is itself zero in which case a single zero character is used

19. Go to Step 27.

20. Follow the decoding procedure given in Section 3.11.1.2 (for GDTI-96) or 3.11.2.2
(for GDTI-113) to obtain the decimal Company Prefix p1p2...pL, the decimal
Document Type i1i2…i(12-L), the Filter Value F, and the Serial Number d14d15…dK . If
the decoding procedure fails, proceed to Step 20, otherwise proceed to the next step.

21. Create an EPC Tag URI by concatenating the following: the string urn:epc:tag:,
the encoding scheme (gdti-96 or gdti-113), a colon (:) character, the Filter
Value F as a decimal integer, a dot (.) character, the Company Prefix p1p2...pL where
each digit (including any leading zeros) becomes the corresponding ASCII digit
character, a dot (.) character, the Document Type i1i2…i(12-L) (handled similarly), a
dot (.) character, and the Serial Number d14d15…dK . The portion corresponding to
the Filter Value must have no leading zeros, except where the corresponding integer
is itself zero in which case a single zero character is used.

22. Go to Step 27.

23. Follow the decoding procedure given in Section 3.4.1.2 to obtain the General
Manager Number, the Object Class, and the Serial Number.

24. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:gid-96:, the General Manager Number as a decimal number, a
dot (.) character, the Object Class as a decimal number, a dot (.) character, and the
Serial Number as a decimal number. Each decimal number must have no leading
zeros, except where the integer is itself zero in which case the corresponding URI
portion must consist of a single zero character.

25. Go to Step 27.

26. This tag is not a recognized EPC Tag Encoding, therefore create an EPC Raw URI by
concatenating the following: the string urn:epc:raw:, the length of the bit string
(N) expressed as a decimal integer with no leading zeros, a dot (.) character, a
lowercase x character, and the value of the bit string considered as a single
hexadecimal integer. The value must have a number of characters equal to the length
(N) divided by four and rounded up to the nearest whole number, and must only use
uppercase letters for the hexadecimal digits A, B, C, D, E, and F.

27. The translation is now complete.

5.3 Gen 2 Tag EPC Memory into EPC-URI (pure identity) 2919
The following procedure translates the contents of the EPC Memory of a Gen 2 Tag into an
EPC-URI:

1. Consider bits 10x through 14x (inclusive) as a five-bit binary integer, L.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 95 of 120

2923
2924

2925

2926
2927

2929
2930

2931

2932
2933

2934

2935
2936

2937
2938

2939
2940

2941

2942
2943
2944
2945
2946
2947
2948
2949

2951

2952
2953
2954
2955
2956
2957

2958
2959

2. Examine the “toggle” bit, bit 17x. If the toggle bit is a one, stop: this bit string
cannot be converted into an EPC-URI. Otherwise, continue with Step 3.

3. Extract N bits beginning with bit 20x, where N = 16L.

4. Finish by proceeding with the procedure in Section 5.1, using the N-bit string
extracted in Step 3.

5.4 Gen 2 Tag EPC Memory into Tag or Raw URI 2928
The following procedure translates the contents of the EPC Memory of a Gen 2 Tag into
either an EPC Tag URI or a Raw Tag URI:

1. Consider bits 10x through 14x (inclusive) as a five-bit binary integer, L.

2. Examine the “toggle” bit, bit 17x. If the toggle bit is a one, go to Step 5. Otherwise,
continue with Step 3.

3. Extract N bits beginning with bit 20x, where N = 16L.

4. Finish by proceeding with the procedure in Section 5.2, using the N-bit string
extracted in Step 3.

5. This tag has an AFI, and is therefore by definition not an EPC Tag Encoding.
Continue with the following steps.

6. Extract bits 18x through 1Fx (inclusive) as an eight-bit binary integer, A (this is the
AFI).

7. Extract N bits beginning with bit 20x, where N = 16L.

8. Create an EPC Raw URI by concatenating the following: the string
urn:epc:raw:, the number N from Step 7 expressed as a decimal integer with no
leading zeros, a dot (.) character, a lowercase x character, the value A from Step 6
expressed as a two-character hexadecimal integer, a dot (.) character, a lowercase x
character, and the value of the N-bit string from Step 7 considered as a single
hexadecimal integer. The value must have a number of characters equal to the length
(N) divided by four. Both the AFI and the value must only use uppercase letters for
the hexadecimal digits A, B, C, D, E, and F.

5.5 URI into Bit String 2950
The following procedure translates a URI into a bit string:

1. If the URI is an SGTIN-URI (urn:epc:id:sgtin:), an SSCC-URI
(urn:epc:id:sscc:), an SGLN-URI (urn:epc:id:sgln:), a GRAI-URI
(urn:epc:id:grai:), a GIAI-URI (urn:epc:id:giai:), a GSRN-URI
(urn:epc:id:gsrn:), a GDTI-URI (urn:epc:id:gdti:), a GID-URI
(urn:epc:id:gid:), a DOD-URI (urn:epc:id:usdod:)or an EPC Pattern
URI (urn:epc:pat:), the URI cannot be translated into a bit string.

2. If the URI is a Raw Tag URI of the form urn:epc:raw:N.V, create the bit string
by converting the second component (V) of the Raw Tag URI into a binary integer,

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 96 of 120

2960
2961
2962
2963
2964

2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

2977
2978

2979

2980

2981
2982
2983
2984
2985
2986

2987

2988
2989

2990

2991

2992
2993
2994
2995
2996
2997

2998

whose length is equal to the first component (N) of the Raw Tag URI. If the value of
the second component is too large to fit into a binary integer of that size, the URI
cannot be translated into a bit string. If the URI is a Raw Tag URI of the form
urn:epc:raw:N.A.V, the URI cannot be translated into a bit string (but see the
related procedure in Section 5.6).

3. If the URI is an EPC Tag URI or US DoD Tag URI (urn:epc:tag:encName:),
parse the URI using the grammar for TagURI as given in Section 4.3.10 or for
DODTagURI as given in Section 4.3.14. If the URI cannot be parsed using these
grammars, stop: the URI is illegal and cannot be translated into a bit string. If
encName is usdod-96, consult the appropriate U.S. Department of Defense
document for specific translation rules. Otherwise, if encName is sgtin-96 go to
Step 4, if sgtin-198 go to Step 9, if encName is sscc-96 go to Step 14, if
encName is sgln-96 go to Step 18 or sgln-195 go to Step 23, if encName is
grai-96 go to Step 28 or grai-170 go to Step 33, if encName is giai-96 go
to Step 38 or giai-202 go to Step 43, if encName is gsrn-96 go to Step 48, if
encName is gdti-96 go to Step 52, if gdti-113 go to Step 56, or if encName
is gid-96 go to Step 60.

4. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(13-L).s1s2…sS.

5. Interpret f1f2…fF as a decimal integer F.

6. Interpret s1s2…sS as a decimal integer S.

7. Carry out the encoding procedure defined in Section 3.5.1.1 (SGTIN-96), using
i1p1p2…pLi2…i(13-L)0 as the GS1 GTIN-14 (the trailing zero is a dummy check
digit, which is ignored by the encoding procedure), L as the length of the GS1
company prefix, F from Step 5 as the Filter Value, and S from Step 6 as the Serial
Number. If the encoding procedure fails because an input is out of range, or because
the procedure indicates a failure, stop: this URI cannot be encoded into a bit string.

8. Go to Step 65.

9. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(13-L).s1s2…sS.

10. Interpret f1f2…fF as a decimal integer F.

11. Interpret s1s2…sS as an alphanumeric string S.

12. Carry out the encoding procedure defined in Section 3.5.2.1 (SGTIN-198) using
i1p1p2…pLi2…i(13-L)0 as the GS1 GTIN-14 (the trailing zero is a dummy check
digit, which is ignored by the encoding procedure), L as the length of the GS1
company prefix, F from Step 10 as the Filter Value, and S from Step 11 as the Serial
Number. If the encoding procedure fails because an input is out of range, or because
the procedure indicates a failure, stop: this URI cannot be encoded into a bit string.

13. Go to Step 65.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 97 of 120

2999
3000

3001

3002
3003
3004
3005
3006
3007

3008

3009
3010

3011

3012

3013
3014
3015
3016
3017
3018
3019

3020

3021
3022

3023

3024

3025
3026
3027
3028
3029
3030
3031

3032

3033
3034

3035

3036

14. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(17-L).

15. Interpret f1f2…fF as a decimal integer F.

16. Carry out the encoding procedure defined in Section 3.6.1.1 (SSCC-96), using
i1p1p2…pLi2i3…i(17-L)0 as the GS1 SSCC (the trailing zero is a dummy check
digit, which is ignored by the encoding procedure), L as the length of the GS1
company prefix, and F from Step 15 as the Filter Value. If the encoding procedure
fails because an input is out of range, or because the procedure indicates a failure,
stop: this URI cannot be encoded into a bit string.

17. Go to Step 65.

18. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

19. Interpret f1f2…fF as a decimal integer F.

20. Interpret s1s2…sS as a decimal integer S.

21. Carry out the encoding procedure defined in Section 3.7.1.1 (SGLN-96), using
p1p2…pLi1i2…i(12-L)0 as the GS1 GLN (the trailing zero is a dummy check digit,
which is ignored by the encoding procedure), L as the length of the GS1 company
prefix, F from Step 19 as the Filter Value, and S from Step 20 as the Extension
Component. If the encoding procedure fails because an input is out of range, or
because the procedure indicates a failure, stop: this URI cannot be encoded into a bit
string.

22. Go to Step 65.

23. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

24. Interpret f1f2…fF as a decimal integer F.

25. Interpret s1s2…sS as an alphanumeric string S.

26. Carry out the encoding procedure defined in Section 3.7.2.1 (SGLN-195), using
p1p2…pLi1i2…i(12-L)0 as the GS1 GLN (the trailing zero is a dummy check digit,
which is ignored by the encoding procedure), L as the length of the GS1 company
prefix, F from Step 24 as the Filter Value, and S from Step 25 as the Extension
Component. If the encoding procedure fails because an input is out of range, or
because the procedure indicates a failure, stop: this URI cannot be encoded into a bit
string.

27. Go to Step 65.

28. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

29. Interpret f1f2…fF as a decimal integer F

30. Interpret s1s2…sS as a decimal integer S.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 98 of 120

3037
3038
3039
3040
3041
3042
3043

3044

3045
3046

3047

3048

3049
3050
3051
3052
3053
3054
3055

3056

3057

31. Carry out the encoding procedure defined in Section 3.8.1.1 (GRAI-96),using
0p1p2…pLi1i2…i(12-L)0s1s2…sS as the GS1 GRAI (the second zero is a dummy
check digit, which is ignored by the encoding procedure), L as the length of the GS1
company prefix, and F from Step 29 as the Filter Value, and S from Step 30 as the
Serial Number. If the encoding procedure fails because an input is out of range, or
because the procedure indicates a failure, stop: this URI cannot be encoded into a bit
string.

32. Go to Step 65.

33. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

34. Interpret f1f2…fF as a decimal integer F.

35. Interpret s1s2…sS as an alphanumeric string S.

36. Carry out the encoding procedure defined in Section 3.8.2.1 (GRAI-170) using
0p1p2…pLi1i2…i(12-L)0s1s2…sS as the GS1 GRAI (the second zero is a dummy
check digit, which is ignored by the encoding procedure), L as the length of the GS1
company prefix, and F from Step 34 as the Filter Value, and S from Step 35 as the
Serial Number. If the encoding procedure fails because an input is out of range, or
because the procedure indicates a failure, stop: this URI cannot be encoded into a bit
string.

37. Go to Step 65.

38. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.s1s2…s . s3058

3059

3060

3061
3062
3063
3064
3065

3066

3067

39. Interpret f1f2…fF as a decimal integer F

40. Interpret s1s2…sS as a decimal integer S.

41. Carry out the encoding procedure defined in Section 3.9.1.1 (GIAI-96), using
p1p2…pLs1s2…sS as the GS1 GIAI, L as the length of the GS1 company prefix, and
F from Step 39 as the Filter Value, and S from Step 40 as the Serial Number. If the
encoding procedure fails because an input is out of range, or because the procedure
indicates a failure, stop: this URI cannot be encoded into a bit string.

42. Go to Step 65.

43. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.s1s2…s . s3068

3069

3070

3071
3072
3073
3074
3075

44. Interpret f1f2…fF as a decimal integer F.

45. Interpret s1s2…sS as an alphanumeric string S.

46. Carry out the encoding procedure defined in Section 3.9.2.1 (GIAI-202) using
p1p2…pLs1s2…sS as the GS1 GIAI, L as the length of the GS1 company prefix, and
F from Step 44 as the Filter Value, and S from Step 45 as the Serial Number. If the
encoding procedure fails because an input is out of range, or because the procedure
indicates a failure, stop: this URI cannot be encoded into a bit string.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 99 of 120

3076

3077
3078

3079

3080
3081
3082
3083
3084
3085

3086

3087
3088

3089

3090
3091
3092
3093
3094
3095

3096

3097
3098

3099

3100
3101
3102
3103
3104
3105

3106

3107
3108

3109

3110

3111

3112
3113

47. Go to Step 65.

48. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(17-L).

