

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 1 of 78

EPCTM Tag Data Standards Version 1.1 Rev.1.24

Standard Specification

01 April 2004

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 2 of 78

DOCUMENT HISTORY

Document Number: 1.1
Document Version: 1.24
Document Date : 2004-04-01

Document Summary

Document Title: Tag Data Specification
Owner: Tag Data Standard Work Group

Chairperson: Steve Rehling, Procter & Gamble
Status: (check one box) ? DRAFT X Approved

Document Change History

Date of
Change

Version Reason for
Change

Summary of Change

03-31-2004 1.24 Update errata Comments and errata identified during public
review

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 3 of 78

Abstract

This document defines the EPC Tag Data Standards. These standards define completely
that portion of EPC tag data that is standardized, including how that data is encoded on
the EPC tag itself (i.e. the EPC Tag Encodings), as well as how it is encoded for use in
the information systems layers of the EPC Systems Network (i.e. the EPC URI or
Uniform Resource Identifier Encodings).

The EPC Tag Encodings include a Header field followed by one or more Value Fields.
The Header field defines the overall length and format of the Values Fields. The Value
Fields contain a unique EPC Identifier and optional Filter Value when the latter is judged
to be important to encode on the tag itself.

The EPC URI Encodings provide the means for applications software to process EPC
Tag Encodings either literally (i.e. at the bit level) or at various levels of semantic
abstraction that is independent of the tag variations. This document defines four
categories of URI:

1. URIs for pure identities, sometimes called “canonical forms.” These contain only
the unique information that identifies a specific physical object, and are
independent of tag encodings.

2. URIs that represent specific tag encodings. These are used in software
applications where the encoding scheme is relevant, as when commanding
software to write a tag.

3. URIs that represent patterns, or sets of EPCs. These are used when instructing
software how to filter tag data.

4. URIs that represent raw tag information, generally used only for error reporting
purposes.

Status of this document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the EPCglobal. This document is the Last Call Working Draft.

This is an EPCglobal Center Working Draft for review by EPCglobal Members and other
interested parties. It is a draft document and may be updated, replaced or made obsolete
by other documents at any time. It is inappropriate to use EPCglobal Working Drafts as
reference material or to cite them as other than "work in progress". This is work in
progress and does not imply endorsement by the EPCglobal membership.

Comments on this document should be sent to the EPCglobal Software Action Group
mailing list sag-tds@develop.autoidcenter.org.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 4 of 78

Changes from Previous Versions

Version 1.1, as the first formally specified version, serves as the basis for assignment and
use of EPC numbers in standard, open systems applications. Previous versions, consisting
of technical reports and working drafts, recommended certain headers, tag lengths, and
EPC data structures. Many of these constructs have been modified in the development of
Version 1.1, and are generally not preserved for standard usage. Specifically, Version 1.1
supersedes all previous definitions of EPC Tag Data Standards.

Beyond the new content in Version 1.1 (such as the addition of new coding formats), the
most significant changes to prior versions include the following:

1. Redefinition and clarification of the rules for assigning Header values: (i) to allow
various Header lengths for a given length tag, to support more encoding options in
a given length tag; and (ii) to indicate the tag length via the left-most
(“preamble”) portion of the Header, to support maximum reader efficiency.

2. Withdrawal of the 64-bit Universal Identifier format Types I-III, previously
identified by specific 2-bit Headers. The Header assigned to the previous
Universal Type II is now assigned to the 64-bit SGTIN encoding. The Type I and
III Headers have not been reassigned to other encodings, but are rather simply
designated as “reserved.” The Headers associated with Types I and III will
remain reserved for a yet-to-be-determined period of time to support tags that
have previously used them, unless a clear need for them arises (as was the case
with the SGTIN), in which case they will be considered for reassignment.

3. Renumbering of the 96-bit Universal Identifier Header to fit within the revised
Header rules, and renaming this code the “General Identifier” to avoid confusion
with the Unique Identifier (UID) that will be introduced by the US Department of
Defense and its suppliers.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 5 of 78

Table of Contents

1 Introduction.. 8

2 Identity Concepts.. 9

2.1 Pure Identities .. 10

2.1.1 General Types ... 10

2.1.2 EAN.UCC System Identity Types .. 11

2.1.2.1 Serialized Global Trade Identification Number (SGTIN)...................... 12

2.1.2.2 Serial Shipping Container Code (SSCC) ... 13

2.1.2.3 Serialized Global Location Number (SGLN)... 13

2.1.2.4 Global Returnable Asset Identifier (GRAI) ... 14

2.1.2.5 Global Individual Asset Identifier (GIAI).. 15

3 EPC Tag Bit- level Encodings .. 15

3.1 Headers .. 16

3.2 Notational Conventions ... 18

3.3 General Identifier (GID-96)... 19

3.3.1.1 GID-96 Encoding Procedure .. 19

3.3.1.2 GID-96 Decoding Procedure.. 20

3.4 Serialized Global Trade Item Number (SGTIN) ... 20

3.4.1 SGTIN-64.. 20

3.4.1.1 SGTIN-64 Encoding Procedure ... 22

3.4.1.2 SGTIN-64 Decoding Procedure... 22

3.4.2 SGTIN-96.. 23

3.4.2.1 SGTIN-96 Encoding Procedure ... 24

3.4.2.2 SGTIN-96 Decoding Procedure... 25

3.5 Serial Shipping Container Code (SSCC)... 26

3.5.1 SSCC-64.. 26

3.5.1.1 SSCC-64 Encoding Procedure ... 27

3.5.1.2 SSCC-64 Decoding Procedure ... 28

3.5.2 SSCC-96.. 28

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 6 of 78

3.5.2.1 SSCC-96 Encoding Procedure ... 30

3.5.2.2 SSCC-96 Decoding Procedure ... 30

3.6 Serialized Global Location Number (SGLN) .. 31

3.6.1 SGLN-64... 32

3.6.1.1 SGLN-64 Encoding Procedure... 33

3.6.1.2 SGLN-64 Decoding Procedure .. 33

3.6.2 SGLN-96... 34

3.6.2.1 SGLN-96 Encoding Procedure... 35

3.6.2.2 SGLN-96 Decoding Procedure .. 36

3.7 Global Returnable Asset Identifier (GRAI)... 37

3.7.1 GRAI-64.. 37

3.7.1.1 GRAI-64 Encoding Procedure ... 38

3.7.1.2 GRAI-64 Decoding Procedure... 39

3.7.2 GRAI-96.. 40

3.7.2.1 GRAI-96 Encoding Procedure ... 41

3.7.2.2 GRAI-96 Decoding Procedure... 42

3.8 Global Individual Asset Identifier (GIAI) ... 43

3.8.1 GIAI-64... 43

3.8.1.1 GIAI-64 Encoding Procedure... 44

3.8.1.2 GIAI-64 Decoding Procedure .. 45

3.8.2 GIAI-96... 45

3.8.2.1 GIAI-96 Encoding Procedure... 47

3.8.2.2 GIAI-96 Decoding Procedure .. 47

4 URI Representation.. 48

4.1 URI Forms for Pure Identities ... 49

4.2 URI Forms for Related Data Types ... 50

4.2.1 URIs for EPC Tags ... 51

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags 51

4.2.3 URIs for EPC Patterns .. 52

4.3 Syntax .. 53

4.3.1 Common Grammar Elements.. 53

4.3.2 EPCGID-URI.. 53

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 7 of 78

4.3.3 SGTIN-URI... 53

4.3.4 SSCC-URI... 53

4.3.5 SGLN-URI.. 54

4.3.6 GRAI-URI... 54

4.3.7 GIAI-URI.. 54

4.3.8 EPC Tag URI .. 54

4.3.9 Raw Tag URI .. 55

4.3.10 EPC Pattern URI .. 55

4.3.11 Summary (non-normative)... 55

5 Translation between EPC-URI and Other EPC Representations 57

6 Semantics of EPC Pattern URIs... 64

7 Background Information.. 64

8 References .. 66

9 Appendix A: Encoding Scheme Summary Tables ... 67

10 Appendix B: EPC Header Values and Tag Identity Lengths.................................. 72

11 Appendix C: Example of a Specific Trade Item (SGTIN) 74

12 Appendix D: Binary Digit Capacity Tables .. 76

13 Appendix E: List of Abbreviations ... 77

14 Appendix F: General EAN.UCC Specifications.. 78

15 General EAN.UCC SpecificationsError! Bookmark not defined.

15.1 Section 3.0 Definition of Element Strings ... 78

15.2 Section 3.7 EPCglobal Tag Data Standard... 78

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 8 of 78

1 Introduction
The Electronic Product Code™ (EPC™) is an identification scheme for universally
identifying physical objects via Radio Frequency Identification (RFID) tags and other
means. The standardized EPC data consists of an EPC (or EPC Identifier) that uniquely
identifies an individual object, as well as an optional Filter Value when judged to be
necessary to enable effective and efficient reading of the EPC tags. In addition to this
standardized data, certain Classes of EPC tags will allow user-defined data. The EPC
Tag Data Standards will define the length and position of this data, without defining its
content. Currently no user-defined data specifications exist since the related Class tags
have not been defined.

The EPC Identifier is a meta-coding scheme designed to support the needs of various
industries by accommodating both existing coding schemes where possible and defining
new schemes where necessary. The various coding schemes are referred to as Domain
Identifiers, to indicate that they provide object identification within certain domains such
as a particular industry or group of industries. As such, the Electronic Product Code
represents a family of coding schemes (or “namespaces”) and a means to make them
unique across all possible EPC-compliant tags. These concepts are depicted in the chart
below.

Figure A. EPC Terminology.

 In this version of the EPC – EPC Version 1.1 – the specific coding schemes include a
General Identifier (GID), a serialized version of the EAN.UCC Global Trade Item
Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the

Key Terminology

EPC or EPC Identifier

e.g. SGTIN, SGLN, SSCC, GID

Standard EPC Tag Data

Header

Filter Value

(Optional)
Domain Identifier

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 9 of 78

EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset
Identifier (GRAI®), and the EAN.UCC Global Individual Asset Identifier (GIAI®).

In the following sections, we will describe the structure and organization of the EPC and
provide illustrations to show its recommended use.

The EPCglobal Tag Data Standard V1.1 R1.23 has been approved by EAN.UCC with the
restrictions outlined in the General EAN.UCC Specifications Section 3.7, which is
excerpted into Tag Data Standard Appendix F.

2 Identity Concepts
To better understand the overall framework of the EPC Tag Data Standards, it’s helpful
to distinguish between three levels of identification (See Figure B). Although this
specification addresses the pure identity and encoding layers in detail, all three layers are
described below to explain the layer concepts and the context for the encoding layer.

Figure B. Defined Identity Namespaces, Encodings, and Realizations.

Physical Realization Layer

Pure Identity Layer

Encoding Layer

Identity

Namespace

Additional Info

Realization

Encoding

Procedure

Identity URN

URI Encoding

Realization

Tag Encoding

…

…

…

Identity

Namespace

Encoding

Procedure

Identity

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 10 of 78

Pure identity -- the identity associated with a specific physical or logical entity,
independent of any particular encoding vehicle such as an RF tag, bar code or database
field. As such, a pure identity is an abstract name or number used to identify an entity. A
pure identity consists of the information required to uniquely identify a specific entity,
and no more. Identity URI – a representation of a pure identity as a Uniform Resource
Identifier (URI). A URI is a character string representation that is commonly used to
exchange identity data between software components of a larger system.

Encoding -- a pure identity, together with additional information such as filter value,
rendered into a specific syntax (typically consisting of value fields of specific sizes). A
given pure identity may have a number of possible encodings, such as a Barcode
Encoding, various Tag Encodings, and various URI Encodings. Encodings may also
incorporate additional data besides the identity (such as the Filter Value used in some
encodings), in which case the encoding scheme specifies what additional data it can hold.

Physical Realization of an Encoding -- an encoding rendered in a concrete
implementation suitable for a particular machine-readable form, such as a specific kind of
RF tag or specific database field. A given encoding may have a number of possible
physical realizations.

For example, the Serial Shipping Container Code (SSCC) format as defined by the
EAN.UCC System is an example of a pure identity. An SSCC encoded into the EPC-
SSCC 96-bit format is an example of an encoding. That 96-bit encoding, written onto a
UHF Class 1 RF Tag, is an example of a physical realization.

A particular encoding scheme may implicitly impose constraints on the range of identities
that may be represented using that encoding. For example, only 16,384 company
prefixes can be encoded in the 64-bit SSCC scheme. In general, each encoding scheme
specifies what constraints it imposes on the range of identities it can represent.

Conversely, a particular encoding scheme may accommodate values that are not valid
with respect to the underlying pure identity type, thereby requiring an explicit constraint.
For example, the EPC-SSCC 96-bit encoding provides 24 bits to encode a 7-digit
company prefix. In a 24-bit field, it is possible to encode the decimal number
10,000,001, which is longer than 7 decimal digits. Therefore, this does not represent a
valid SSCC, and is forbidden. In general, each encoding scheme specifies what limits it
imposes on the value that may appear in any given encoded field.

2.1 Pure Identities
This section defines the pure identity types for which this document specifies encoding
schemes.

2.1.1 General Types
This version of the EPC Tag Data Standards defines one general identity type. The
General Identifier (GID-96) is independent of any known, existing specifications or
identity schemes. The General Identifier is composed of three fields - the General
Manager Number, Object Class and Serial Number. Encodings of the GID include a
fourth field, the header, to guarantee uniqueness in the EPC namespace.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 11 of 78

The General Manager Number identifies an organizational entity (essentially a company,
manager or other organization) that is responsible for maintaining the numbers in
subsequent fields – Object Class and Serial Number. EPCglobal assigns the General
Manager Number to an entity, and ensures that each General Manager Number is unique.

The Object Class is used by an EPC managing entity to identify a class or “type” of
thing. These object class numbers, of course, must be unique within each General
Manager Number domain. Examples of Object Classes could include case Stock
Keeping Units of consumer-packaged goods or different structures in a highway system,
like road signs, lighting poles, and bridges, where the managing entity is a County.

Finally, the Serial Number code, or serial number, is unique within each object class. In
other words, the managing entity is responsible for assigning unique, non-repeating serial
numbers for every instance within each object class.

2.1.2 EAN.UCC System Identity Types
This version of the EPC Tag Data Standards defines five EPC identity types derived from
the EAN.UCC System family of product codes, each described in the subsections below.

EAN.UCC System codes have a common structure, consisting of a fixed number of
decimal digits that encode the identity, plus one additional “check digit” which is
computed algorithmically from the other digits. Within the non-check digits, there is an
implicit division into two fields: a Company Prefix assigned by EAN or UCC to a
managing entity, and the remaining digits, which are assigned by the managing entity.
(The digits apart from the Company Prefix are called by a different name by each of the
EAN.UCC System codes.) The number of decimal digits in the Company Prefix varies
from 6 to 12 depending on the particular Company Prefix assigned. The number of
remaining digits therefore varies inversely so that the total number of digits is fixed for a
particular EAN.UCC System code type.

The EAN.UCC recommendations for the encoding of EAN.UCC System identities into
bar codes, as well as for their use within associated data processing software, stipulate
that the digits comprising a EAN.UCC System code should always be processed together
as a unit, and not parsed into individual fields. This recommendation, however, is not
appropriate within the EPC Network, as the ability to divide a code into the part assigned
to the managing entity (the Company Prefix in EAN.UCC System types) versus the part
that is managed by the managing entity (the remainder) is essential to the proper
functioning of the Object Name Service (ONS). In addition, the ability to distinguish the
Company Prefix is believed to be useful in filtering or otherwise securing access to EPC-
derived data. Hence, the EPC encodings for EAN.UCC code types specified herein
deviate from the aforementioned recommendations in the following ways:

EPC encodings carry an explicit division between the Company Prefix and the remaining
digits, with each individually encoded into binary. Hence, converting from the traditional
decimal representation of an EAN.UCC System code and an EPC encoding requires
independent knowledge of the length of the Company Prefix.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 12 of 78

EPC encodings do not include the check digit. Hence, converting from an EPC encoding
to a traditional decimal representation of a code requires that the check digit be
recalculated from the other digits.