49. Interpret f1f2…fF as a decimal integer F.

50. Carry out the encoding procedure defined in Section 3.10.1.1 (GSRN-96), using
p1p2…pLi1i2…i(17-L)0 as the GS1 GSRN (the trailing zero is a dummy check digit,
which is ignored by the encoding procedure), L as the length of the GS1 company
prefix, and F from Step 49 as the Filter Value. If the encoding procedure fails
because an input is out of range, or because the procedure indicates a failure, stop:
this URI cannot be encoded into a bit string.

51. Go to Step 65.

52. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

53. Interpret f1f2…fF as a decimal integer F.

54. Carry out the encoding procedure defined in Section 3.11.1.1 (GDTI-96), using
p1p2…pLi1i2…i(12-L)0s1s2…sS as the GS1 GDTI (the zero following i(12-L) is a
dummy check digit, which is ignored by the encoding procedure), L as the length of
the GS1 company prefix and F from Step 53 as the Filter Value. If the encoding
procedure fails because an input is out of range, or because the procedure indicates a
failure, stop: this URI cannot be encoded into a bit string.

55. Go to Step 65.

56. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(13-L).s1s2…sS.

57. Interpret f1f2…fF as a decimal integer F.

58. Carry out the encoding procedure defined in Section 3.11.2.1 (GDTI-113) using
p1p2…pLi1i2…i(12-L)0s1s2…sS as the GS1 GDTI (the zero following i(12-L) is a
dummy check digit, which is ignored by the encoding procedure), L as the length of
the GS1 company prefix and F from Step 57 as the Filter Value. If the encoding
procedure fails because an input is out of range, or because the procedure indicates a
failure, stop: this URI cannot be encoded into a bit string.

59. Go to Step 65.

60. Let the URI be written as
urn:epc:tag:encName:m1m2…mL.c1c2…cK.s1s2…sS.

61. Interpret m1m2…mL as a decimal integer M.

62. Interpret c1c2…cK as a decimal integer C.

63. Interpret s1s2…sS as a decimal integer S.

64. Carry out the encoding procedure defined in Section 3.4.1.1 using M from Step 61 as
the General Manager Number, C from Step 62 as the Object Class, and S from

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 100 of 120

3114
3115
3116

3117

3119
3120

3121
3122
3123
3124
3125
3126
3127
3128

3129
3130
3131
3132
3133
3134

3136
3137
3138

3139
3140
3141

3142
3143
3144
3145

3146
3147

3148

3149
3150

3151

Step 63 as the Serial Number. If the encoding procedure fails because an input is out
of range, or because the procedure indicates a failure, stop: this URI cannot be
encoded into a bit string.

65. The translation is complete.

5.6 URI into Gen 2 Tag EPC Memory 3118
The following procedure converts a URI into a sequence of bits suitable for writing into the
EPC memory of a Gen 2 Tag, starting with bit 10x (i.e., not including the CRC).

1. If the URI is a Raw Tag URI of the form urn:epc:raw:N.A.V, calculate the
value L, where L = N/16 rounded up to the nearest whole number. If L ≥ 32, stop:
this URI cannot be encoded into the EPC memory of a Gen 2 Tag. If A ≥ 256 or if
the value V is too large to be expressed as an N-bit binary integer, stop: this URI
cannot be encoded into the EPC memory of a Gen 2 Tag. Otherwise, construct the
contents of EPC memory by concatenating the following bit strings: the value L
(five bits), two zero bits (00), a single one bit (1), the value A (eight bits), and the
value V (16L bits).

2. Otherwise, apply the procedure of Section 5.5 to obtain an N-bit string, V. If the
procedure of Section 5.5 fails, stop: this URI cannot be encoded into the EPC
memory of a Gen 2 Tag. Otherwise, calculate L = N/16 rounded up to the nearest
whole number. Construct the contents of EPC memory by concatenating the
following bit strings: the value L (five bits), eleven zero bits (00000000000), the
value V (N bits), and as many zero bits as required to make a total of 16(L+1) bits.

6 Semantics of EPC Pattern URIs 3135
The meaning of an EPC Pattern URI (urn:epc:pat:) or EPC Pure Identity Pattern URI
(urn:epc:idpat:) can be formally defined as denoting a set of encoding-specific EPCs
or a set of pure identity EPCs, respectively.

The set of EPCs denoted by a specific EPC Pattern URI is defined by the following decision
procedure, which says whether a given EPC Tag URI belongs to the set denoted by the EPC
Pattern URI.

Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Pattern URI. Let
urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName field
of both URIs is the same. The number of components (n) depends on the value of
EncName.

First, any EPC Tag URI component Ci is said to match the corresponding EPC Pattern URI
component Pi if:

• Pi is a NumericComponent, and Ci is equal to Pi; or

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as
well as in length; or

• Pi is a GS3A3Component, and Ci is equal to Pi, character for character; or

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 101 of 120

3152

3153

3154

3155
3156

3157
3158
3159

3160
3161
3162
3163

3164
3165
3166

3168
3169
3170
3171

3172

3173
3174
3175

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or

• Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or

• Pi is a StarComponent (and Ci is anything at all)

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and only if
Ci matches Pi for all 1 ≤ i ≤ n.

The set of pure identity EPCs denoted by a specific EPC Pure Identity URI is defined by a
similar decision procedure, which says whether a given EPC Pure Identity URI belongs to
the set denoted by the EPC Pure Identity Pattern URI.

Let urn:epc:idpat:SchemeName:P1.P2...Pn be an EPC Pure Identity Pattern
URI. Let urn:epc:id:SchemeName:C1.C2...Cn be an EPC Pure Identity URI,
where the SchemeName field of both URIs is the same. The number of components (n)
depends on the value of SchemeName.

Then the EPC Pure Identity URI is a member of the set denoted by the EPC Pure Identity
Pattern URI if and only if Ci matches Pi for all 1 ≤ i ≤ n, where “matches” is as defined
above.

7 Background Information (non-normative) 3167
This document draws from the previous work at the Auto-ID Center, and we recognize the
contribution of the following individuals: David Brock (MIT), Joe Foley (MIT), Sunny Siu
(MIT), Sanjay Sarma (MIT), and Dan Engels (MIT). In addition, we recognize the
contribution from Steve Rehling (P&G) on EPC to GTIN mapping.

The following papers capture the contributions of these individuals:

• Engels, D., Foley, J., Waldrop, J., Sarma, S. and Brock, D., "The Networked Physical
World: An Automated Identification Architecture"
2nd IEEE Workshop on Internet Applications (WIAPP '01),
(http://csdl.computer.org/comp/proceedings/wiapp/2001/1137/00/11370076.pdf) 3176

3177 • Brock, David. "The Electronic Product Code (EPC), A Naming Scheme for Physical
Objects", 2001. http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf 3178

3179 • Brock, David. "The Compact Electronic Product Code; A 64-bit Representation of the
Electronic Product Code", 2001. http://www.autoidlabs.org/uploads/media/MIT-3180
AUTOID-WH-008.pdf 3181

3182
3183

• D. Engels, “The Use of the Electronic Product Code™,” MIT Auto-ID Center Technical
Report MIT-AUTOID-TR009, February 2003,
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-TR009.pdf 3184

3185 • R. Moats, “URN Syntax,” Internet Engineering Task Force Request for Comments RFC-
2141, May 1997, (http://www.ietf.org/rfc/rfc2141.txt) 3186

http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-002.pdf
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-008.pdf
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-008.pdf
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-TR009.pdf
http://www.ietf.org/rfc/rfc2141.txt

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 102 of 120

3188
8 References 3187
[GS1 GS] “GS1 General Specifications,- Version 7.1,” January 2007, Published by GS1,
Blue Tower, Avenue Louise 326, bte10, Brussels 1009, B-1050, Belgium, www.gs1.org 3189

3190
3191

[MIT-TR009] D. Engels, “The Use of the Electronic Product Code™,” MIT Auto-ID Center
Technical Report MIT-AUTOID-TR009, February 2003,
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-TR009.pdf 3192

3193 [RFC2141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for
Comments RFC-2141, May 1997, http://www.ietf.org/rfc/rfc2141.txt. 3194

3195 [DOD Constructs] “United States Department of Defense Suppliers’ Passive RFID
Information Guide,” http://www.dodrfid.org/supplierguide.htm 3196

3197
3198
3199

[Gen2 Specification] EPCglobal “EPC Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860 MHz-960MHz Version
1.1.0,” EPCglobal Standard, October 2007,
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf 3200

http://www.gs1.org/
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-TR009.pdf
http://www.ietf.org/rfc/rfc2141.txt
http://www.dodrfid.org/supplierguide.htm
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 103 of 120

3201

3202
3203
3204

Appendix A: Encoding Scheme Summary Tables (non-
normative)

SGTIN Summary

SGTIN-96 Header Filter
Value Partition Company Prefix Item

Reference
Serial Number

8 3 3 20-40 24 - 4 38

0011
0000

(Binary
value)

(Refer to
Table

below for
values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

9,999,999 – 9

(Max .decimal
range**)

274,877,906,943

(Max .decimal value)

SGTIN-
198 Header Filter

Value Partition Company Prefix Item
Reference Serial Number

8 3 3 20-40 24 - 4 140

0011
0110

(Binary
value)

(Refer to
Table

below for
values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

9,999,999 – 9

(Max .decimal
range**)

Up to 20 alphanumeric
characters

Filter Values

(Non-normative)
SGTIN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Indicator Digit and Item Reference

All Others 000 Bits Digits Bits Digit

Retail
Consumer
Trade Item

001 0 40 12 4 1

Standard
Trade Item
Grouping

010 1 37 11 7 2

Single
Shipping /
Consumer
Trade Item

011 2 34 10 10 3

Inner Trade
Item

Grouping
not to be

sold at POS

100 3 30 9 14 4

Reserved 101 4 27 8 17 5

Reserved 110 5 24 7 20 6

Reserved 111 6 20 6 24 7

*Range of Item Reference field varies with the length of the Company Prefix 3205
3206 **Range of Company Prefix and Item Reference fields vary according to the contents of the Partition field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 104 of 120

3207

3208
3209

*Range of Serial Reference field varies with the length of the Company Prefix

SSCC Summary

SSCC-96 Header Filter
Value Partition Company Prefix Serial

Reference Unallocated

8 3 3 20-40 38-18 24

0011
0001

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range**)

99,999,999,999 –
99,999

(Max. decimal
range**)

[Not Used]

Filter Values

(Non-normative)
SSCC Partition Table

Type Binary
Value

Partition
Value

Company Prefix Extension Digit and Serial Reference

All Others 000 Bits Digits Bits Digits

Undefined 001 0 40 12 18 5

Logistical /
Shipping Unit

010 1 37 11 21 6

Reserved 011 2 34 10 24 7

Reserved 100 3 30 9 28 8

Reserved 101 4 27 8 31 9

Reserved 110 5 24 7 34 10

Reserved 111 6 20 6 38 11

**Range of Company Prefix and Serial Reference fields vary according to the contents of the Partition field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 105 of 120

3210

3211
3212

SGLN Summary

SGLN-96 Header Filter
Value Partition Company Prefix Location

Reference Extension Component

 8 3 3 20-40 21-1 41

 0011
0010

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

 (Max.
decimal

range**)

2,199,023,255,551

(Max Decimal Value)

Recommend:
Min=1
Max=999,999,999,999
Reserved=0
All bits shall be set to 0 when an
Extension Component is not
encoded signifying GLN only.