2.1.2.1 Serialized Global Trade Identification Number (SGTIN)
The Serialized Global Trade Identification Number is a new identity type based on the
EAN.UCC Global Trade Identification Number (GTIN) code defined in the General
EAN.UCC Specifications. A GTIN by itself does not fit the definition of an EPC pure
identity, because it does not uniquely identify a single physical object. Instead, a GTIN
identifies a particular class of object, such as a particular kind of product or SKU.

All representations of SGTIN support the full 14-digit GTIN format. This means that the
zero indicator-digit and leading zero in the Company Prefix for UCC-12, and the zero
indicator-digit for EAN/UCC-13, can be encoded and interpreted accurately from an
EPC encoding. EAN/UCC-8 is not currently supported in EPC, but would be supported
in full 14-digit GTIN format as well.

To create a unique identifier for individual objects, the GTIN is augmented with a serial
number, which the managing entity is responsible for assigning uniquely to individual
object classes. The combination of GTIN and a unique serial number is called a
Serialized GTIN (SGTIN).

The SGTIN consists of the following information elements:

The Company Prefix, assigned by EAN or UCC to a managing entity. The Company
Prefix is the same as the Company Prefix digits within an EAN.UCC GTIN decimal
code.

The Item Reference, assigned by the managing entity to a particular object class. The
Item Reference for the purposes of EPC encoding is derived from the GTIN by
concatenating the Indicator Digit of the GTIN and the Item Reference digits, and treating
the result as a single integer.

The Serial Number, assigned by the managing entity to an individual object. The serial
number is not part of the GTIN code, but is formally a part of the SGTIN.

Figure C. How the parts of the decimal SGTIN are extracted, rearranged, and
augmented for encoding.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 13 of 78

2.1.2.2 Serial Shipping Container Code (SSCC)
The Serial Shipping Container Code (SSCC) is defined by the General EAN.UCC
Specifications. Unlike the GTIN, the SSCC is already intended for assignment to
individual objects and therefore does not require any additional fields to serve as an EPC
pure identity.

Note that many applications of SSCC have historically included the Application Identifier
(00) in the SSCC identifier field when stored in a database. This is not a standard
requirement, but a widespread practice. The Application Identifier is a sort of header
used in bar code applications, and can be inferred directly from EPC headers
representing SSCC. In other words, an SSCC EPC can be interpreted as needed to
include the (00) as part of the SSCC identifier or not.

The SSCC consists of the following information elements:

The Company Prefix, assigned by EAN or UCC to a managing entity. The Company
Prefix is the same as the Company Prefix digits within an EAN.UCC SSCC decimal
code.

The Serial Reference, assigned uniquely by the managing entity to a specific shipping
unit. The Serial Reference for the purposes of EPC encoding is derived from the SSCC
by concatenating the Extension Digit of the SSCC and the Serial Reference digits, and
treating the result as a single integer.

 Figure D. How the parts of the decimal SSCC are extracted and rearranged for
encoding.

2.1.2.3 Serialized Global Location Number (SGLN)
The Global Location Number (GLN) is defined by the General EAN.UCC Specifications.
A GLN can represent either a discrete, unique physical location such as a dock door or a
warehouse slot, or an aggregate physical location such as an entire warehouse. In
addition, a GLN can represent a logical entity such as an “organization” that performs a
business function such as placing an order.

Recognizing these variables, the EPC GLN is meant to apply only to the physical
location sub-type of GLN.

??The serial number field is reserved and should not be used, until the EAN.UCC
community determines the appropriate way, if any, for extending GLN.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 14 of 78

The SGLN consists of the following information elements:

The Company Prefix, assigned by EAN or UCC to a managing entity. The Company
Prefix is the same as the Company Prefix digits within an EAN.UCC GLN decimal code.

The Location Reference, assigned uniquely by the managing entity to an aggregate or
specific physical location.

The Serial Number, assigned by the managing entity to an individual unique location.

??The serial number should not be used until specified by the EAN.UCC General
Specifications .

Figure E. How the parts of the decimal SGLN are extracted and rearranged for
encoding.

2.1.2.4 Global Returnable Asset Identifier (GRAI)
The Global Returnable Asset Identifier is (GRAI) is defined by the General EAN.UCC
Specifications. Unlike the GTIN, the GRAI is already intended for assignment to
individual objects and therefore does not require any additional fields to serve as an EPC
pure identity.

The GRAI consists of the following information elements:

The Company Prefix, assigned by EAN or UCC to a managing entity. The Company
Prefix is the same as the Company Prefix digits within an EAN.UCC GRAI decimal
code.

The Asset Type, assigned by the managing entity to a particular class of asset.

The Serial Number, assigned by the managing entity to an individual object. The EPC
representation is only capable of representing a subset of Serial Numbers allowed in the
General EAN.UCC Specifications. Specifically, only those Serial Numbers consisting of
one or more digits, with no leading zeros, are permitted [see Appendix F for details].

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 15 of 78

Figure F. How the parts of the decimal GRAI are extracted and rearranged for encoding.

2.1.2.5 Global Individual Asset Identifier (GIAI)
The Global Individual Asset Identifier (GIAI) is defined by the General EAN.UCC
Specifications. Unlike the GTIN, the GIAI is already intended for assignment to
individual objects and therefore does not require any additional fields to serve as an EPC
pure identity.

The GIAI consists of the following information elements:

The Company Prefix, assigned by EAN or UCC to a managing entity. The Company
Prefix is the same as the Company Prefix digits within an EAN.UCC GIAI decimal code.

The Individual Asset Reference, assigned uniquely by the managing entity to a specific
asset. The EPC representation is only capable of representing a subset of Individual Asset
References allowed in the General EAN.UCC Specifications. Specifically, only those
Individual Asset References consisting of one or more digits, with no leading zeros, are
permitted.

Figure G. How the parts of the decimal GIAI are extracted and rearranged for encoding.

3 EPC Tag Bit-level Encodings
The general structure of EPC encodings on a tag is as a string of bits (i.e., a binary
representation), consisting of a tiered, variable length header followed by a series of
numeric fields (Figure H) whose overall length, structure, and function are completely
determined by the header value.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 16 of 78

3.1 Headers
As previously stated, the Header defines the overall length, identity type, and structure of
the EPC Tag Encoding, including its Filter Value, if any. The header is of variable length,
using a tiered approach in which a zero value in each tier indicates that the header is
drawn from the next longer tier. For the encodings defined in this specification, headers
are either 2 bits or 8 bits. Given that a zero value is reserved to indicate a header in the
next longer tier, the 2-bit header can have 3 possible values (01, 10, and 11, not 00), and
the 8-bit header can have 63 possible values (recognizing that the first 2 bits must be 00
and 00000000 is reserved to allow headers that are longer than 8 bits).

Explanation (non-normative): The tiered scheme is designed to simplify the Header
processing required by the Reader in order to determine the tag data format, particularly
the location of the Filter Value, while attempting to conserve bits for data values in the
64-bit tag. In the not-too-distant future, we expect to be able to “reclaim” the 2-bit tier
when 64-bit tags are no longer needed, thereby expanding the 8-bit Header from 63
possible values to 255.

The assignment of Header values has been designed so that the tag length may be easily
discerned by examining the leftmost (or Preamble) bits of the Header. Moreover, the
design is aimed at having as few Preambles per tag length as possible, ideally 1 but
certainly no more than 2 or 3. This latter objective prompts us to avoid, if it all possible,
using those Preambles that allow very few Header values (as noted in italics in Table 1
below). The purpose of this Preamble-to-Tag-Length design is so that RFID readers may
easily determine a tag’s length. See Appendix B for a detailed discussion of why this is
important.

The currently assigned Headers are such that a tag may be inferred to be 64 bits if either
the first two bits are non-zero or the first five bits are equal to 00001; otherwise, the
Header indicates the tag is 96 bits. In the future, unassigned Headers may be assigned for
these and other tag lengths.

Certain Preambles aren’t currently tied to a particular tag length to leave open the option
for additional tag lengths, especially longer ones that can accommodate longer coding
schemes such as the Unique ID (UID) being pursued by suppliers to the US Department
of Defense.

Figure H. The general structure of EPC encodings is as a string of bits, consisting
of a variable length header followed by a series of value fields, whose overall
length, structure, and function are completely determined by the header value.

He ader Numbers

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 17 of 78

Eleven encoding schemes have been defined in this version of the EPC Tag Data
Standard, as shown in Table 1 below.

Header Value
(binary)

Tag Length
(bits)

EPC Encoding Scheme

01 64 [Reserved 64-bit scheme]

10 64 SGTIN-64

11 64 [Reserved 64-bit scheme]

0000 0001

0000 001x

0000 01xx

na

na

na

[1 reserved scheme]

[2 reserved schemes]

[4 reserved schemes]

0000 1000 64 SSCC-64

0000 1001 64 GLN-64

0000 1010 64 GRAI-64

0000 1011 64 GIAI-64

0000 1100

…

0000 1111

64 [4 reserved 64-bit schemes]

0001 0000

…

0010 1111

na [32 reserved schemes]

0011 0000 96 SGTIN-96

0011 0001 96 SSCC-96

0011 0010 96 GLN-96

0011 0011 96 GRAI-96

0011 0100 96 GIAI-96

0011 0101 96 GID-96

0011 0110

…

0011 1111

96 [10 reserved 96-bit schemes]

0000 0000 … [reserved for future headers
longer than 8 bits]

Table 1. Electronic Product Code Headers

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 18 of 78

3.2 Notational Conventions
In the remainder of this section, tag-encoding schemes are depicted using the following
notation (See Table 2).

 Header Filter
Value

Company
Prefix
Index

Item
Reference

Serial
Number

SGTIN-64 2 3 14 20 25

 10

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

9 -1,048,575

(Decimal
capacity*)

33,554,431

(Decimal
capacity)

*Capacity of Item Reference field varies with the length of the Company Prefix

Table 2. Example of Notation Conventions.

The first column of the table gives the formal name for the encoding. The remaining
columns specify the layout of each field within the encoding. The field in the leftmost
column occupies the most significant bits of the encoding (this is always the header
field), and the field in the rightmost column occupies the least significant bits. Each field
is a non-negative integer, encoded into binary using a specified number of bits. Any
unused bits (i.e., bits not required by a defined field) are explicitly indicated in the table,
so that the columns in the table are concatenated with no gaps to form the complete
binary encoding.

Reading down each column, the table gives the formal name of the field, the number of
bits used to encode the field’s value, and the number of possible values that are permitted
within that field. The number of possible values in the field can be either a specified
limit, or simply two to the power of the number of bits in the field.

In some cases, the number of possible values in one field depends on the specific value
assigned to another field. In such cases, a range of decimal capacity is shown. In the
example above, the decimal capacity for the Item Reference field depends on the length
of the Company Prefix field; hence the decimal capacity is shown as a range. Where a
field must contain a specific value (as in the Header field), the last row of the table
specifies the specific value rather than the number of possible values.

Some encodings have fields that are of variable length. The accompanying text specifies
how the field boundaries are determined in those cases.

Following an overview of each encoding scheme are a detailed encoding procedure and
decoding procedure. The encoding and decoding procedure provide the normative
specification for how each type of encoding is to be formed and interpreted.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 19 of 78

3.3 General Identifier (GID-96)
The General Identifier is defined for a 96-bit EPC, and is independent of any existing
identity specification or convention. The General Identifier is composed of three fields -
the General Manager Number, Object Class and Serial Number. Encodings of the GID
include a fourth field, the header, to guarantee uniqueness in the EPC namespace, as
shown in Table 3.

 Header General
Manager

Number

Object Class Serial Number

8 28 24 36 GID-96

0011
0101

(Binary
value)

268,435,456

 (Decimal
capacity)

16,777,216

 (Decimal
capacity)

68,719,476,736

 (Decimal
capacity)

Table 3. The General Identifier (GID-96) includes three fields in addition to the header – the
General Manager Number, Object class and Serial Number numbers.

The General Manager Number identifies essentially a company, manager or
organization; that is an entity responsible for maintaining the numbers in subsequent
fields – Object Class and Serial Number. EPCglobal assigns the General Manager
Number to an entity, and ensures that each General Manager Number is unique.

The third component is Object Class, and is used by an EPC managing entity to identify a
class or “type” of thing. These object class numbers, of course, must be unique within
each General Manager Number domain. Examples of Object Classes could include case
Stock Keeping Units of consumer-packaged goods and component parts in an assembly.

Finally, the Serial Number code, or serial number, is unique within each object class. In
other words, the managing entity is responsible for assigning unique – non-repeating
serial numbers for every instance within each object class code.

3.3.1.1 GID-96 Encoding Procedure
The following procedure creates a GID-96 encoding.

Given:

An General Manager Number M where 0 = M < 228

An Object Class C where 0 = C < 224

A Serial Number S where 0 = S < 236

Procedure:

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 20 of 78

1. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110101, General Manager Number M (28 bits),
Object Class C (24 bits), Serial Number S (36 bits).

3.3.1.2 GID-96 Decoding Procedure
Given:

A GID-96 as a 96-bit string 00110101b87b86…b0 (where the first eight bits 00110101 are
the header)

Yields:

An General Manager Number

An Object Class

A Serial Number

Procedure:

1. Bits b87b86…b60, considered as an unsigned integer, are the General Manager Number.

2. Bits b59b58…b36, considered as an unsigned integer, are the Object Class.

3. Bits b35b34…b0, considered as an unsigned integer, are the Serial Number.

3.4 Serialized Global Trade Item Number (SGTIN)
The EPC encoding scheme for SGTIN permits the direct embedding of EAN.UCC
System standard GTIN and Serial Number codes on EPC tags. In all cases, the check
digit is not encoded. Two encoding schemes are specified, SGTIN-64 (64 bits) and
SGTIN-96 (96 bits).

In the SGTIN-64 encoding, the limited number of bits prohibits a literal embedding of the
GTIN. As a partial solution, a Company Prefix Index is used. This Index, which can
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit
tags, in addition to their existing EAN.UCC Company Prefixes. The Index is encoded on
the tag instead of the Company Prefix, and is subsequently translated to the Company
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While
this means that only a limited number of Company Prefixes can be represented in the 64-
bit tag, this is a transitional step to full accommodation in 96-bit and additional encoding
schemes.

3.4.1 SGTIN-64
The SGTIN-64 includes five fields – Header, Filter Value, Company Prefix Index, Item
Reference, and Serial Number, as shown in Table 4.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 21 of 78

 Header Filter
Value

Company
Prefix
Index

Item
Reference

Serial
Number

2 3 14 20 25 SGTIN-64

10

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

9 --1,048,575

(Decimal
capacity*)

33,554,431

(Decimal
capacity)

*Capacity of Item Reference field varies with the length of the Company Prefix

Table 4. The EPC SGTIN-64 bit allocation, header, and decimal capacity.

Header is 2 bits, with a binary value of 10.

Filter Value is not part of the SGTIN pure identity, but is additional data that is used for
fast filtering and pre-selection of basic logistics types, such as items, inner packs, cases
and pallets. The Filter Values for 64-bit and 96-bit SGTIN are the same. The normative
specifications for Filter Values are undefined at this time; see Table 5 for a non-
normative summary (for purposes of illustration only).

Type Binary Value

Other xxx

Item xxx

Inner Pack xxx

Case xxx

Load/Pallet xxx

Reserved xxx

Table 5. SGTIN Filter Values (non-normative).

Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this field is
not the Company Prefix itself, but rather an index into a table that provides the Company
Prefix as well as an indication of the Company Prefix’s length. The means by which
hardware or software may obtain the contents of the translation table is specified in
[Translation of 64-bit Tag Encoding Company Prefix Indices Into EAN.UCC Company
Prefixes].

Item Reference encodes the GTIN Item Reference number and Indicator Digit. The
Indicator Digit is combined with the Item Reference field in the following manner:
Leading zeros on the item reference are significant. Put the Indicator Digit in the leftmost
position available within the field. For instance, 00235 is different than 235. With the

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 22 of 78

indicator digit of 1, the combination with 00235 is 100235. The resulting combination is
treated as a single integer, and encoded into binary to form the Item Reference field.

Serial Number contains a serial number. The 25-bit capacity is limited to serial numbers
up to 33,554,431, smaller than the EAN.UCC System specification for serial number.
Only numbers are permitted.

3.4.1.1 SGTIN-64 Encoding Procedure
The following procedure creates an SGTIN-64 encoding.

Given:

An EAN.UCC GTIN-14 consisting of digits d1d2…d14

The length L of the company prefix portion of the GTIN

A Serial Number S where 0 = S < 225

A Filter Value F where 0 = F < 8

Procedure:

1. Extract the EAN.UCC Company Prefix d2d3…d(L+1)

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not
found in the Company Prefix Translation Table, stop: this GTIN cannot be encoded in the
SGTIN-64 encoding.

3. Construct the Item Reference by concatenating digits d1d(L+2)d(L+3)…d13 and
considering the result to be a decimal integer, I. If I = 220, stop: this GTIN cannot be
encoded in the SGTIN-64 encoding.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 10 (2 bits), Filter Value F (3 bits), Company
Prefix Index C from Step 2 (14 bits), Item Reference from Step 3 (20 bits), Serial
Number S (25 bits).

3.4.1.2 SGTIN-64 Decoding Procedure
Given:

An SGTIN-64 as a 64-bit bit string 10b61b60…b0 (where the first two bits 10 are the
header)

Yields:

An EAN.UCC GTIN-14

A Serial Number

A Filter Value

Procedure:

1. Bits b61b60b59, considered as an unsigned integer, are the Filter Value.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 23 of 78

2. Extract the Company Prefix Index C by considering bits b58b57…b45 as an unsigned
integer.

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value
of L is also obtained from the table).

4. Consider bits b44b43…b25 as an unsigned integer. If this integer is greater than or
equal to 10(13-L), stop: the input bit string is not a legal SGTIN-64 encoding. Otherwise,
convert this integer to a (13-L)-digit decimal number i1i2…i(13-L), adding leading zeros as
necessary to make (13-L) digits.

5. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 4, d2d3…d(L+1) =
p1p2…pL from Step 3, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 4.

6. Calculate the check digit d14 = (-3(d1 + d3 + d5 + d7 + d9 + d11 + d13) - (d2 + d4 + d6 +
d8 + d10 + d12)) mod 10.

7. The EAN.UCC GTIN-14 is the concatenation of digits from Steps 5 and 6: d1d2…d14.

8. Bits b24b23…b0, considered as an unsigned integer, are the Serial Number.

3.4.2 SGTIN-96
In addition to a Header, the SGTIN-96 is composed of five fields: the Filter Value,
Partition, Company Prefix, Item Reference, and Serial Number, as shown in Table 6.

*Capacity of Company Prefix and Item Reference fields vary according to the contents of the Partition field.

Table 6. The EPC SGTIN-96 bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0011 0000.

Filter Value is not part of the GTIN or EPC identifier, but is used for fast filtering and
pre-selection of basic logistics types, such as items, inner packs, cases and pallets. The
Filter Values for 64-bit and 96-bit GTIN are the same. See Table 5.

Partition is an indication of where the subsequent Company Prefix and Item Reference
numbers are divided. This organization matches the structure in the EAN.UCC GTIN in
which the Company Prefix added to the Item Reference number (plus the single Indicator
Digit) totals 13 digits, yet the Company Prefix may vary from 6 to 12 digits and the Item

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 3 3 20-40 24-4 38 SGTIN-96

0011
0000

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,9
99,999

(Decimal
capacity*)

9,999,999
– 9

(Decimal
capacity*)

274,877,906
,943

(Decimal
capacity)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 24 of 78

Reference (including the single Indicator Digit) from 7 to 1 digit(s). The available values
of Partition and the corresponding sizes of the Company Prefix and Item Reference fields
are defined in Table 7.

Company Prefix contains a literal embedding of the EAN.UCC Company Prefix.

Item Reference contains a literal embedding of the GTIN Item Reference number. The
Indicator Digit is combined with the Item Reference field in the following manner:
Leading zeros on the item reference are significant. Put the Indicator Digit in the leftmost
position available within the field. For instance, 00235 is different than 235. With the
indicator digit of 1, the combination with 00235 is 100235. The resulting combination is
treated as a single integer, and encoded into binary to form the Item Reference field.

Serial Number contains a serial number. The capacity of this serial number is less than
the maximum EAN.UCC System specification for serial number, and only numbers are
permitted.

Partition
Value

(P)

Company Prefix Item Reference
and Indicator Digit

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

Table 7. SGTIN-96 Partitions.

3.4.2.1 SGTIN-96 Encoding Procedure
The following procedure creates an SGTIN-96 encoding.

Given:

An EAN.UCC GTIN-14 consisting of digits d1d2…d14

The length L of the Company Prefix portion of the GTIN

A Serial Number S where 0 = S < 238

A Filter Value F where 0 = F < 8

Procedure:

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 25 of 78

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column
of the Partition Table (Table 7) to determine the Partition Value, P, the number of bits M
in the Company Prefix field, and the number of bits N in the Item Reference and
Indicator Digit field. If L is not found in any row of Table 7, stop: this GTIN cannot be
encoded in an SGTIN-96.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering
the result to be a decimal integer, C.

3. Construct the Item Reference by concatenating digits d1d(L+2)d(L+3)…d13 and
considering the result to be a decimal integer, I.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110000 (8 bits), Filter Value F (3 bits),
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Item
Reference from Step 3 (N bits), Serial Number S (38 bits). Note that M+N = 44 bits for
all P.

3.4.2.2 SGTIN-96 Decoding Procedure
Given:

An SGTIN-96 as a 96-bit bit string 00110000b87b86…b0 (where the first eight bits
00110000 are the header)

Yields:

An EAN.UCC GTIN-14

A Serial Number

A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGTIN-96.

3. Look up the Partition Value P in Table 7 to obtain the number of bits M in the
Company Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a
legal SGTIN-96 encoding. Otherwise, convert this integer into a decimal number
p1p2…pL, adding leading zeros as necessary to make up L digits in total.

5. Extract the Item Reference and Indicator by considering bits b(81-M) b(80-M)…b38 as an
unsigned integer. If this integer is greater than or equal to 10(13-L), stop: the input bit
string is not a legal SGTIN-96 encoding. Otherwise, convert this integer to a (13-L)-digit
decimal number i1i2…i(13-L), adding leading zeros as necessary to make (13-L) digits.

6. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 5, d2d3…d(L+1) =
p1p2…pL from Step 4, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 5.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 26 of 78

7. Calculate the check digit d14 = (-3(d1 + d3 + d5 + d7 + d9 + d11 + d13) - (d2 + d4 + d6 +
d8 + d10 + d12)) mod 10.

8. The EAN.UCC GTIN-14 is the concatenation of digits from Steps 6 and 7: d1d2…d14.

9. Bits b37b36…b0, considered as an unsigned integer, are the Serial Number.

3.5 Serial Shipping Container Code (SSCC)
The EPC encoding scheme for SSCC permits the direct embedding of EAN.UCC System
standard SSCC codes on EPC tags. In all cases, the check digit is not encoded. Two
encoding schemes are specified, SSCC-64 (64 bits) and SSCC-96 (96 bits).

In the 64-bit EPC, the limited number of bits prohibits a literal embedding of the
EAN.UCC Company Prefix. As a partial solution, a Company Prefix Index is used. This
Index, which can accommodate up to 16,384 codes, is assigned to companies that need to
use the 64 bit tags, in addition to their existing Company Prefixes. The Index is encoded
on the tag instead of the Company Prefix, and is subsequently translated to the Company
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While
this means a limited number of Company Prefixes can be represented in the 64-bit tag,
this is a transitional step to full accommodation in 96-bit and additional encoding
schemes.

3.5.1 SSCC-64
In addition to a Header, the EPC SSCC-64 is composed of three fields: the Filter Value,
Company Prefix Index, and Serial Reference, as shown in Table 8.

 Header Filter
Value

Company
Prefix
Index

Serial Reference

8 3 14 39 SSCC-64

0000
1000

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

99,999 -
99,999,999,999
(Decimal capacity*)

*Capacity of Serial Reference field varies with the length of the Company Prefix

Table 8. The EPC 64-bit SSCC bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0000 1000.

Filter Value is not part of the SSCC or EPC identifier, but is used for fast filtering and
pre-selection of basic logistics types, such as cases and pallets. The Filter Values for 64-
bit and 96-bit SSCC are the same. The normative specifications for Filter Values are
undefined at this time; see Table 9 for a non-normative summary (for purposes of
illustration only).

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 27 of 78

Type Binary Value

Other xxx

Case xxx

Load/Pallet xxx

Reserved xxx

Table 9. SSCC Filter Values (non-normative).

Company Prefix Index encodes the EAN.UCC Company Prefix. The va lue of this field is
not the Company Prefix itself, but rather an index into a table that provides the Company
Prefix as well as an indication of the Company Prefix’s length. The means by which
hardware or software may obtain the contents of the translation table is specified in
[Translation of 64-bit Tag Encoding Company Prefix Indices Into EAN.UCC Company
Prefixes].

Serial Reference is a unique number for each instance, comprised of the Serial Reference
and the Extension digit. The Extension Digit is combined with the Serial Reference field
in the following manner: Leading zeros on the Serial Reference are significant. Put the
Extension Digit in the leftmost position available within the field. For instance,
000042235 is different than 42235. With the extension digit of 1, the combination with
000042235 is 1000042235. The resulting combination is treated as a single integer, and
encoded into binary to form the Serial Reference field. To avoid unmanageably large and
out-of-specification serial references, they should not exceed the capacity specified in
EAN.UCC specifications, which are (inclusive of extension digit) 9,999 for company
prefixes of 12 digits up to 9,999,999,999 for company prefixes of 6 digits.

3.5.1.1 SSCC-64 Encoding Procedure
The following procedure creates an SSCC-64 encoding.

Given:

An EAN.UCC SSCC consisting of digits d1d2…d18

The length L of the company prefix portion of the SSCC

A Filter Value F where 0 = F < 8

Procedure:

1. Extract the EAN.UCC Company Prefix d2d3…d(L+1)

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not
found in the Company Prefix Translation Table, stop: this SSCC cannot be encoded in
the SSCC-64 encoding.

3. Construct the Serial Reference by concatenating digits d1d (L+2)d(L+3)…d17 and
considering the result to be a decimal integer, I. If I = 239, stop: this SSCC cannot be
encoded in the SSCC-64 encoding.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 28 of 78

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00001000 (8 bits), Filter Value F (3 bits),
Company Prefix Index C from Step 2 (14 bits), Serial Reference from Step 3 (39 bits).

3.5.1.2 SSCC-64 Decoding Procedure
Given:

An SSCC-64 as a 64-bit bit string 00001000b55b54…b0 (where the first eight bits
00001000 are the header)

Yields:

An EAN.UCC SSCC

A Filter Value

Procedure:

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value.

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned
integer.

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value
of L is also obtained from the table).

4. Consider bits b38b37…b0 as an unsigned integer. If this integer is greater than or equal
to 10(17-L), stop: the input bit string is not a legal SSCC-64 encoding. Otherwise, convert
this integer to a (17-L)-digit decimal number i1i2…i(17-L), adding leading zeros as
necessary to make (17-L) digits.

5. Construct a 17-digit number d1d2…d17 where d1 = s1 from Step 4, d2d3…d(L+1) =
p1p2…pL from Step 3, and d(L+2)d(L+3)…d17 = i2 i3…i(17-L) from Step 4.

6. Calculate the check digit d18 = (-3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) - (d2 +
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10.

7. The EAN.UCC SSCC is the concatenation of digits from Steps 5 and 6: d1d2…d18.

3.5.2 SSCC-96
In addition to a Header, the EPC SSCC-96 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Serial Reference, as shown in Table 10.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 29 of 78

*Capacity of Company Prefix and Serial Reference fields vary according to the contents of the Partition field.

Table 10. The EPC 96-bit SSCC bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0011 0001.

Filter Value is not part of the SSCC or EPC identifier, but is used for fast filtering and
pre-selection of basic logistics types, such as cases and pallets. The Filter Values for 64-
bit and 96-bit SSCC are the same. See Table 9.

The Partition is an indication of where the subsequent Company Prefix and Serial
Reference numbers are divided. This organization matches the structure in the
EAN.UCC SSCC in which the Company Prefix added to the Serial Reference number
(including the single Extension Digit) totals 17 digits, yet the Company Prefix may vary
from 6 to 12 digits and the Serial Reference from 11 to 5 digit(s). Table 11 shows
allowed values of the partition value and the corresponding lengths of the company prefix
and serial reference.

Partition
Value

(P)

Company Prefix Serial Reference
and Extension

Digit

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 17 5

1 37 11 20 6

2 34 10 24 7

3 30 9 27 8

4 27 8 30 9

5 24 7 34 10

6 20 6 37 11

Table 11. SSCC-96 Partitions.

 Header Filter
Value

Partition Company
Prefix

Serial
Reference

Unallocated

8 3 3 20-40 37-17 25 SSCC-96

0011
0001

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,99
9,999

(Decimal
capacity*)

99,999,999
,999 –
99,999

(Decimal
capacity*)

[Not Used]

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 30 of 78

Company Prefix contains a literal embedding of the Company Prefix.

Serial Reference is a unique number for each instance, comprised of the Serial Reference
and the Extension digit. The Extension Digit is combined with the Serial Reference field
in the following manner: Leading zeros on the Serial Reference are significant. Put the
Extension Digit in the leftmost position available within the field. For instance,
000042235 is different than 42235. With the extension digit of 1, the combination with
000042235 is 1000042235. The resulting combination is treated as a single integer, and
encoded into binary to form the Serial Reference field. To avoid unmanageably large and
out-of-specification serial references, they should not exceed the capacity specified in
EAN.UCC specifications, which are (inclusive of extension digit) 9,999 for company
prefixes of 12 digits up to 9,999,999,999 for company prefixes of 6 digits.

Unallocated is not used. This field must contain zeros to conform with this version of the
specification.

3.5.2.1 SSCC-96 Encoding Procedure
The following procedure creates an SSCC-96 encoding.

Given:

An EAN.UCC SSCC consisting of digits d1d2…d18

The length L of the Company Prefix portion of the SSCC

A Filter Value F where 0 = F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column
of the Partition Table (Table 11) to determine the Partition Value, P, the number of bits
M in the Company Prefix field, and the number of bits N in the Serial Reference and
Extension Digit field. If L is not found in any row of Table 11, stop: this SSCC cannot
be encoded in an SSCC-96.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering
the result to be a decimal integer, C.

3. Construct the Serial Reference by concatenating digits d1d(L+2)d(L+3)…d17 and
considering the result to be a decimal integer, S.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110001 (8 bits), Filter Value F (3 bits),
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Serial
Reference S from Step 3 (N bits), and 25 zero bits. Note that M+N = 57 bits for all P.

3.5.2.2 SSCC-96 Decoding Procedure
Given:

An SSCC-96 as a 96-bit bit string 00110001b87b86…b0 (where the first eight bits
00110001 are the header)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 31 of 78

Yields:

An EAN.UCC SSCC

A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SSCC-96.

3. Look up the Partition Value P in Table 11 to obtain the number of bits M in the
Company Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a
legal SSCC-96 encoding. Otherwise, convert this integer into a decimal number
p1p2…pL, adding leading zeros as necessary to make up L digits in total.