SGLN-195 Header Filter
Value Partition Company Prefix Location

Reference Extension component

 8 3 3 20-40 21-1 140

0011
1001

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

 (Max.
decimal

range**)

Up to 20 alphanumeric
characters

If Extension Component is not
used these 140 bits shall all be

set to binary 0

Filter Values

(Non-normative)
SGLN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Location Reference

All
Others

000 Bits Digits Bits Digit

Physical
Location

001 0 40 12 1 0

Reserved 010 1 37 11 4 1

Reserved 011 2 34 10 7 2

Reserved 100 3 30 9 11 3

Reserved 101 4 27 8 14 4

Reserved 110 5 24 7 17 5

Reserved 111 6 20 6 21 6

*Range of Location Reference field varies with the length of the Company Prefix
**Range of Company Prefix and Location Reference fields vary according to contents of the Partition field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 106 of 120

3213

GRAI Summary

GRAI-96 Header Filter
Value Partition Company Prefix Asset Type Serial Number

8 3 3 20-40 24 – 4 38

0011
0011

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

(Max.
decimal

range**)

274,877,906,943

(Max. decimal value)

GRAI-170 Header Filter
Value Partition Company Prefix Asset Type Serial Number

8 3 3 20-40 24 – 4 112

0011
0111

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

(Max.
decimal

range**)

Up to 16 alphanumeric
characters

Filter Values

(Non-normative)
GRAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Asset Type***

All Others 000 Bits Digits Bits Digit

Reserved 001 0 40 12 4 0

Reserved 010 1 37 11 7 1

Reserved 011 2 34 10 10 2

Reserved 100 3 30 9 14 3

Reserved 101 4 27 8 17 4

Reserved 110 5 24 7 20 5

Reserved 111 6 20 6 24 6

*Range of Asset Type field varies with Company Prefix. 3214
3215
3216
3217

**Range of Company Prefix and Asset Type fields vary according to contents of the Partition field.

*** Explanation (non-normative): The Asset Type field of the GRAI-96 has four more bits than necessary given
the capacity of that field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 107 of 120

3218

3219
3220

*Range of Company Prefix and Individual Asset Reference fields vary according to contents of the Partition field.

GIAI Summary

GIAI-96 Header Filter
Value Partition Company Prefix Individual Asset Reference

8 3 3 20-40 62-42

0011
0100

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range*)

4,611,686,018,427,387,903 -
4,398,046,511,103

(Max. decimal range*)

GIAI-202 Header Filter
Value Partition Company Prefix Individual Asset Reference

8 3 3 20-40 168-148

0011
1000

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range*)

Up to 24 alphanumeric characters

Filter Values

(To be confirmed)
GIAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Individual Asset Reference

All Others 000 Bits Digits Bits Digits

Reserved 001 <GIAI-96>

Reserved 010 0 40 12 42 13

Reserved 011 1 37 11 45 14

Reserved 100 2 34 10 48 15

Reserved 101 3 30 9 52 16

Reserved 110 4 27 8 55 17

Reserved 111 5 24 7 58 18

 6 20 6 62 19

 <GIAI-202>

 0 40 12 148 18

 1 37 11 151 19

 2 34 10 154 20

 3 30 9 158 21

 4 27 8 161 22

 5 24 7 164 23

 6 20 6 168 24

*Range of Serial Reference field varies with the length of the Company Prefix

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 108 of 120

3221

3222
3223
3224

GSRN Summary

GSRN-96 Header Filter
Value Partition Company Prefix Service

Reference Unallocated

8 3 3 20-40 38-18 24

0010
1101

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range**)

99,999,999,999 –
99,999

(Max. decimal
range**)

[Not Used]

Filter Values

(Non-normative)
GSRN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Service Reference

All Others 000 Bits Digits Bits Digits

Undefined 001 0 40 12 18 5

Logistical /
Shipping Unit

010 1 37 11 21 6

Reserved 011 2 34 10 24 7

Reserved 100 3 30 9 28 8

Reserved 101 4 27 8 31 9

Reserved 110 5 24 7 34 10

Reserved 111 6 20 6 38 11

*Range of Service Reference field varies with the length of the Company Prefix
**Range of Company Prefix and Service Reference fields vary according to the contents of the Partition field.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 109 of 120

3225

GDTI Summary

GDTI-96 Header Filter
Value Partition Company Prefix Document

Type Serial Number

8 3 3 20-40 21 – 1 41

0010
1100

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

(Max.
decimal

range**)

2,199,023,255,551

(Max. decimal value)

GDTI-113 Header Filter
Value Partition Company Prefix Document

Type Serial Number

8 3 3 20-40 21 – 1 58

0011
1010

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

(Max.
decimal

range**)

Up to 17 numeric characters

Filter Values

(Non-normative)
GDTI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Document Type

All Others 000 Bits Digits Bits Digit

Reserved 001 0 40 12 1 0

Reserved 010 1 37 11 4 1

Reserved 011 2 34 10 7 2

Reserved 100 3 30 9 11 3

Reserved 101 4 27 8 14 4

Reserved 110 5 24 7 17 5

Reserved 111 6 20 6 21 6

*Range of Document Type field varies with Company Prefix. 3226
3227
3228

**Range of Company Prefix and Document Type fields vary according to contents of the Partition field.

. 3229

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 110 of 120

3230
3231
3232
3233
3234

Appendix B: Example of a Specific Trade Item <SGTIN>
(non-normative)
This section presents an example of a specific trade item using SGTIN (Serialized GTIN).
Each representation serves a distinct purpose in the software stack. Generally, the highest
applicable level should be used. The GTIN used in the example is 10614141007346.

Physical Realization Layer

 …

• This layer concerns the air interface to the tags.

Pure Identity Layer
• In the URN, GTIN indicator “1” is

repositioned and check digit “6” is dropped.

• Use this URN for all exchange that does not
depend on the physical type of tag used.

urn:epc:id:sgtin:0614141.100734.2

Encoding Layer • When encoded as GTIN-96, GTIN indicator
“1” is repositioned and check digit “6” is
dropped. Header, Partition, and Filter Value
are added.

• Use this URN when software must deal with
direct writing of tags and other low-level tag
operations.

GTIN 10614141007346
+

Serial Number 2

SGTIN-96
Header Filter Value Partition Company

Prefix
Item
Reference

Serial
Number

0011
0000

3

(dec)

5

(dec)

0614141

(dec)

100734
(dec)

2

(dec)

urn:epc:tag:sgtin-96:3.0614141.100734.2

Class 1 Gen 1 Class 1 Gen 2

SGTIN

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 111 of 120

3235

 3236
3237

3238

3239

3240

3241
3242
3243

3244

3245
3246

3247
3248

3249

3250

3251

3252

3253
3254
3255
3256
3257

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 bits 3 bits 3 bits 24 bits 20 bits 38 bits SGTIN-96

0011
0000
(Binary
value)

3

(Decimal
value)

5

(Decimal
value)

0614141

(Decimal
value)

100734

(Decimal
value)

2

(Decimal
value)

• (01) is the Application Identifier for GTIN, and (21) is the Application Identifier for
Serial Number. Application Identifiers are used in certain bar codes. The header
fulfills this function (and others) in EPC.

• Header for SGTIN-96 is 00110000.