5. Extract the Serial Reference by considering bits b(81-M) b(80-M)…b25 as an unsigned
integer. If this integer is greater than or equal to 10(17-L), stop: the input bit string is not a
legal SSCC-96 encoding. Otherwise, convert this integer to a (17-L)-digit decimal
number i1i2…i(17-L), adding leading zeros as necessary to make (17-L) digits.

6. Construct a 17-digit number d1d2…d17 where d1 = s1 from Step 5, d2d3…d(L+1) =
p1p2…pL from Step 4, and d(L+2)d(L+3)…d17 = i2 i3…i(17-L) from Step 5.

7. Calculate the check digit d18 = (-3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) - (d2 +
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10.

8. The EAN.UCC SSCC is the concatenation of digits from Steps 6 and 7: d1d2…d18.

3.6 Serialized Global Location Number (SGLN)
The EPC encoding scheme for GLN permits the direct embedding of EAN.UCC System
standard GLN on EPC tags. The serial number field is not used. In all cases the check
digit is not encoded. Two encoding schemes are specified, SGLN-64 (64 bits) and
SGLN-96 (96 bits).

In the SGLN-64 encoding, the limited number of bits prohibits a literal embedding of the
GLN. As a partial solution, a Company Prefix Index is used. This index, which can
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit
tags, in addition to their existing EAN.UCC Company Prefixes. The index is encoded on
the tag instead of the Company Prefix, and is subsequently translated to the Company
Prefix at low levels of the EPC system components (i.e. the Reader or Savant).

While this means a limited number of Company Prefixes can be represented in the 64-bit
tag, this is a transitional step to full accommodation in 96-bit and additional encoding
schemes.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 32 of 78

3.6.1 SGLN-64
The SGLN-64 includes four fields in addition to the header – Filter Value, Company
Prefix Index, Location Reference, and Serial Number, as shown in Table 12.

 Header Filter
Value

Company
Prefix
Index

Location
Reference

Serial
Number

8 3 14 20 19 SGLN-64

0000
1001

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

999,999 -
0

(Decimal
capacity*)

524,288

(Decimal
capacity)
[Not Used]

*Capacity of Location Reference field varies with the length of the Company Prefix

Table 12. The EPC SGLN-64 bit allocation, header, and decimal capacity.

Header is 8 bits, with a binary value of 0000 1001.

Filter Value is not part of the SGLN pure identity, but is additional data that is used for
fast filtering and pre-selection of basic location types. The Filter Values for 64-bit and
96-bit SGLN are the same. The normative specifications for Filter Values are undefined
at this time; see Table 13 for a non-normative summary (for purposes of illustration
only).

Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this field is
not the Company Prefix itself, but rather an index into a table that provides the Company
Prefix as well as an indication of the Company Prefix’s length. The means by which
hardware or software may obtain the contents of the translation table is specified in
[Translation of 64-bit Tag Encoding Company Prefix Indices Into EAN.UCC Company
Prefixes].

Location Reference encodes the GLN Location Reference number.

Serial Number contains a serial number. Note: The serial number field is reserved and
should not be used, until the EAN.UCC community determines the appropriate way, if
any, for extending GLN.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 33 of 78

Type Binary Value

Other xxx

Physical
Location

xxx

Reserved xxx

Table 13. SGLN Filter Values (non-normative).

3.6.1.1 SGLN-64 Encoding Procedure
The following procedure creates an SGLN-64 encoding.

Given:

An EAN.UCC GLN consisting of digits d1d2…d13

The length L of the company prefix portion of the GLN

A Serial Number S where 0 = S < 219

A Filter Value F where 0 = F < 8

Procedure:

1. Extract the EAN.UCC Company Prefix d1d2…dL

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not
found in the Company Prefix Translation Table, stop: this GLN cannot be encoded in the
SGLN-64 encoding.

3. Construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I. If I = 220, stop: this GLN cannot be
encoded in the SGLN-64 encoding.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00001001 (8 bits), Filter Value F (3 bits),
Company Prefix Index C from Step 2 (14 bits), Location Reference from Step 3 (20 bits),
Serial Number S (19 bits).

3.6.1.2 SGLN-64 Decoding Procedure
Given:

An SGLN-64 as a 64-bit bit string 00001001b55b54…b0 (where the first eight bits
00001001 are the header)

Yields:

An EAN.UCC GLN

A Serial Number

A Filter Value

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 34 of 78

Procedure:

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value.

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned
integer.

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value
of L is also obtained from the table).

4. Consider bits b38b37…b19 as an unsigned integer. If this integer is greater than or
equal to 10(12-L), stop: the input bit string is not a legal SGLN-64 encoding. Otherwise,
convert this integer to a (12-L)-digit decimal number i1i2…i(12-L), adding leading zeros as
necessary to make (12-L) digits.

5. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 3, and
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 4.

6. Calculate the check digit d13 = (-3(d2 + d4 + d6 + d8 + d10 + d12) - (d1 + d3 + d5 + d7 +
d9 + d11)) mod 10.

7. The EAN.UCC GLN is the concatenation of digits from Steps 5 and 6: d1d2…d13.

8. Bits b18b17…b0, considered as an unsigned integer, are the Serial Number.

3.6.2 SGLN-96
In addition to a Header, the SGLN-96 is composed of five fields: the Filter Value,
Partition, Company Prefix, Location Reference, and Serial Number, as shown in
Table 14.

Header is 8-bits, with a binary value of 0011 0010.

Filter Value is not part of the GLN or EPC identifier, but is used for fast filtering and pre-
selection of basic location types. The Filter Values for 64-bit and 96-bit GLN are the
same. See Table 13.

Partition is an indication of where the subsequent Company Prefix and Location
Reference numbers are divided. This organization matches the structure in the
EAN.UCC GLN in which the Company Prefix added to the Location Reference number
totals 12 digits, yet the Company Prefix may vary from 6 to 12 digits and the Location
Reference number from 6 to 0 digit(s). The available values of Partition and the
corresponding sizes of the Company Prefix and Location Reference fields are defined in
Table 15.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 35 of 78

*Capacity of Company Prefix and Location Reference fields vary according to contents of the Partition field.

Table 14. The EPC SGLN-96 bit allocation, header, and decimal capacity.

Company Prefix contains a literal embedding of the EAN.UCC Company Prefix.

Location Reference encodes the GLN Location Reference number.

Serial Number contains a serial number. Note: The serial number field is reserved and
should not be used, until the EAN.UCC community determines the appropriate way, if
any, for extending GLN.

Partition
Value
(P)

Company Prefix Location Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 15. SGLN-96 Partitions.

3.6.2.1 SGLN-96 Encoding Procedure
The following procedure creates an SGLN-96 encoding.

Given:

An EAN.UCC GLN consisting of digits d1d2…d13

 Header Filter
Value

Partition Company
Prefix

Location
Reference

Serial
Number

8 3 3 20-40 21-1 41 SGLN-96

0011
0010

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,99
9,999

(Decimal
capacity*)

999,999 –
0

(Decimal
capacity*)

2,199,023,255
,552

(Decimal
capacity)

[Not Used]

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 36 of 78

The length L of the Company Prefix portion of the GLN

A Serial Number S where 0 = S < 241

A Filter Value F where 0 = F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column
of the Partition Table (Table 15) to determine the Partition Value, P, the number of bits
M in the Company Prefix field, and the number of bits N in the Location Reference field.
If L is not found in any row of Table 15, stop: this GLN cannot be encoded in an SGLN-
96.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the
result to be a decimal integer, C.

3. Construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and
considering the result to be a decimal integer, I.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110010 (8 bits), Filter Value F (3 bits),
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Location
Reference from Step 3 (N bits), Serial Number S (41 bits). Note that M+N = 41 bits for
all P.

3.6.2.2 SGLN-96 Decoding Procedure
Given:

An SGLN-96 as a 96-bit bit string 00110010b87b86…b0 (where the first eight bits
00110010 are the header)

Yields:

An EAN.UCC GLN

A Serial Number

A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as an SGLN-96.

3. Look up the Partition Value P in Table 15 to obtain the number of bits M in the
Company Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a
legal SGLN-96 encoding. Otherwise, convert this integer into a decimal number
p1p2…pL, adding leading zeros as necessary to make up L digits in total.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 37 of 78

5. Extract the Location Reference by considering bits b(81-M) b(80-M)…b41 as an unsigned
integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a
legal SGLN-96 encoding. Otherwise, convert this integer to a (12- L)-digit decimal
number i1i2…i(12-L), adding leading zeros as necessary to make (12- L) digits.

6. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 4, and
d(L+1)d(L+2)…d12 = i2 i3…i(12-L) from Step 5.

7. Calculate the check digit d13 = (-3(d2 + d4 + d6 + d8 + d10 + d12) - (d1+ d3 + d5 + d7 +
d9 + d11)) mod 10.

8. The EAN.UCC GLN is the concatenation of digits from Steps 6 and 7: d1d2…d13.

9. Bits b40b39…b0, considered as an unsigned integer, are the Serial Number.

3.7 Global Returnable Asset Identifier (GRAI)
The EPC encoding scheme for GRAI permits the direct embedding of EAN.UCC System
standard GRAI on EPC tags. In all cases, the check digit is not encoded. Two encoding
schemes are specified, GRAI-64 (64 bits) and GRAI-96 (96 bits).

In the GRAI-64 encoding, the limited number of bits prohibits a literal embedding of the
GRAI. As a partial solution, a Company Prefix Index is used. This Index, which can
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit
tags, in addition to their existing EAN.UCC Company Prefixes. The Index is encoded on
the tag instead of the Company Prefix, and is subsequently translated to the Company
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While
this means that only a limited number of Company Prefixes can be represented in the 64-
bit tag, this is a transitional step to full accommodation in 96-bit and additional encoding
schemes.

3.7.1 GRAI-64
The GRAI-64 includes four fields in addition to the Header – Filter Value, Company
Prefix Index, Asset Type, and Serial Number, as shown in Table 16.

 Header Filter
Value

Company
Prefix
Index

Asset
Type

Serial
Number

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 38 of 78

Index

8 3 14 20 19 GRAI-64

0000
1010

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

9,999,999
- 9

(Decimal
capacity*)

524,288

(Decimal
capacity)

*Capacity of Asset Type field varies with Company Prefix.

Table 16. The EPC GRAI-64 bit allocation, header, and decimal capacity.

Header is 8 bits, with a binary value of 0000 1010.

Filter Value is not part of the GRAI pure identity, but is additional data that is used for
fast filtering and pre-selection of basic asset types. The Filter Values for 64-bit and 96-
bit GRAI are the same. The Filter Values for GRAI are undefined at this time. However,
this specification anticipates that valuable Filter Values will be determined once there has
been time to consider the possible use cases.

Type Binary Value

tbd tbd

Reserved xxx

Table 17. GRAI Filter Values (non-normative).

Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this field is
not the Company Prefix itself, but rather an index into a table that provides the Company
Prefix as well as an indication of the Company Prefix’s length. The means by which
hardware or software may obtain the contents of the translation table is specified in
[Translation of 64-bit Tag Encoding Company Prefix Indices Into EAN.UCC Company
Prefixes].

Asset Type encodes the GRAI Asset Type number.

Serial Number contains a serial number. The EPC representation is only capable of
representing a subset of Serial Numbers allowed in the General EAN.UCC
Specifications. The capacity of this mandatory serial number is less than the maximum
EAN.UCC System specification for serial number, no leading zeros are permitted, and
only numbers are permitted.

3.7.1.1 GRAI-64 Encoding Procedure
The following procedure creates a GRAI-64 encoding.

Given:

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 39 of 78

An EAN.UCC GRAI consisting of digits 0d2…dK, where 15 =K =30.

The length L of the company prefix portion of the GRAI

A Filter Value F where 0 = F < 8

Procedure:

1. Extract the EAN.UCC Company Prefix d2d3…dL+1

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not
found in the Company Prefix Translation Table, stop: this GRAI cannot be encoded in
the GRAI-64 encoding.

3. Construct the Asset Type by concatenating digits d(L+2)d(L+3)…d13 and considering the
result to be a decimal integer, I. If I = 220, stop: this GRAI cannot be encoded in the
GRAI-64 encoding.

4. Construct the Serial Number by concatenating digits d15d16…dK and considering the
result to be a decimal integer, S. If S = 219, stop: this GRAI cannot be encoded in the
GRAI-64 encoding. Also, if K > 15 and d15 = 0, stop: this GRAI cannot be encoded in
the GRAI-64 encoding (because leading zeros are not permitted except in the case where
the Serial Number consists of a single zero digit).

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00001010 (8 bits), Filter Value F (3 bits),
Company Prefix Index C from Step 2 (14 bits), Asset Type I from Step 3 (20 bits), Serial
Number S from Step 4 (19 bits).

3.7.1.2 GRAI-64 Decoding Procedure
Given:

An GRAI-64 as a 64-bit bit string 00001010b55b54…b0 (where the first eight bits
00001010 are the header)

Yields:

An EAN.UCC GRAI

A Filter Value

Procedure:

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value.

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned
integer.

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value
of L is also obtained from the table).

4. Consider bits b38b37…b19 as an unsigned integer. If this integer is greater than or
equal to 10(12-L), stop: the input bit string is not a legal GRAI-64 encoding. Otherwise,

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 40 of 78

convert this integer to a (12-L)-digit decimal number i1i2…i(12-L), adding leading zeros as
necessary to make (12-L) digits.

5. Construct a 13-digit number 0d2d3…d13 where d2d3…dL+1 = p1p2…pL from Step 3, and
d(L+2)d(L+3)…d13 = i1 i2…i(12-L) from Step 4.

6. Calculate the check digit d14 = (-3(d3 + d5 + d7 + d9 + d11+d13) - (d2 + d4 + d6 + d8 +
d10 + d12)) mod 10.

7. Consider bits b18b17…b0 as an unsigned integer. Convert this integer into a decimal
number d15d16…dK, with no leading zeros (exception: if the integer is equal to zero,
convert it to a single zero digit).

8. The EAN.UCC GRAI is the concatenation of the digits from Steps 5, 6, and 7:
0d2d3…dK.

3.7.2 GRAI-96
In addition to a Header, the GRAI-96 is composed of five fields: the Filter Value,
Partition, Company Prefix, Asset Type, and Serial Number, as shown in Table 18.

*Capacity of Company Prefix and Asset Type fields vary according to contents of the Partition field.

Table 18. The EPC GRAI-96 bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0011 0011.

Filter Value is not part of the GRAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 64-bit and 96-bit GRAI are the
same. See Table 17.

Partition is an indication of where the subsequent Company Prefix and Asset Type
numbers are divided. This organization matches the structure in the EAN.UCC GRAI in
which the Company Prefix added to the Asset Type number totals 13 digits, yet the
Company Prefix may vary from 6 to 12 digits and the Asset Type from 7 to 1 digit(s).
The available values of Partition and the corresponding sizes of the Company Prefix and
Asset Type fields are defined in Table 19.

 Header Filter
Value

Partition Company
Prefix

Asset Type Serial
Number

8 3 3 20-40 24-4 38 GRAI-96

0011
0011

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,9
99,999

(Decimal
capacity*)

9,999,999
– 9

(Decimal
capacity*)

274,877,906
,943

(Decimal
capacity)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 41 of 78

Partition
Value

(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

Table 19. GRAI-96 Partitions.

Company Prefix contains a literal embedding of the EAN.UCC Company Prefix.

Asset Type encodes the GRAI Asset Type number.

Serial Number contains a serial number. The EPC representation is only capable of
representing a subset of Serial Numbers allowed in the General EAN.UCC
Specifications. The capacity of this mandatory serial number is less than the maximum
EAN.UCC System specification for serial number, no leading zeros are permitted, and
only numbers are permitted.

3.7.2.1 GRAI-96 Encoding Procedure
The following procedure creates a GRAI-96 encoding.

Given:

An EAN.UCC GRAI consisting of digits 0d2d3…dK, where 15 =K =30.

The length L of the Company Prefix portion of the GRAI

A Filter Value F where 0 = F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column
of the Partition Table (Table 19) to determine the Partition Value, P, the number of bits
M in the Company Prefix field, and the number of bits N in Asset Type field. If L is not
found in any row of Table 19, stop: this GRAI cannot be encoded in a GRAI-96.

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering
the result to be a decimal integer, C.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 42 of 78

3. Construct the Asset Type by concatenating digits d(L+2)d(L+3)…d13 and considering the
result to be a decimal integer, I.

4. Construct the Serial Number by concatenating digits d15d16…dK and considering the
result to be a decimal integer, S. If S = 238, stop: this GRAI cannot be encoded in the
GRAI-96 encoding. Also, if K > 15 and d15 = 0, stop: this GRAI cannot be encoded in
the GRAI-96 encoding (because leading zeros are not permitted except in the case where
the Serial Number consists of a single zero digit).

5. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110011 (8 bits), Filter Value F (3 bits),
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Asset
Type I from Step 3 (N bits), Serial Number S from Step 4 (38 bits). Note that M+N =
44 bits for all P.

3.7.2.2 GRAI-96 Decoding Procedure
Given:

An GRAI-96 as a 96-bit bit string 00110011b87b86…b0 (where the first eight bits
00110011 are the header)

Yields:

An EAN.UCC GRAI

A Filter Value

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GRAI-96.

3. Look up the Partition Value P in Table 19 to obtain the number of bits M in the
Company Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a
legal GRAI-96 encoding. Otherwise, convert this integer into a decimal number
p1p2…pL, adding leading zeros as necessary to make up L digits in total.

5. Extract the Asset Type by considering bits b(81-M) b(80-M)…b38 as an unsigned integer.
If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a legal
GRAI-96 encoding. Otherwise, convert this integer to a (12-L)-digit decimal number
i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits.

6. Construct a 13-digit number 0d2d3…d13 where d2d3…d(L+1) = p1p2…pL from Step 4,
and d(L+2)d(L+3)…d13 = i1 i2…i(12-L) from Step 5.

7. Calculate the check digit d14 = (-3(d3 + d5 + d7 + d9 + d11 + d13) - (d2 + d4 + d6 + d8 +
d10 + d12)) mod 10.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 43 of 78

8. Extract the Serial Number by considering bits b37b36…b0 as an unsigned integer.
Convert this integer to a decimal number d15d16…dK, with no leading zeros (exception: if
the integer is equal to zero, convert it to a single zero digit).

9. The EAN.UCC GRAI is the concatenation of a single zero digit and the digits from
Steps 6, 7, and 8: 0d2d3…dK.

3.8 Global Individual Asset Identifier (GIAI)
The EPC encoding scheme for GIAI permits the direct embedding of EAN.UCC System
standard GIAI codes on EPC tags (except as noted below for 64-bit tags). Two encoding
schemes are specified, GIAI-64 (64 bits) and GIAI-96 (96 bits).

In the 64-bit EPC, the limited number of bits prohibits a literal embedding of the
EAN.UCC Company Prefix. As a partial solution, a Company Prefix Index is used. In
addition to their existing Company Prefixes, this Index, which can accommodate up to
16,384 codes, is assigned to companies that need to use the 64 bit tags. The Index is
encoded on the tag instead of the Company Prefix, and is subsequently translated to the
Company Prefix at low levels of the EPC system components (i.e. the Reader or Savant).
While this means a limited number of Company Prefixes can be represented in the 64-bit
tag, this is a transitional step to full accommodation in 96-bit and additional encoding
schemes.

3.8.1 GIAI-64
In addition to a Header, the EPC GIAI-64 is composed of three fields: the Filter Value,
Company Prefix Index, and Individual Asset Reference, as shown in Table 20.

 Header Filter
Value

Company
Prefix
Index

Individual Asset
Reference

8 3 14 39 GIAI-64

0000
1011

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal
capacity)

549,755,813,888

(Decimal
capacity)

Table 20. The EPC 64-bit GIAI bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0000 1011.

Filter Value is not part of the GIAI pure identity, but is additional data that is used for
fast filtering and pre-selection of basic asset types. The Filter Values for 64-bit and 96-
bit GIAI are the same. The Filter Values for GIAI are undefined at this time. However,

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 44 of 78

this specification anticipates that valuable Filter Values will be determined once there has
been time to consider the possible use cases.

Type Binary Value

tbd tbd

Reserved xxx

Table 21. GIAI Filter Values (non-normative).

Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this field is
not the Company Prefix itself, but rather an index into a table that provides the Company
Prefix as well as an indication of the Company Prefix’s length. The means by which
hardware or software may obtain the contents of the translation table is specified in
[Translation of 64-bit Tag Encoding Company Prefix Indices Into EAN.UCC Company
Prefixes].

Individual Asset Reference is a unique number for each instance. The EPC representation
is only capable of representing a subset of asset references allowed in the General
EAN.UCC Specifications. The capacity of this asset reference is less than the maximum
EAN.UCC System specification for asset references, no leading zeros are permitted, and
only numbers are permitted.

3.8.1.1 GIAI-64 Encoding Procedure
The following procedure creates a GIAI-64 encoding.

Given:

An EAN.UCC GIAI consisting of digits d1d2…dK where K = 30.

The length L of the company prefix portion of the GIAI

A Filter Value F where 0 = F < 8

Procedure:

1. Extract the EAN.UCC Company Prefix d1d2…dL

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not
found in the Company Prefix Translation Table, stop: this GIAI cannot be encoded in the
GIAI-64 encoding.

3. Construct the Individual Asset Reference by concatenating digits d(L+1)d(L+2)…dK and
considering the result to be a decimal integer, I. If I = 239, stop: this GIAI cannot be
encoded in the GIAI-64 encoding. Also, if K > L+1 and d(L+1) = 0, stop: this GIAI cannot
be encoded in the GIAI-64 encoding (because leading zeros are not permitted except in
the case where the Individual Asset Reference consists of a single zero digit).

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00001011 (8 bits), Filter Value F (3 bits),

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 45 of 78

Company Prefix Index C from Step 2 (14 bits), Individual Asset Reference from Step 3
(39 bits).

3.8.1.2 GIAI-64 Decoding Procedure
Given:

An GIAI-64 as a 64-bit bit string 00001011b55b54…b0 (where the first eight bits
00001011 are the header)

Yields:

An EAN.UCC GIAI

A Filter Value

Procedure:

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value.

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned
integer.

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value
of L is also obtained from the table).

4. Consider bits b38b37…b0 as an unsigned integer. If this integer is greater than or equal
to 10(30-L), stop: the input bit string is not a legal GIAI-64 encoding. Otherwise, convert
this integer to a decimal number s1s2…sJ, with no leading zeros (exception: if the integer
is equal to zero, convert it to a single zero digit).

5. Construct a K-digit number d1d2…dK where d1d2…dL = p1p2…pL from Step 3, and
d(L+1)d(L+2)…dK = s1 s2…sJ from Step 4. This K-digit number, where K = 30, is the
EAN.UCC GIAI.

3.8.2 GIAI-96
In addition to a Header, the EPC GIAI-96 is composed of four fields: the Filter Value,
Partition, Company Prefix, and Individual Asset Reference, as shown in Table 22.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 46 of 78

*Capacity of Company Prefix and Individual Asset Reference fields vary according to contents of the
Partition field.

Table 22. The EPC 96-bit GIAI bit allocation, header, and decimal capacity.

Header is 8-bits, with a binary value of 0011 0100.

Filter Value is not part of the GIAI or EPC identifier, but is used for fast filtering and
pre-selection of basic asset types. The Filter Values for 64-bit and 96-bit GIAI are the
same. See Table 21.

The Partition is an indication of where the subsequent Company Prefix and Individual
Asset Reference numbers are divided. This organization matches the structure in the
EAN.UCC GIAI in which the Company Prefix may vary from 6 to 12 digits. The
available values of Partition and the corresponding sizes of the Company Prefix and
Asset Reference fields are defined in Table 23.

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 42 12

1 37 11 45 13

2 34 10 48 14

3 30 9 52 15

4 27 8 55 16

5 24 7 58 17

6 20 6 62 18

Table 23. GIAI-96 Partitions.

 Header Filter
Value

Partition Company
Prefix

Individual Asset
Reference

8 3 3 20-40 62-42 GIAI-96

0011
0100

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,9
99,999

(Decimal
capacity*)

4,611,686,018,427,
387,904 –
4,398,046,511,103

(Decimal
capacity*)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 47 of 78

Company Prefix contains a literal embedding of the Company Prefix.

Individual Asset Reference is a unique number for each instance. The EPC representation
is only capable of representing a subset of asset references allowed in the General
EAN.UCC Specifications. The capacity of this asset reference is less than the maximum
EAN.UCC System specification for asset references, no leading zeros are permitted, and
only numbers are permitted.

3.8.2.1 GIAI-96 Encoding Procedure
The following procedure creates a GIAI-96 encoding.

Given:

An EAN.UCC GIAI consisting of digits d1d2…dK, where K = 30.

The length L of the Company Prefix portion of the GIAI

A Filter Value F where 0 = F < 8

Procedure:

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column
of the Partition Table (Table 23) to determine the Partition Value, P, the number of bits
M in the Company Prefix field, and the number of bits N in the Individual Asset
Reference field. If L is not found in any row of Table 23, stop: this GIAI cannot be
encoded in a GIAI-96.

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the
result to be a decimal integer, C.

3. Construct the Individual Asset Reference by concatenating digits d(L+1)d(L+2)…dK and
considering the result to be a decimal integer, S. If S = 2N, stop: this GIAI cannot be
encoded in the GIAI-96 encoding. Also, if K > L+1 and d(L+1) = 0, stop: this GIAI cannot
be encoded in the GIAI-96 encoding (because leading zeros are not permitted except in
the case where the Individual Asset Reference consists of a single zero digit).

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header 00110100 (8 bits), Filter Value F (3 bits),
Partition Value P from Step 2 (3 bits), Company Prefix C from Step 3 (M bits),
Individual Asset Number S from Step 4 (N bits). Note that M+N = 82 bits for all P.

3.8.2.2 GIAI-96 Decoding Procedure
Given:

A GIAI-96 as a 96-bit bit string 00110100b87b86…b0 (where the first eight bits
00110100 are the header)

Yields:

An EAN.UCC GIAI

A Filter Value

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 48 of 78

Procedure:

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value.

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If
P = 7, stop: this bit string cannot be decoded as a GIAI-96.

3. Look up the Partition Value P in Table 23 to obtain the number of bits M in the
Company Prefix and the number of digits L in the Company Prefix.

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a
legal GIAI-96 encoding. Otherwise, convert this integer into a decimal number p1p2…pL,
adding leading zeros as necessary to make up L digits in total.

5. Extract the Individual Asset Reference by considering bits b(81-M) b(80-M)…b0 as an
unsigned integer. If this integer is greater than or equal to 10(30-L), stop: the input bit
string is not a legal GIAI-96 encoding. Otherwise, convert this integer to a decimal
number s1s2…sJ, with no leading zeros (exception: if the integer is equal to zero, convert
it to a single zero digit).

6. Construct a K-digit number d1d2…dK where d1d2…dL = p1p2…pL from Step 4, and
d(L+1)d(L+2)…dK = s1s2…sJ from Step 5. This K-digit number, where K = 30, is the
EAN.UCC GIAI.

4 URI Representation
This section defines standards for the encoding of the Electronic Product Code™ as a
Uniform Resource Identifier (URI). The URI Encoding complements the EPC Tag
Encodings defined for use within RFID tags and other low-level architectural
components. URIs provide a means for application software to manipulate Electronic
Product Codes in a way that is independent of any particular tag- level representation,
decoupling application logic from the way in which a particular Electronic Product Code
was obtained from a tag.

This section defines four categories of URI. The first are URIs for pure identities,
sometimes called “canonical forms.” These contain only the unique information that
identifies a specific physical object, and are independent of tag encodings. The second
category are URIs that represent specific tag encodings. These are used in software
applications where the encoding scheme is relevant, as when commanding software to
write a tag. The third category are URIs that represent patterns, or sets of EPCs. These
are used when instructing software how to filter tag data. The last category is a URI
representation for raw tag information, generally used only for error reporting purposes.

All categories of URIs are represented as Uniform Reference Names (URNs) as defined
by [RFC2141], where the URN Namespace is epc.

This section complements Section 3, EPC Bit- level Encodings, which specifies the
currently defined tag- level representations of the Electronic Product Code.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 49 of 78

4.1 URI Forms for Pure Identities
(This section is non-normative; the formal specifications for the URI types are given in
Sections 4.3 and 5.)

URI forms are provided for pure identities, which contain just the EPC fields that serve to
distinguish one object from another. These URIs take the form of Universal Resource
Names (URNs), with a different URN namespace allocated for each pure identity type.

For the EPC General Identifier (Section 2.1.1), the pure identity URI representation is as
follows:

urn:epc:id:gid:GeneralManagerNumber.ObjectClass.SerialNumbe
r

In this representation, the three fields GeneralManagerNumber, ObjectClass,
and SerialNumber correspond to the three components of an EPC General Identifier
as described in Section 2.1.1. In the URI representation, each field is expressed as a
decimal integer, with no leading zeros (except where a field’s value is equal to zero, in
which case a single zero digit is used).

There are also pure identity URI forms defined for identity types corresponding to certain
types within the EAN.UCC System family of codes as defined in Section 2.1.2; namely,
the Serialized Global Trade Identification Number (SGTIN), the Serial Shipping
Container Code (SSCC), the Serialized Global Location Number (SGLN), the Global
Reusable Asset Identifier (GRAI), and the Global Individual Asset Identifier (GIAI). The
URI representations corresponding to these identifiers are as follows:
urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber

urn:epc:id:sscc:CompanyPrefix.SerialReference

urn:epc:id:sgln:CompanyPrefix.LocationReference.SerialNumber
urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber

urn:epc:id:giai:CompanyPrefix.IndividualAssetReference

In these representations, CompanyPrefix corresponds to an EAN.UCC company
prefix assigned to a manufacturer by the UCC or EAN. (A UCC company prefix is
converted to an EAN.UCC company prefix by adding one leading zero at the beginning.)
The number of digits in this field is significant, and leading zeros are included as
necessary.

The ItemReference, SerialReference, LocationReference, and
AssetType fields correspond to the similar fields of the GTIN, SSCC, GLN, and
GRAI, respectively. Like the CompanyPrefix field, the number of digits in these
fields is significant, and leading zeros are included as necessary. The number of digits in
these fields, when added to the number of digits in the CompanyPrefix field, always
total the same number of digits according to the identity type: 13 digits total for SGTIN,
17 digits total for SSCC, 12 digits total for SGLN, and 12 digits total for the GRAI. (The
ItemReference field of the SGTIN includes the GTIN Indicator (PI) digit, appended
to the beginning of the item reference. The SerialReference field includes the

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 50 of 78

SSCC Extension Digit (ED), appended at the beginning of the serial reference. In no
case are check digits included in URI representations.)

In contrast to the other fields, the SerialNumber field of the SGTIN, SGLN, and
GRAI, as well as the IndividualAssetReference field of the GIAI, is a pure
integer, with no leading zeros.

An SGTIN, SSCC, etc in this form is said to be in SGTIN-URI form, SSCC-URI form,
etc form, respectively. Here are examples:

urn:epc:id:sgtin:0652642.800031.400

urn:epc:id:sscc:0652642.0123456789
urn:epc:id:sgln:0652642.12345.400
urn:epc:id:grai:0652642.12345.1234
urn:epc:id:giai:0652642.123456
Referring to the first example, the corresponding GTIN-14 code is 80652642000311.
This divides as follows: the first digit (8) is the PI digit, which appears as the first digit
of the ItemReference field in the URI, the next seven digits (0652642) are the
CompanyPrefix, the next five digits (00031) are the remainder of the
ItemReference, and the last digit (1) is the check digit, which is not included in the
URI.