• Filter Value of 3 (Single Shipping/ Consumer Trade Item) was chosen for this
example.

• Since the Company Prefix is seven-digits long (0614141), the Partition value is 5.
This means Company Prefix has 24 bits and Item Reference has 20 bits.

• Indicator digit 1 is repositioned as the first digit in the Item Reference.

• Check digit 6 is dropped.

Explanation of SGTIN Filter Values (non-normative).

SGTINs can be assigned at several levels, including: item, inner pack, case, and pallet.
RFID can read through cardboard, and reading un-needed tags can slow us down, so Filter
Values are used to “filter in” desired tags, or “filter out” unwanted tags. Filter values are
used within the key type (i.e. SGTIN). While it is possible that filter values for several
levels of packaging may be defined in the future, it was decided to use a minimum of values

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 112 of 120

3258
3259
3260

3261

3262

3263
3264

3265

3266

for now until the community gains more practical experience in their use. Therefore the
three major categories of SGTIN filter values can be thought of in the following high level
terms:

• Single Unit: A Retail Consumer Trade Item

• Not-a-single unit: A Standard Trade Item Grouping

• Items that could be included in both categories: For example, a Single Shipping
container that contains a Single Consumer Trade Item

Three Filter Values

001 - Retail
Consumer
Trade Item

011 - Single
Shipping/Consumer

Trade Item Single
010 - Standard Trade

Item Grouping

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 113 of 120

3267

3268
3269
3270

Appendix C: Decimal values of powers of 2 Table (non-
normative)

n (2^n)10 n (2^n)10

0 1 33 8,589,934,592
1 2 34 17,179,869,184
2 4 35 34,359,738,368
3 8 36 68,719,476,736
4 16 37 137,438,953,472
5 32 38 274,877,906,944
6 64 39 549,755,813,888
7 128 40 1,099,511,627,776
8 256 41 2,199,023,255,552
9 512 42 4,398,046,511,104
10 1,024 43 8,796,093,022,208
11 2,048 44 17,592,186,044,416
12 4,096 45 35,184,372,088,832
13 8,192 46 70,368,744,177,664
14 16,384 47 140,737,488,355,328
15 32,768 48 281,474,976,710,656
16 65,536 49 562,949,953,421,312
17 131,072 50 1,125,899,906,842,624
18 262,144 51 2,251,799,813,685,248
19 524,288 52 4,503,599,627,370,496
20 1,048,576 53 9,007,199,254,740,992
21 2,097,152 54 18,014,398,509,481,984
22 4,194,304 55 36,028,797,018,963,968
23 8,388,608 56 72,057,594,037,927,936
24 16,777,216 57 144,115,188,075,855,872
25 33,554,432 58 288,230,376,151,711,744
26 67,108,864 59 576,460,752,303,423,488
27 143,217,728 60 1,152,921,504,606,846,976
28 268,435,456 61 2,305,843,009,213,693,952
29 536,870,912 62 4,611,686,018,427,387,904
30 1,073,741,824 63 9,223,372,036,854,775,808
31 2,147,483,648 64 18,446,744,073,709,551,616
32 4,294,967,296

 3271

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 114 of 120

3272
3273

Appendix D: List of Abbreviations

BAG Business Action Group

EPC Electronic Product Code

EPCIS EPC Information Services

GDTI Global Document Type Identifier

GIAI Global Individual Asset Identifier

GID General Identifier

GLN Global Location Number

GRAI Global Returnable Asset Identifier

GSRN Global Service Relation Number

GTIN Global Trade Item Number

HAG Hardware Action Group

ONS Object Naming Service

RFID Radio Frequency Identification

SAG Software Action Group

SGLN Serialized Global Location Number

SSCC Serial Shipping Container Code

URI Uniform Resource Identifier

URN Uniform Resource Name

 3274

3275

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 115 of 120

3276
3277
3278

3279
3280

3281
3282

3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301

Appendix E: GS1 General Specifications Version 7.1 (non-
normative)
(Section 3 Definition of Element Strings and Section 3.7 EPCglobal Tag Data Standard.)

This section provides GS1 approval of this version of the EPCglobal® Tag Data Standard
with the following GS1 Application Identifier definition restrictions:

Companies should use the GS1 specifications to define the applicable fields in databases and
other ICT-systems.

For GS1 use of EPC96-bit tags, the following applies:
• AI (00) SSCC (no restrictions)

• AI (01) GTIN + AI (21) Serial Number: The Section 3.6.13 Serial Number definition is
restricted to permit assignment of 274,877,906,943 numeric-only serial numbers)

• AI (414) GLN + AI (254) GLN Extension Component: The Tag Data Standard V1.1 R1.27
is approved for the use of GLN Extension with the restrictions specified in Section 2.4.6.1 of
the GS1 General Specifications..

• AI (8003) GRAI Serial Number: The Section 3.6.49 Global Returnable Asset Identifier
definition is restricted to permit assignment of 274,877,906,943 numeric-only serial numbers
and the serial number element is mandatory.

• AI (8004) GIAI Serial Number: The Section 3.6.50 Global Individual Asset Identifier
definition is restricted to permit assignment of 4,611,686,018,427,387,904 numeric-only serial
numbers.

For GS1 use of EPC longer then 96-bit tags, the following applies:
• AI (00) SSCC (no restrictions)

• AI (01) GTIN + AI (21) Serial Number: (no restrictions)

• AI (414) GLN + AI (254) Extension Component: (no restrictions).

• AI (8003) GRAI Serial Number: (no restrictions)

• AI (8004) GIAI Serial Number: (no restrictions)

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 116 of 120

3302
3303

Appendix F: GS1 Alphanumeric Character Set
(Normative)