Referring to the second example, the corresponding SSCC is 006526421234567896 and
the last digit (6) is the check digit, not included in the URI.

Referring to the third example, the corresponding GLN is 0652642123458, where the last
digit (8) is the check digit, not included in the URI.

Referring to the fourth example, the corresponding GRAI is 006526421234581234,
where the digit (8) is the check digit, not included in the URI.

Referring to the fifth example, the corresponding GIAI is 0652642123456. (GIAI codes
do not include a check digit.)

Note that all five URI forms have an explicit indication of the division between the
company prefix and the remainder of the code. This is necessary so that the URI
representation may be converted into tag encodings. In general, the URI representation
may be converted to the corresponding EAN.UCC numeric form (by combining digits
and calculating the check digit), but converting from the EAN.UCC numeric form to the
corresponding URI representation requires independent knowledge of the length of the
company prefix.

4.2 URI Forms for Related Data Types
(This section is non-normative; the formal specifications for the URI types are given in
Sections 4.3 and 5.)

There are several data types that commonly occur in applications that manipulate
Electronic Product Codes, which are not themselves Electronic Product Codes but are

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 51 of 78

closely related. This specification provides URI forms for those as well. The general
form of the epc URN Namespace is

urn:epc:type:typeSpecificPart

The type field identifies a particular data type, and typeSpecificPart encodes
information appropriate for that data type. Currently, there are three possibilities defined
for type, discussed in the next three sections.

4.2.1 URIs for EPC Tags
In some cases, it is desirable to encode in URI form a specific tag encoding of an EPC.
For example, an application may wish to report to an operator what kinds of tags have
been read. In another example, an application responsible for programming tags needs to
be told not only what Electronic Product Code to put on a tag, but also the encoding
scheme to be used. Finally, applications that wish to manipulate any additional data
fields on tags need some representation other than the pure identity forms.

EPC Tag URIs are encoded by setting the type field to tag, with the entire URI having
this form:
urn:epc:tag:EncName:EncodingSpecificFields

where EncName is the name of an EPC encoding scheme, and
EncodingSpecificFields denotes the data fields required by that encoding
scheme, separated by dot characters. Exactly what fields are present depends on the
specific encoding scheme used.

In general, there are one or more encoding schemes (and corresponding EncName
values) defined for each pure identity type. For example, the SGTIN Identifier has two
encodings defined: sgtin-96 and sgtin-64, corresponding to the 96-bit encoding
and the 64-bit encoding. Note that these encoding scheme names are in one-to-one
correspondence with unique tag Header values, which are used to represent the encoding
schemes on the tag itself.

The EncodingSpecificFields, in general, include all the fields of the
corresponding pure identity type, possibly with additional restrictions on numeric range,
plus additional fields supported by the encoding. For example, all of the defined
encodings for the Serialized GTIN include an additional Filter Value that applications use
to do tag filtering based on object characteristics associated with (but not encoded within)
an object’s pure identity.

Here is an example: a Serialized GTIN 64-bit encoding:

urn:epc:tag:sgtin-64:3.0652642.800031.400
In this example, the number 3 is the Filter Value .

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags
Certain bit strings do not correspond to legal encodings. For example, if the most
significant bits cannot be recognized as a valid EPC header, the bit-level pattern is not a

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 52 of 78

legal EPC. For a second example, if the binary value of a field in a tag encoding is
greater than the value that can be contained in the number of decimal digits in that field
in the URI form, the bit level pattern is not a legal EPC. Nevertheless, software may wish
to report such invalid bit- level patterns to users or to other software, and so a
representation of invalid bit- level patterns as URIs is provided. The raw form of the URI
has this general form:

urn:epc:raw:BitLength.Value

where BitLength is the number of bits in the invalid representation, and Value is the
entire bit- level representation converted to a single decimal number. For example, this
bit string:
0000000000000000000100100011010011011110101011011011111011101111

which is invalid because no valid header begins with 0000 0000, corresponds to this raw
URI:

urn:epc:raw:64.20018283527919

It is intended that this URI form be used only when reporting errors associated with
reading invalid tags. It is not intended to be a general mechanism for communicating
arbitrary bit strings for other purposes.

Explanation (non-normative): The reason for recommending against using the raw URI
for general purposes is to avoid having an alternative representation for legal tag
encodings.

4.2.3 URIs for EPC Patterns
Certain software applications need to specify rules for filtering lists of EPCs according to
various criteria. This specification provides a pattern URI form for this purpose. A
pattern URI does not represent a single Electronic Product Code, but rather refers to a set
of EPCs. A typical pattern looks like this:

urn:epc:pat:sgtin-64:3.0652642.[1024-2047].*
This pattern refers to any EPC SGTIN Identifier 64-bit tag, whose Filter field is 3, whose
Company Prefix is 0652642, whose Item Reference is in the range 1024 = itemReference
= 2047, and whose Serial Number may be anything at all.

In general, there is a pattern form corresponding to each tag encoding form
(Section 4.2.1), whose syntax is essentially identical except that ranges or the star (*)
character may be used in each field.

For the SGTIN, SSCC, and SGLN patterns, the pattern syntax slightly restricts how
wildcards and ranges may be combined. Only two possibilities are permitted for the
CompanyPrefix field. One, it may be a star (*), in which case the following field
(ItemReference, SerialReference, or LocationReference) must also be a
star. Two, it may be a specific company prefix, in which case the following field may be
a number, a range, or a star. A range may not be specified for the CompanyPrefix.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 53 of 78

Explanation (non-normative): Because the company prefix is variable length, a range
may not be specified, as the range might span different lengths. Also, in the case of the
SGTIN-64, SSCC-64, and GLN-64 encodings, the tag contains a manager index which
maps into a company prefix but not in a way that preserves contiguous ranges. When a
particular company prefix is specified, however, it is possible to match ranges or all
values of the following field, because its length is fixed for a given company prefix. The
other case that is allowed is when both fields are a star, which works for all tag
encodings because the corresponding tag fields (including the Partition field, where
present) are simply ignored.

4.3 Syntax
The syntax of the EPC-URI and the URI forms for related data types are defined by the
following grammar.

4.3.1 Common Grammar Elements
NumericComponent ::= ZeroComponent | NonZeroComponent
ZeroComponent ::= “0”

NonZeroComponent ::= NonZeroDigit Digit*
PaddedNumericComponent ::= Digit+
Digit ::= “0” | NonZeroDigit
NonZeroDigit ::= “1” | “2” | “3” | “4”
 | “5” | “6” | “7” | “8” | “9”

4.3.2 EPCGID-URI
EPCGID-URI ::= “urn:epc:id: gid:” 2*(NumericComponent “.”)
NumericComponent

4.3.3 SGTIN-URI
SGTIN-URI ::= “urn:epc:id:sgtin:” SGTINURIBody
SGTINURIBody ::= 2*(PaddedNumericComponent “.”)
NumericComponent

The number of characters in the two PaddedNumericComponent fields must total 13
(not including any of the dot characters).

4.3.4 SSCC-URI
SSCC-URI ::= “urn:epc:id:sscc:” SSCCURIBody
SSCCURIBody ::= PaddedNumericComponent “.”
PaddedNumericComponent

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 54 of 78

The number of characters in the two PaddedNumericComponent fields must total 17
(not including any of the dot characters).

4.3.5 SGLN-URI
SGLN-qURI ::= “urn:epc:id:sgln:” SGLNURIBody
SGLNURIBody ::= 2*(PaddedNumericComponent “.”)
NumericComponent

The number of characters in the two PaddedNumericComponent fields must total 12
(not including any of the dot characters).

4.3.6 GRAI-URI
GRAI-URI ::= “urn:epc:id:grai:” GRAIURIBody
GRAIURIBody ::= 2*(PaddedNumericComponent “.”)
NumericComponent

The number of characters in the two PaddedNumericComponent fields must total 12
(not including any of the dot characters).

4.3.7 GIAI-URI
GIAI-URI ::= “urn:epc:id:giai:” GIAIURIBody
GIAIURIBody ::= PaddedNumericComponent “.”
PaddedNumericComponent

The number of characters in the two PaddedNumericComponent fields must not
exceed 30 (not including any of the dot characters).

4.3.8 EPC Tag URI
TagURI ::= “urn:epc:tag:” TagURIBody
TagURIBody ::= GIDTagURIBody | SGTINSGLNGRAITagURIBody |
SSCCTagURIBody | GIAITagURIBody
GIDTagURIBody ::= GIDTagEncName “:” 2*(NumericComponent
“.”) NumericComponent
GIDTagEncName ::= “gid-96”
SGTINSGLNGRAITagURIBody ::= SGTINSGLNGRAITagEncName “:”
NumericComponent “.” 2*(PaddedNumericComponent “.”)
NumericComponent
SGTINSGLNGRAITagEncName ::= “sgtin-96” | “sgtin-64” |
“sgln-96” | “sgln-64” | ”grai-96” | ”grai-64”
SSCCGIAITagURIBody ::= SSCCGIAITagEncName “:”
NumericComponent 2*(“.” PaddedNumericComponent)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 55 of 78

SSCCGIAITagEncName ::= “sscc-96” | “sscc-64” | “giai-96” |
“giai-64”

4.3.9 Raw Tag URI
RawURI ::= “urn:epc:raw:” RawURIBody
RawURIBody ::= NonZeroComponent “.” NumericComponent

4.3.10 EPC Pattern URI
PatURI ::= “urn:epc:pat:” PatBody

PatBody ::= GIDPatURIBody | SGTINSGLNGRAIPatURIBody |
SSCCGIAIPatURIBody
GIDPatURIBody ::= GIDTagEncName “:” 2*(PatComponent “.”)
PatComponent
SGTINSGLNGRAIPatURIBody ::= SGTINSGLNGRAITagEncName “:”
PatComponent “.” GS1PatBody “.” PatComponent
SSCCGIAIPatURIBody ::= SSCCGIAITagEncName “:” PatComponent
“.” GS1PatBody

GS1PatBody ::= “*.*” | (PaddedNumericComponent “.”
PatComponent)
PatComponent ::= NumericComponent
 | StarComponent
 | RangeComponent
StarComponent ::= “*”
RangeComponent ::= “[“ NumericComponent “-“
 NumericComponent “]”

For a RangeComponent to be legal, the numeric value of the first
NumericComponent must be less than or equal to the numeric value of the second
NumericComponent.

4.3.11 Summary (non-normative)
The syntax rules above can be summarized informally as follows:

urn:epc:id:gid:MMM.CCC.SSS
urn:epc:id:sgtin:PPP.III.SSS
urn:epc:id:sscc:PPP.III
urn:epc:id:sgln:PPP.III
urn:epc:id:grai:PPP.III.SSS
urn:epc:id:giai:PPP.SSS

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 56 of 78

urn:epc:tag:sgtin-64:FFF.PPP.III.SSS
urn:epc:tag:sscc-64:FFF.PPP.III
urn:epc:tag:sgln-64:FFF.PPP.III.SSS

urn:epc:tag:grai-64:FFF.PPP.III.SSS
urn:epc:tag:giai-64:FFF.PPP.SSS
urn:epc:tag:gid-96:MMM.CCC.SSS
urn:epc:tag:sgtin-96:FFF.PPP.III.SSS
urn:epc:tag:sscc-96:FFF.PPP.III
urn:epc:tag:sgln-96:FFF.PPP.III.SSS
urn:epc:tag:grai-96:FFF.PPP.III.SSS
urn:epc:tag:giai-96:FFF.PPP.SSS

urn:epc:raw:LLL.BBB

urn:epc:pat:sgtin-64:FFFpat.PPP.IIIpat.SSSpat
urn:epc:pat:sgtin-64:FFFpat.*.*.SSSpat
urn:epc:pat:sscc-64:FFFpat.PPP.IIIpat
urn:epc:pat:sscc-64:FFFpat.*.*
urn:epc:pat:sgln-64:FFFpat.PPP.IIIpat.SSSpat

urn:epc:pat:sgln-64:FFFpat.*.*.SSSpat
urn:epc:pat:grai-64:FFFpat.PPP.IIIpat.SSSpat
urn:epc:pat:grai-64:FFFpat.*.*.SSSpat
urn:epc:pat:giai-64:FFFpat.PPP.SSSpat
urn:epc:pat:giai-64:FFFpat.*.*
urn:epc:pat:gid-96:MMMpat.CCCpat.SSSpat
urn:epc:pat:sgtin-96:FFFpat.PPP.IIIpat.SSSpat
urn:epc:pat:sgtin-96:FFFpat.*.*.SSSpat

urn:epc:pat:sscc-96:FFFpat.PPP.IIIpat
urn:epc:pat:sscc-96:FFFpat.*.*
urn:epc:pat:sgln-96:FFFpat.PPP.IIIpat.SSSpat
urn:epc:pat:sgln-96:FFFpat.*.*.SSSpat
urn:epc:pat:grai-96:FFFpat.PPP.IIIpat.SSSpat

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 57 of 78

urn:epc:pat:grai-96:FFFpat.*.*.SSSpat
urn:epc:pat:giai-96:FFFpat.PPP.SSSpat
urn:epc:pat:giai-96:FFFpat.*.*

where

 MMM denotes a General Manager Number

 CCC denotes an Object Class number

 SSS denotes a Serial Number or GIAI Individual Asset Reference

 PPP denotes an EAN.UCC Company Prefix

 III denotes an SGTIN Item Reference (with Indicator Digit appended to the
beginning), an SSCC Shipping Container Serial Number (with the Extension (ED) digit
appended at the beginning), a SGLN Location Reference, or a GRAI Asset Type.

 FFF denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, and GIAI tag
encodings

 XXXpat is the same as XXX but allowing * and [lo-hi] pattern syntax in addition

 LLL denotes the number of bits of an uninterpreted bit sequence

 BBB denotes the literal value of an uninterpreted bit sequence converted to decimal

and where all numeric fields are in decimal with no leading zeros (unless the overall
value of the field is zero, in which case it is represented with a single 0 character).
Exception: the length of PPP and III is significant, and leading zeros are used as
necessary. The length of PPP is the length of the company prefix as assigned by EAN or
UCC. The length of III plus the length of PPP must equal 13 for SGTIN, 17 for SSCC,
12 for GLN, or 12 for GRAI.

5 Translation between EPC-URI and Other EPC
Representations

This section defines the semantics of EPC-URI encodings, by defining how they are
translated into other EPC encodings and vice versa.

The following procedure translates a bit-level encoding of an EPC into an EPC-URI:

1. Determine the identity type and encoding scheme by finding the row in Table 1
(Section 3.1) that matches the most significant bits of the bit string. If the most
significant bits do not match any row of the table, stop: the bit string is invalid
and cannot be translated into an EPC-URI. Otherwise, if the encoding scheme is
SGTIN-64 or SGTIN-96, proceed to Step 2; if the encoding scheme is SSCC-64
or SSCC-96, proceed to Step 5; if the encoding scheme is SGLN-64 or SGLN-96,
proceed to Step 8; if the encoding scheme is GRAI-64 or GRAI-96, proceed to
Step 11; if the encoding scheme is GIAI-64 or GIAI-96, proceed to Step 14; if the
encoding scheme is GID-96, proceed to Step 17.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 58 of 78

2. Follow the decoding procedure given in Section 3.4.1.2 (for SGTIN-64) or in
Section 3.4.2.2 (for SGTIN-96) to obtain the decimal Company Prefix p1p2...pL,
the decimal Item Reference and Indicator i1i2…i(13-L), and the Serial Number S.

3. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sgtin:, the Company Prefix p1p2...pL where each digit
(including any leading zeros) becomes the corresponding ASCII digit character, a
dot (.) character, the Item Reference and Indicator i1i2…i(13-L) (handled similarly),
a dot (.) character, and the Serial Number S as a decimal integer. The portion
corresponding to the Serial Number must have no leading zeros, except where the
Serial Number is itself zero in which case the corresponding URI portion must
consist of a single zero character.

4. Go to Step 19.

5. Follow the decoding procedure given in Section 3.5.1.2 (for SSCC-64) or in
Section 3.5.2.2 (for SSCC-96) to obtain the decimal Company Prefix p1p2...pL,
and the decimal Serial Reference s1s2…s(17-L).

6. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sscc:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, and the Serial Reference s1s2…s(17-L) (handled similarly).

7. Go to Step 19.

8. Follow the decoding procedure given in Section 3.6.1.2 (for SGLN-64) or in
Section 3.6.2.2 (for SGLN-96) to obtain the decimal Company Prefix p1p2...pL,
the decimal Location Reference i1i2…i(12-L), and the Serial Number S.

9. Create an EPC-URI by concatenating the following: the string
urn:epc:id:sgln:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, the Location Reference i1i2…i(12-L) (handled similarly), a dot (.)
character, and the Serial Number S as a decimal integer. The portion
corresponding to the Serial Number must have no leading zeros, except where the
Serial Number is itself zero in which case the corresponding URI portion must
consist of a single zero character.

10. Go to Step 19.

11. Follow the decoding procedure given in Section 3.7.1.2 (for GRAI-64) or in
Section 3.7.2.2 (for GRAI-96) to obtain the decimal Company Prefix p1p2...pL, the
decimal Asset Type i1i2…i(12-L), and the Serial Number S.

12. Create an EPC-URI by concatenating the following: the string
urn:epc:id:grai:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, the Asset Type i1i2…i(12-L) (handled similarly), a dot (.) character, and
the Serial Number S as a decimal integer. The portion corresponding to the Serial
Number must have no leading zeros, except where the Serial Number is itself zero

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 59 of 78

in which case the corresponding URI portion must consist of a single zero
character.

13. Go to Step 19.

14. Follow the decoding procedure given in Section 3.8.1.2 (for GIAI-64) or in
Section 3.8.2.2 (for GIAI-96) to obtain the decimal Company Prefix p1p2...pL, and
the Individual Asset Reference S.

15. Create an EPC-URI by concatenating the following: the string
urn:epc:id:giai:, the Company Prefix p1p2...pL where each digit (including
any leading zeros) becomes the corresponding ASCII digit character, a dot (.)
character, and the Individual Asset Reference S as a decimal integer. The portion
corresponding to the Individual Asset Reference must have no leading zeros,
except where the Individual Asset Reference is itself zero in which case the
corresponding URI portion must consist of a single zero character.

16. Go to Step 19.

17. Follow the decoding procedure given in Section 3.3.1.2 to obtain the General
Manager Number M, the Object Class C, and the Serial Number S.

18. Create an EPC-URI by concatenating the following: the string
urn:epc:id:gid:, the General Manager Number as a decimal integer, a dot
(.) character, the Object Class as a decimal integer, a dot (.) character, and the
Serial Number S as a decimal integer. Each decimal number must have no
leading zeros, except where the integer is itself zero in which case the
corresponding URI portion must consist of a single zero character.

19. The translation is now complete.

The following procedure translates a bit-level tag encoding into either an EPC Tag URI
or a Raw Tag URI:

1. Determine the identity type and encoding scheme by finding the row in Table 1
(Section 3.1) that matches the most significant bits of the bit string. If the
encoding scheme is SGTIN-64 or SGTIN-96, proceed to Step 2; if the encoding
scheme is SSCC-64 or SSCC-96, proceed to Step 5; if the encoding scheme is
SGLN-64 or SGLN-96, proceed to Step 8; if the encoding scheme is GRAI-64 or
GRAI-96, proceed to Step 11, if the encoding scheme is GIAI-64 or GIAI-96,
proceed to Step 14, if the encoding scheme is GID-96, proceed to Step 17;
otherwise, proceed to Step 20.

2. Follow the decoding procedure given in Section 3.4.1.2 (for SGTIN-64) or in
Section 3.4.2.2 (for SGTIN-96) to obtain the decimal Company Prefix p1p2...pL,
the decimal Item Reference and Indicator i1i2…i(13-L), the Filter Value F, and the
Serial Number S.

3. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (sgtin-64 or sgtin-96), a colon (:)
character, the Filter Value F as a decimal integer, a dot (.) character, the
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 60 of 78

the corresponding ASCII digit character, a dot (.) character, the Item Reference
and Indicator i1i2…i(13-L) (handled similarly), a dot (.) character, and the Serial
Number S as a decimal integer. The portions corresponding to the Filter Value
and Serial Number must have no leading zeros, except where the corresponding
integer is itself zero in which case a single zero character is used.

4. Go to Step 21.

5. Follow the decoding procedure given in Section 3.5.1.2 (for SSCC-64) or in
Section 3.5.2.2 (for SSCC-96) to obtain the decimal Company Prefix p1p2...pL,
and the decimal Serial Reference i1i2…s(17-L), and the Filter Value F.

6. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (sscc-64 or sscc-96), a colon (:)
character, the Filter Value F as a decimal integer, a dot (.) character, the
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes
the corresponding ASCII digit character, a dot (.) character, and the Serial
Reference i1i2…i(17-L) (handled similarly).

7. Go to Step 21.

8. Follow the decoding procedure given in Section 3.6.1.2 (for SGLN-64) or in
Section 3.6.2.2 (for SGLN-96) to obtain the decimal Company Prefix p1p2...pL,
the decimal Location Reference i1i2…i(12-L), the Filter Value F, and the Serial
Number S.

9. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (sgln-64 or sgln-96), a colon (:)
character, the Filter Value F as a decimal integer, a dot (.) character, the
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes
the corresponding ASCII digit character, a dot (.) character, the Location
Reference i1i2…i(12-L) (handled similarly), a dot (.) character, and the Serial
Number S as a decimal integer. The portions corresponding to the Filter Value
and Serial Number must have no leading zeros, except where the corresponding
integer is itself zero in which case a single zero character is used.

10. Go to Step 21.

11. Follow the decoding procedure given in Section 3.7.1.2 (for GRAI-64) or in
Section 3.7.2.2 (for GRAI-96) to obtain the decimal Company Prefix p1p2...pL, the
decimal Asset Type i1i2…i(12-L), the Filter Value F, and the Serial Number
d15d2…dK.

12. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (grai-64 or grai-96), a colon (:)
character, the Filter Value F as a decimal integer, a dot (.) character, the
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes
the corresponding ASCII digit character, a dot (.) character, the Asset Type
s1s2…s(12-L) (handled similarly), a dot (.) character, and the Serial Number
d15d2…dK as a decimal integer. The portions corresponding to the Filter Value

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 61 of 78

and Serial Number must have no leading zeros, except where the corresponding
integer is itself zero in which case a single zero character is used.

13. Got to Step 21.

14. Follow the decoding procedure given in Section 3.8.1.2 (for GIAI-64) or in
Section 3.8.2.2 (for GIAI-96) to obtain the decimal Company Prefix p1p2...pL, the
decimal Individual Asset Reference s1s2…sJ, and the Filter Value F.

15. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (giai-64 or giai-96), a colon (:)
character, the Filter Value F as a decimal integer, the Company Prefix p1p2...pL
where each digit (including any leading zeros) becomes the corresponding ASCII
digit character, a dot (.) character, and the Individual Asset Reference i1i2…iJ
(handled similarly). The portion corresponding to the Filter Value must have no
leading zeros, except where the corresponding integer is itself zero in which case
a single zero character is used.

16. Go to Step 21.

17. Follow the decoding procedure given in Section 3.3.1.2 to obtain the EPC
Manager Number, the Object Class, and the Serial Number.

18. Create an EPC Tag URI by concatenating the following: the string
urn:epc:tag:gid-96:, the General Manager Number as a decimal number,
a dot (.) character, the Object Class as a decimal number, a dot (.) character, and
the Serial Number as a decimal number. Each decimal number must have no
leading zeros, except where the integer is itself zero in which case the
corresponding URI portion must consist of a single zero character.

19. Go to Step 21.

20. This tag is not a recognized EPC encoding, therefore create an EPC Raw URI by
concatenating the following: the string urn:epc:raw:, the length of the bit
string, a dot (.) character, and the value of the bit string considered as a single
decimal integer. Both the length and the value must have no leading zeros, except
if the value is itself zero in which case a single zero character is used.

21. The translation is now complete.

The following procedure translates a URI into a bit- level EPC:

1. If the URI is an SGTIN-URI (urn:epc:id:sgtin:), an SSCC-URI
(urn:epc:id:sscc:), an SGLN-URI (urn:epc:id:sgln:), a GRAI-
URI (urn:epc:id:grai:), a GIAI-URI (urn:epc:id:giai:), a GID-
URI (urn:epc:id:gid:), or an EPC Pattern URI (urn:epc:pat:), the
URI cannot be translated into a bit- level EPC.

2. If the URI is a Raw Tag URI (urn:epc:raw:), create the bit- level EPC by
converting the second component of the Raw Tag URI into a binary integer,
whose length is equal to the first component of the Raw Tag URI. If the value of

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 62 of 78

the second component is too large to fit into a binary integer of that size, the URI
cannot be translated into a bit- level EPC.

3. If the URI is an EPC Tag URI (urn:epc:tag:encName:), parse the URI
using the grammar for TagURI as given in Section 4.3.8. If the URI cannot be
parsed using this grammar, stop: the URI is illegal and cannot be translated into a
bit- level EPC. Otherwise, if encName is sgtin-96 or sgtin-64 go to
Step 4, if encName is sscc-96 or sscc-64 go to Step 9, if encName is
sgln-96 or sgln-64 go to Step 13, if encName is grai-96 or grai-64
go to Step 18, if encName is giai-96 or giai-64 go to Step 23, or if
encName is gid-96 go to Step 27.

4. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(13-L).s1s2…sS.

5. Interpret f1f2…fF as a decimal integer F.

6. Interpret s1s2…sS as a decimal integer S.

7. Carry out the encoding procedure defined in Section 3.4.1.1 (SGTIN-64) or
Section 3.4.2.1 (SGTIN-96), using i1p1p2…pLi2…i(13-L)0 as the EAN.UCC
GTIN-14 (the trailing zero is a dummy check digit, which is ignored by the
encoding procedure), L as the length of the EAN.UCC company prefix, F from
Step 5 as the Filter Value, and S from Step 6 as the Serial Number. If the
encoding procedure fails because an input is out of range, or because the
procedure indicates a failure, stop: this URI cannot be encoded into an EPC tag.

8. Go to Step 32.

9. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(17-L).

10. Interpret f1f2…fF as a decimal integer F.

11. Carry out the encoding procedure defined in Section 3.5.1.1 (SSCC-64) or
Section 3.5.2.1 (SSCC-96), using s1P1p2…pLi2i3…i(17-L)0 as the EAN.UCC
SSCC, L as the length of the EAN.UCC company prefix, and F from Step 10 as
the Filter Value. If the encoding procedure fails because an input is out of range,
or because the procedure indicates a failure, stop: this URI cannot be encoded
into an EPC tag.

12. Go to Step 32.

13. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

14. Interpret f1f2…fF as a decimal integer F.

15. Interpret s1s2…sS as a decimal integer S.

16. Carry out the encoding procedure defined in Section 3.6.1.1 (SGLN-64) or
Section 3.6.2.1 (SGLN-96), using p1p2…pLi1i2…i(12-L)0 as the EAN.UCC
GLN (the trailing zero is a dummy check digit, which is ignored by the encoding

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 63 of 78

procedure), L as the length of the EAN.UCC company prefix, F from Step 14 as
the Filter Value, and S from Step 15 as the Serial Number. If the encoding
procedure fails because an input is out of range, or because the procedure
indicates a failure, stop: this URI cannot be encoded into an EPC tag.

17. Go to Step 32.

18. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS.

19. Interpret f1f2…fF as a decimal integer F.

20. Carry out the encoding procedure defined in Section 3.7.1.1 (GRAI-64) or
Section 3.7.2.1 (GRAI-96), using 0p1p2…pLi1i2…i(12-L)0s1s2…sS as the
EAN.UCC GRAI (the second zero is a dummy check digit, which is ignored by
the encoding procedure), L as the length of the EAN.UCC company prefix, and F
from Step 19 as the Filter Value. If the encoding procedure fails because an input
is out of range, or because the procedure indicates a failure, stop: this URI cannot
be encoded into an EPC tag.

21. Go to Step 31.

22. Let the URI be written as
urn:epc:tag:encName:f1f2…fF.p1p2…pL.s1s2…ss.

23. Interpret f1f2…fF as a decimal integer F.

24. Carry out the encoding procedure defined in Section 3.8.1.1 (GIAI-64) or
Section 3.8.2.1 (GIAI-96), using p1p2…pLs1s2…sS as the EAN.UCC GIAI, L as
the length of the EAN.UCC company prefix, and F from Step 24 as the Filter
Value. If the encoding procedure fails because an input is out of range, or
because the procedure indicates a failure, stop: this URI cannot be encoded into
an EPC tag.

25. Go to Step 31.

26. Let the URI be written as
urn:epc:tag:encName:m1m2…mL.c1c2…cK.s1s2…sS.

27. Interpret m1m2…mL as a decimal integer M.

28. Interpret c1c2…cK as a decimal integer C.

29. Interpret s1s2…sS as a decimal integer S.

30. Carry out the encoding procedure defined in Section 3.3.1.1 using M from Step 28
as the EPC Manager, C from Step 29 as the Object Class, and S from Step 30 as
the Serial Number. If the encoding procedure fails because an input is out of
range, or because the procedure indicates a failure, stop: this URI cannot be
encoded into an EPC tag.

31. The translation is complete.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 64 of 78

6 Semantics of EPC Pattern URIs
The meaning of an EPC Pattern URI (urn:epc:pat:) can be formally defined as
denoting a set of encoding-specific EPCs. The set of EPCs denoted by a specific EPC
Pattern URI is defined by the following decision procedure, which says whether a given
EPC Tag URI belongs to the set denoted by the EPC Pattern URI.

Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Pattern URI. Let
urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName
field of both URIs is the same. The number of components (n) depends on the value of
EncName.

First, any EPC Tag URI component Ci is said to match the corresponding EPC Pattern
URI component Pi if:

Pi is a NumericComponent, and Ci is equal to Pi; or

Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as
well as in length; or

Pi is a RangeComponent [lo-hi], and lo = Ci = hi; or

Pi is a StarComponent (and Ci is anything at all)

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and
only if Ci matches Pi for all 1 = i = n.

7 Background Information
This document represents the contributions of many people, especially the contributions
of the Tag Data Standards Group and the URI Representation Group.

EPC Tag Data Standards Group

Bud Babcock Procter & Gamble

Jason Carney Ahold

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 65 of 78

Hal Charych Symbol

Chris Cummins Uniform Code Council

Falk Gernot Metro

Yuichiro Hanawa Mitsui, USA

Mark Harrison Cambridge Auto-ID Lab

Larry Hilgert Pepsico (Quaker)

André Frank Sara Lee/DE

Jonathan Loretto Cap Gemini Ernst & Young

Ron Moser Wal-Mart

Don Mowery Nestle

Bob Mytkowicz Gillette

Doug Naal Kraft

Juli Nackers Kimberly -Clark

Robert Nonneman UPS

Richard Probst Nominum

Steve Rehling Procter & Gamble

Rick Schendel Target

Sylvia Stein EAN Netherlands

Richard Swan T3C1

Michael Szafranski Kraft

Nancy Tai Georgia Pacific

Ken Traub Connecterra, Inc.

URI Representation Group

Dipan Anarkat EPCglobal

Michael Mealling VeriSign

Ken Traub Connecterra, Inc.

This document also draws from the previous work at the Auto-ID Center, and we
recognize the contribution of the following individua ls: David Brock (MIT), Joe Foley
(MIT), Sunny Siu (MIT), Sanjay Sarma (MIT), and Dan Engels (MIT). In addition, we
recognize the contribution from Steve Rehling (P&G) on EPC to GTIN mapping.