 ISO/IEC 646 Subset

Unique Graphic Character Allocations

Graphic
Symbol

Name Hex Coded
Representation

Graphic Symbol Name Hex Coded
Representation

! Exclamation mark 21 M Capital letter M 4D
" Quotation mark 22 N Capital letter N 4E
% Percent sign 25 O Capital letter O 4F
& Ampersand 26 P Capital letter P 50
' Apostrophe 27 Q Capital letter Q 51
(Left parenthesis 28 R Capital letter R 52
) Right parenthesis 29 S Capital letter S 53
* Asterisk 2A T Capital letter T 54
+ Plus sign 2B U Capital letter U 55
, Comma 2C V Capital letter V 56
- Hyphen/Minus 2D W Capital letter W 57
. Full stop 2E X Capital letter X 58
/ Solidus 2F Y Capital letter Y 59
0 Digit zero 30 Z Capital letter Z 5A
1 Digit one 31 _ Low line 5F
2 Digit two 32 a Small letter a 61
3 Digit three 33 b Small letter b 62
4 Digit four 34 c Small letter c 63
5 Digit five 35 d Small letter d 64
6 Digit six 36 e Small letter e 65
7 Digit seven 37 f Small letter f 66
8 Digit eight 38 g Small letter g 67
9 Digit nine 39 h Small letter h 68
: Colon 3A i Small letter i 69
; Semicolon 3B j Small letter j 6A
< Less-than sign 3C k Small letter k 6B
= Equals sign 3D l Small letter l 6C
> Greater-than sign 3E m Small letter m 6D
? Question mark 3F n Small letter n 6E
A Capital letter A 41 o Small letter o 6F
B Capital letter B 42 p Small letter p 70

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 117 of 120

C Capital letter C 43 q Small letter q 71
D Capital letter D 44 r Small letter r 72
E Capital letter E 45 s Small letter s 73
F Capital letter F 46 t Small letter t 74
G Capital letter G 47 u Small letter u 75
H Capital letter H 48 v Small letter v 76
I Capital letter I 49 w Small letter w 77
J Capital letter J 4A x Small letter x 78
K Capital letter K 4B y Small letter y 79
L Capital letter L 4C z Small letter z 7A

Notes 3304
Readers should be aware that this table is derived from [GS1 GS] and may include 3305
discrepancy with the original specification at any given time. Readers are advised to always 3306
consult the original specification upon implementation. 3307

This table specifies the allowed subset of ISO/IEC 646 characters that shall be used for 3308
encoding alphanumeric Serial Number/Extension Component in this standard. The SGTIN-3309
198, SGLN-195, GRAI-170 and GIAI-202 encodings use this table. 3310

Each entry in this table gives a 7-bit code for a character, expressed in hexadecimal. For 3311
example, “Capital Letter K” has a 7-bit code of 1001011, expressed as “4B” in the table. 3312

3313

3314

3315
3316
3317
3318

The 7-bit codes in this table are identical to ISO/IEC 646 (ASCII) character codes.

Appendix G: Acknowledgement of Contributors and
Companies Opted-in during the Creation of this Standard
(Informative)

Disclaimer 3319

3320
3321
3322
3323
3324
3325
3326

3327

Whilst every effort has been made to ensure that this document and the information
contained herein are correct, EPCglobal and any other party involved in the creation
of the document hereby state that the document is provided on an “as is” basis
without warranty, either expressed or implied, including but not limited to any
warranty that the use of the information herein with not infringe any rights, of
accuracy or fitness for purpose, and hereby disclaim any liability, direct or indirect,
for damages or loss relating to the use of the document.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 118 of 120

3328
3329
3330
3331
3332
3333

Below is a list of active participants and contributors in the development of TDS 1.4.
This list does not acknowledge those who only monitored the process or those who
chose not to have their name listed here. Active participants status was granted to
those who generated emails, attended face-to-face meetings and conference calls
that were associated with the development of this Standard.

Mark Frey EPCglobal Inc. SAG Facilitator
Sylvia Stein GS1 Netherlands (EAN.nl) WG Facilitator
Vijay Sundhar Ahold NV WG co-Chair
John Anderla Kimberly-Clark Editor
Rick Schuessler Symbol Technologies Inc, a Motorola Co. WG co-Chair
Richard Bach GlobeRanger
Theron Stanford Impinj
Ken Traub Ken Traub Consulting LLC
Mark Harrison Auto-ID Labs - Cambridge
Scott Barvick Reva Systems
Sprague Ackley Intermec Technologies Corporation
John Kessler Avery Dennison
Craig Alan Repec GS1 Germany (CCG)
Gay Whitney EPCglobal Inc.
Craig Harmon Q.E.D. Systems
Rob Buck Intermec Technologies Corporation
Clive Hohberger Zebra Technologies Corporation
Stephen Miles Auto-ID Labs - MIT
Shigeya Suzuki Auto-ID Labs - Japan
Bud Biswas Polaris Networks
Timo Liu Regal Scan Tech
Kay Labinsky Sandlab Corp.
Larry Moore TEGO, Inc.
Margaret Wasserman ThingMagic, LLC
 3334

3335

3336

3337

3338
3339
3340

3341

The following list in corporate alphabetical order contains all companies that were
opted-in to the Tag Data and Translation Standard Working Group and have signed
the EPCglobal IP Policy.

Company
Acer Cybercenter Service Inc.
Ahold NV
Allixon Co., Ltd
Altria Group, Inc./Kraft Foods
AMCO TEC International Inc.

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 119 of 120

AMOS Technologies Inc.
AMOS Technologies Inc.
Applied Wireless (AWID)
Atmel GmBH
Auto-ID Labs - ADE
Auto-ID Labs - Cambridge
Auto-ID Labs - Fudan University
Auto-ID Labs - ICU
Auto-ID Labs - Japan
Auto-ID Labs - MIT
Auto-ID Labs - University of St Gallen
AXWAY/formerly Cyclone
Avery Dennison
BEA Systems
Benedicta
Cheng-Loong Corporation
Cognizant Technology Solutions
EB (Formerly 7iD)
ECO, Inc.
EPCglobal Inc.
ETRI - Electronics & Telecommunication Research
Institute
France Telecom
GlaxoSmithKline
GlobeRanger
GS1 Australia EAN
GS1 China
GS1 Germany (CCG)
GS1 Hong Kong
GS1 International
GS1 Japan
GS1 Netherlands (EAN.nl)
GS1 South Korea
GS1 Sweden AB (EAN)
GS1 Taiwan (EAN)
GS1 US
iControl, Inc.
Impinj
Innovision Res & Techno
Intelleflex
Intermec Technologies Corporation
Johnson & Johnson
Ken Traub Consulting LLC
Kimberly-Clark
KL-NET
KTNET - KOREA TRADE NETWORK
Kun Shan University Information Engineering Department
LIT (Research Ctr for Logistics Info Tech)

 Copyright ©2004-2008 EPCglobal™, All Rights Reserved. Page 120 of 120

Lockheed Martin - Savi Technology Divison
Lockheed Martin, Corp.
Manhattan Associates
MetaBiz
Microelectronics Technology, Inc.
MITSUI & CO., LTD.
NEC Corporation
Nestle
NXP Semiconductors
Oracle Corporation
Paxar
Polaris Networks
Printronix
Procter & Gamble Company
Q.E.D. Systems
Regal Scan Tech
RetailTech
Reva Systems
RF-IT Solutions GmbH
RFID Research Center, Chang Jung Christian University
Sandlab Corp.
Sandlinks
Schering-Plough Corp.
Secure RF
STMicroelectronics
Symbol Technologies Inc, a Motorola Co.
Tagent Corporation
Target Corporation
TEGO, Inc.
Tesco
ThingMagic, LLC
Tibco Software, Inc
Toppan Printing Co., Ltd
Toray International, Inc.
TrueDemand Software
US Defense Logistics Agency (DoD)
Ussen Limited Company
VeriSign
WAL-MART STORES, INC.
Yuen Foong Yu Paper
Zebra Technologies Corporation
 3342

3343

	Introduction
	2 Identity Concepts
	2.1 Pure Identities
	2.1.1 General Types
	2.1.2 GS1 System Identity Types
	2.1.2.1 Serialized Global Trade Item Number (SGTIN)
	2.1.2.2 Serial Shipping Container Code (SSCC)
	2.1.2.3 Serialized Global Location Number (SGLN)
	2.1.2.4 Global Returnable Asset Identifier (GRAI)
	2.1.2.5 Global Individual Asset Identifier (GIAI)
	2.1.2.6 Global Service Relation Number (GSRN)
	2.1.2.7 Global Document Type Identifier (GDTI)

	2.1.3 DoD Identity Type

	3 EPC Tag Bit-level Encodings
	3.1 Headers
	3.2 Use of EPCs on UHF Class 1 Generation 2 Tags
	3.2.1 EPC Memory Contents
	3.2.2 The Length Bits

	3.3 Notational Conventions
	3.4 General Identifier (GID-96)
	3.4.1.1 GID-96 Encoding Procedure
	3.4.1.2 GID-96 Decoding Procedure

	3.5 Serialized Global Trade Item Number (SGTIN)
	3.5.1 SGTIN-96
	3.5.1.1 SGTIN-96 Encoding Procedure
	3.5.1.2 SGTIN-96 Decoding Procedure

	3.5.2 SGTIN-198
	3.5.2.1 SGTIN-198 Encoding Procedure
	3.5.2.2 SGTIN-198 Decoding Procedure

	3.6 Serial Shipping Container Code (SSCC)
	3.6.1 SSCC-96
	3.6.1.1 SSCC-96 Encoding Procedure
	3.6.1.2 SSCC-96 Decoding Procedure

	3.7 Serialized Global Location Number (SGLN)
	3.7.1 SGLN-96
	3.7.1.1 SGLN-96 Encoding Procedure
	3.7.1.2 SGLN-96 Decoding Procedure

	3.7.2 SGLN-195
	3.7.2.1 SGLN-195 Encoding Procedure
	3.7.2.2 SGLN-195 Decoding Procedure

	3.8 Global Returnable Asset Identifier (GRAI)
	3.8.1 GRAI-96
	3.8.1.1 GRAI-96 Encoding Procedure
	3.8.1.2 GRAI-96 Decoding Procedure

	3.8.2 GRAI-170
	3.8.2.1 GRAI-170 Encoding Procedure
	3.8.2.2 GRAI-170 Decoding Procedure

	3.9 Global Individual Asset Identifier (GIAI)
	3.9.1 GIAI-96
	3.9.1.1 GIAI-96 Encoding Procedure
	3.9.1.2 GIAI-96 Decoding Procedure

	3.9.2 GIAI-202
	3.9.2.1 GIAI-202 Encoding Procedure
	3.9.2.2 GIAI-202 Decoding Procedure

	3.10 Global Service Relation Number (GSRN)
	3.10.1 GSRN-96
	3.10.1.1 GSRN-96 Encoding Procedure
	3.10.1.2 GSRN-96 Decoding Procedure

	3.11 Global Document Type Identifier (GDTI)
	3.11.1 GDTI-96
	3.11.1.1 GDTI-96 Encoding Procedure
	3.11.1.2 GDTI-96 Decoding Procedure

	3.11.2 GDTI-113
	3.11.2.1 GDTI-113 Encoding Procedure
	3.11.2.2 GDTI-113 Decoding Procedure

	3.12 DoD Tag Data Constructs
	3.12.1 DoD-96

	4 URI Representation
	4.1 URI Forms for Pure Identities
	4.2 URI Forms for Related Data Types
	4.2.1 URIs for EPC Tags
	4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags
	4.2.2.1 Use of the Raw URI with Gen 2 Tags
	4.2.2.2 The Length Field of a Raw URI when using Gen 2 Tags (non-normative)

	4.2.3 URIs for EPC Patterns
	4.2.4 URIs for EPC Pure Identity Patterns

	4.3 Syntax
	4.3.1 Common Grammar Elements
	4.3.2 EPCGID-URI
	4.3.3 SGTIN-URI
	4.3.4 SSCC-URI
	4.3.5 SGLN-URI
	4.3.6 GRAI-URI
	4.3.7 GIAI-URI
	4.3.8 GSRN-URI
	4.3.9 GDTI-URI
	4.3.10 EPC Tag URI
	4.3.11 Raw Tag URI
	4.3.12 EPC Pattern URI
	4.3.13 EPC Identity Pattern URI
	4.3.14 DoD Construct URI
	4.3.15 Summary (non-normative)

	5 Translation between EPC-URI and Other EPC Representations
	5.1 Bit string into EPC-URI (pure identity)
	5.2 Bit String into Tag or Raw URI
	5.3 Gen 2 Tag EPC Memory into EPC-URI (pure identity)
	5.4 Gen 2 Tag EPC Memory into Tag or Raw URI
	5.5 URI into Bit String
	5.6 URI into Gen 2 Tag EPC Memory

	6 Semantics of EPC Pattern URIs
	7 Background Information (non-normative)
	8 References
	Appendix A: Encoding Scheme Summary Tables (non-normative)
	Appendix B: Example of a Specific Trade Item <SGTIN> (non-normative)
	Appendix C: Decimal values of powers of 2 Table (non-normative)
	Appendix D: List of Abbreviations
	Appendix E: GS1 General Specifications Version 7.1 (non-normative)
	Appendix F: GS1 Alphanumeric Character Set
	Appendix G: Acknowledgement of Contributors and Companies Opted-in during the Creation of this Standard (Informative)