The following papers capture the contributions of these individua ls:

Engels, D., Foley, J., Waldrop, J., Sarma, S. and Brock, D., "The Networked Physical
World: An Automated Identification Architecture" Proceedings of the IEEE/ACM
International Conference on Computer Aided Design (ICCAD01), 76-77, 2001.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 66 of 78

Brock, David. "The Electronic Product Code (EPC), A Naming Scheme for Physical
Objects", 2001.

Brock, David. "The Compact Electronic Product Code; A 64-bit Representation of the
Electronic Product Code", 2001.http://www.autoidcenter.org/publishedresearch/MIT-
AUTOID-WH-002.pdf

8 References
“General EAN.UCC Specifications.” Version 5.0, EAN International and the Uniform
Code Council, IncTM, January 2004.

[MIT-TR009] D. Engels, “The Use of the Electronic Product Code™,” MIT Auto-ID
Center Technical Report MIT-TR007, February 2003,
http://www.autoidcenter.org/publishedresearch/mit-autoid-tr009.pdf.

[RFC2141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for
Comments RFC-2141, May 1997, http://www.ietf.org/rfc/rfc2141.txt.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 67 of 78

9 Appendix A: Encoding Scheme Summary Tables

SGTIN Summary

SGTIN-64 Header Filter
Value

Company Prefix Index Item
Reference

Serial Number

2 bits 3 bits 14 bits 20 bits 25 bits

10

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal capacity)

9 - 1,048,575

(Decimal
capacity*)

33,554,431

(Decimal capacity)

SGTIN-96 Header Filte r
Value

Partition Company Prefix Item
Reference

Serial Number

8 3 3 20-40 24 - 4 38

0011
0000

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,999,999

(Decimal
capacity**)

9,999,999 –
9

(Decimal
capacity**)

274,877,906,943

(Decimal capacity)

Filter Values

(Non-normative)
SGTIN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Item Reference and Indicator Digit

Other xxx Bits Digits Bits Digit

Item xxx 0 40 12 4 1

Inner Pack xxx 1 37 11 7 2

Case xxx 2 34 10 10 3

Load/Pallet xxx 3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

Reserved xxx

6 20 6 24 7

*Capacity of Item Reference field varies with the length of the Company Prefix
**Capacity of Company Prefix and Item Reference fields vary according to the contents of the Partition field.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 68 of 78

*Capacity of Serial Reference field varies with the length of the Company Prefix
**Capacity of Company Prefix and Serial Reference fields vary according to the contents of the Partition
field.

SSCC Summary

SSCC-64 Header Filter
Value

Company Prefix Index Serial Reference

8 3 14 39

0000
1000

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal capacity)

99,999 - 99,999,999,999

(Decimal capacity*)

SSCC-96 Header Filter
Value

Partition Company Prefix Serial
Reference

Unallocated

8 3 3 20-40 37-17 25

0011
0001

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,999,999

(Decimal capacity**)

99,999,999,999 –
99,999

(Decimal
capacity**)

[Not Used]

Filter Values

(Non-normative)
SSCC Partition Table

Type Binary
Value

Partition
Value

Company Prefix Serial Reference and extension digit

Other xxx Bits Digits Bits Digits

Case xxx 0 40 12 14 4

1 37 11 17 5
2 34 10 20 6

Load/Pallet xxx

3 30 9 24 7
4 27 8 27 8

5 24 7 30 9

Reserved xxx

6 20 6 34 10

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 69 of 78

*Capacity of Location Reference field varies with the length of the Company Prefix
**Capacity of Company Prefix and Location Reference fields vary according to contents of the Partition field.

SGLN Summary

SGLN-64 Header Filter Value Company Prefix Index Location
Reference

Serial Number

8 3 14 20 19

0000
1001

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal capacity)

999,999 - 0
(Decimal

capacity*)

524,288

(Decimal capacity)

[Not Used]

SGLN-96 Header Filter Value Partition Company Prefix Location
Reference

Serial Number

8 3 3 20-40 21-1 41

0011
0010

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,999,999

(Decimal
capacity**)

999,999 – 0

 (Decimal
capacity**)

2,199,023,255,552

 (Decimal
capacity)

[Not Used]

Filter Values

(Non-normative)
SGLN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Location Reference

Other xxx Bits Digits Bits Digit

Physical
Location

xxx 0 40 12 1 0

1 37 11 4 1

2 34 10 7 2
3 30 9 11 3
4 27 8 14 4
5 24 7 17 5

Reserved xxx

6 20 6 21 6

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 70 of 78

GRAI Summary

GRAI-64 Header Filter
Value

Company Prefix Index Asset Type Serial Number

8 3 14 20 19

0000
1010

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal capacity)

9,999,999 - 9

(Decimal
capacity*)

524,288

(Decimal capacity)

GRAI-96 Header Filter
Value

Partition Company Prefix Asset Type Serial Number

8 3 3 20-40 24 - 4 38

0011
0011

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,999,999

(Decimal
capacity**)

9,999,999 –
9

(Decimal
capacity**)

274,877,906,943

(Decimal capacity)

Filter Values

(Non-normative)
GRAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Asset Type

TBD Bits Digits Bits Digit

Reserved xxx 0 40 12 4 1

 1 37 11 7 2

 2 34 10 10 3

 3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

*Capacity of Asset Type field varies with Company Prefix.

**Capacity of Company Prefix and Asset Type fields vary according to contents of the Partition field.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 71 of 78

*Capacity of Company Prefix and Individual Asset Reference fields vary according to contents of the
Partition field.

GIAI Summary

GIAI-64 Header Filter
Value

Company Prefix Index Individual Asset Reference

8 3 14 39

0000
1011

(Binary
value)

8

(Decimal
capacity)

16,383

(Decimal capacity)

549,755,813,888

(Decimal capacity)

GIAI-96 Header Filter
Value

Partition Company Prefix Individual Asset Reference

8 3 3 20-40 62-42

0011
0100

(Binary
value)

8

(Decimal
capacity)

8

(Decimal
capacity)

999,999 –
999,999,999,999

(Decimal capacity*)

4,611,686,018,427,387,904 -
4,398,046,511,103

(Decimal capacity*)

Filter Values

(To be confirmed)
GIAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Individual Asset Reference

TBD Bits Digits Bits Digits

Reserved xxx 0 40 12 42 12

1 37 11 45 13

2 34 10 48 14

3 30 9 52 15

4 27 8 55 16

5 24 7 58 17

6 20 6 62 18

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 72 of 78

10 Appendix B: EPC Header Values and Tag Identity
Lengths

With regards to tag identity lengths and EPC Header values: In the decoding process of a
single tag: Having knowledge of the identifier length during the signal decoding process
of the reader enables the reader to know when to stop trying to decode bit values.
Knowing when to stop enables the readers to be more efficient in reading speed. For
example, if the same Header value is used at 64 and 96 bits, the reader, upon finding that
header value, must try to decode 96 bits. After decoding 96 bits, the reader must check
the CRC (Cyclic Redundancy Check error check code) against both the 64-bit and 96-bit
numbers it has decoded. If both error checks fail, the numbers are thrown away and the
tag reread. If one of the numbers passes the error check, then that is reported as the valid
number. Note that there is a non-zero, i.e., greater than zero but very small, probability
that an erroneous number can be reported in this process. If both numbers pass the error
check, then there is a problem. Note that there is a small probability that both a 64 bit

EPC and 96-bit EPC whose first 64 bits are the same as the 64-bit EPC will have the
same CRC. Other measures would have to be taken to determine which of the two
numbers is valid (and perhaps both are). All of this slows down the reading process and
introduces potential errors in identified numbers (erroneous numbers may be reported)
and non- identified numbers (tags may be unread due to some of the above). These
problems are primarily evident while reading weakly replying tags, which are often the
tags furthest from the reader antenna and in noisy environments. Encoding the length
within the Header eliminates virtually all of the error probabilities above and those that
remain are reduced significantly in probability.

In the decoding process of multiple tags responding: When multiple tags respond at the
same time their communications will overlap in time. Tags of the same length overlap
almost completely bit for bit when the same reader controls them. Tags of different
lengths will overlap almost completely over the first bits, but the longer tag will continue
communicating after the shorter tag has stopped. Tags of very strong communication
strength will mask tags responding with much weaker strength. The reader can use
communication signal strength as a determiner of when to stop looking to decode bits.
Tags of almost equal communication strength will tend to interfere almost completely
with one another over the first bits before the shorter tag stops. The reader can usually
detect these collisions, but not always when weak signals are trying to be pulled out of
noise, as is the case for the distant tags. When the tags reply with close, but not equal
strength, it may be possible to decode the stronger signal. When the short tag has the
stronger signal, it may be possible to decode the weaker longer tag signal without being
able to definitively say that a second tag is responding due to changes in signal strength.
These problems are primarily evident in weakly replying tags. Encoding the length in the
Header enables the reader to know when to stop pulling out the numbers, which enables it
to more efficiently determine the validity of the numbers.

In the identification process: The reader can "select" what length tags it wishes to
communicate with. This eliminates the decoding problems encountered above, since all

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 73 of 78

communicating tags are of the same length and the reader knows what that length is a
priori. For efficiency reasons, a single selection for a length is preferred, but two can be
workable. More than two becomes very inefficient.

The net effect of encoding the length within the Header is to reduce the probabilities of
error in the decoding process and to increase the efficiency of the identification process.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 74 of 78

11 Appendix C: Example of a Specific Trade Item
(SGTIN)

This section presents an example of a specific trade item using SGTIN (Serialized
GTIN). Each representation serves a distinct purpose in the software stack. Generally;
the highest applicable level should be used. The GTIN used in the example is
10614141007346.

Encoding Layer

SGTIN-96

Physical Realization Layer

Pure Identity Layer

SGTIN

Class 1 Gen 1

urn:epc:id:sgtin:0614141.100734.2

Class 1 Gen 2

…

GTIN 10614141007346

+
Serial Number 2

2

(dec)

100734

(dec)

0614141

(dec)

5

(dec)

7

(dec)

0011

0000

(bits)

Serial
Number

Item

Reference

Company

Prefix

Partition Filter

Value

Header

•In the URN, GTIN indicator “1” is
repositioned and check digit “6” is dropped.

•Use this URN for all exchange that does not
depend on the physical type of tag used.

•This layer concerns the air interface to the tags.

urn:epc:tag:sgtin-96:7.0614141.100734.2

•When encoded as GTIN-96, GTIN indicator“1”
is repositioned and check digit “6” is dropped.
Header, Partition, and Filter Value are added.

•Use this URN when software must deal with
direct writing of tags and other low-level tag
operations.

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 75 of 78

?? (01) is the Application Identifier for GTIN, and (21) is the Application Identifier
for Serial Number. Application Identifiers are used in certain bar codes. The
header fulfills this function (and others) in EPC.

?? Header for SGTIN-96 is 00110000.

?? Filter Value is currently not defined, so 7 is a notional value.

?? Since the Company Prefix is seven-digits long (0614141), the Partition value is 5.
This means Company Prefix has 24 bits and Item Reference has 20 bits.

?? Indicator digit 1 is repositioned as the first digit in the Item Reference.

?? Check digit 6 is dropped.

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 bits 3 bits 3 bits 24 bits 20 bits 38 bits SGTIN-96

0011
0000

(Binary
value)

7

(Decimal
value)

5

(Decimal
value)

0614141

(Decimal
value)

100734

(Decimal
value)

2

(Decimal
value)

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 76 of 78

12 Appendix D: Binary Digit Capacity Tables

Length in
Binary
Digits

Decimal Capacity Length in
Binary
Digits

Decimal Capacity

0 1 33 8,589,934,592
1 2 34 17,179,869,184
2 4 35 34,359,738,368
3 8 36 68,719,476,736
4 16 37 137,438,953,472
5 32 38 274,877,906,944
6 64 39 549,755,813,888
7 128 40 1,099,511,627,776
8 256 41 2,199,023,255,552
9 512 42 4,398,046,511,104
10 1,024 43 8,796,093,022,208
11 2,048 44 17,592,186,044,416
12 4,096 45 35,184,372,088,832
13 8,192 46 70,368,744,177,664
14 16,384 47 140,737,488,355,328
15 32,768 48 281,474,976,710,656
16 65,536 49 562,949,953,421,312
17 131,072 50 1,125,899,906,842,624
18 262,144 51 2,251,799,813,685,248
19 524,288 52 4,503,599,627,370,496
20 1,048,576 53 9,007,199,254,740,992
21 2,097,152 54 18,014,398,509,481,984
22 4,194,304 55 36,028,797,018,963,968
23 8,388,608 56 72,057,594,037,927,936
24 16,777,216 57 144,115,188,075,855,872
25 33,554,432 58 288,230,376,151,711,744
26 67,108,864 59 576,460,752,303,423,488
27 143,217,728 60 1,152,921,504,606,846,976
28 268,435,456 61 2,305,843,009,213,693,952
29 536,870,912 62 4,611,686,018,427,387,904
30 1,073,741,824 63 9,223,372,036,854,775,808
31 2,147,483,648 64 18,446,744,073,709,551,616
32 4,294,967,296

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 77 of 78

13 Appendix E: List of Abbreviations

BAG Business Action Group

EPC Electronic Product Code

EPCIS EPC Information Services

GIAI Global Individual Asset Identifier

GLN Global Location Number

GRAI Global Returnable Asset Identifier

GTIN Global Trade Item Number

HAG Hardware Action Group

ONS Object Naming Service

RFID Radio Frequency Identification

SAG Software Action Group

SGLN Serialized Global Location Number

SSCC Serial Shipping Container Code

URI Uniform Resource Identifier

URN Uniform Resource Name

 Copyright ©2004 EPCglobal®, All Rights Reserved. Page 78 of 78

14 Appendix F: General EAN.UCC Specifications

Section 3.0 Definition of Element Strings and Section 3.7 EPCglobal
Tag Data Standard

This section provides EAN.UCC approval of the EPCglobal? Tag Data Standard V1.1, Rev. 1.23
with the following EAN.UCC Application Identifier definition restrictions:

For EAN.UCC use of EPC 64-bit tags, the following applies:

?? AI (00) SSCC (no restrictions)

?? AI (01) GTIN + AI (21) Serial Number: The Section 3.6.13 Serial Number definition is
restricted to permit assignment of 33,554,431 numeric-only serial numbers.

?? AI (41n) GLN + AI (21) Serial Number: The Tag Data Standard V1.1 R1.23 is approved
with a complete restriction on GLN serialization because this question has not been
resolved by GSMP at this time.

?? AI (8003) GRAI Serial Number: The Section 3.6.49 Global Returnable Asset Identifier
definition is restricted to permit assignment of 524,288 numeric-only serial numbers and
the serial number element is mandatory.

?? AI (8004) GIAI Serial Number: The Section 3.6.50 Global Individual Asset Identifier
definition is restricted to permit assignment of 549,755,813,888 numeric-only serial
numbers.

For EAN.UCC use of EPC96-bit tags, the following applies:

?? AI (00) SSCC (no restrictions)

?? AI (01) GTIN + AI (21) Serial Number: The Section 3.6.13 Serial Number definition is
restricted to permit assignment of 274,877,906,943 numeric-only serial numbers)

?? AI (41n) GLN + AI (21) Serial Number: The Tag Data Standard V1.1 R1.23 is approved
with a complete restriction on GLN serialization because this question has not been
resolved by GSMP at this time.

?? AI (8003) GRAI Serial Number: The Section 3.6.49 Global Returnable Asset Identifier
definition is restricted to permit assignment of 274,877,906,943 numeric-only serial
numbers and the serial number element is mandatory.

?? AI (8004) GIAI Serial Number: The Section 3.6.50 Global Individual Asset Identifier
definition is restricted to permit assignment of 4,611,686,018,427,387,904 numeric-only
serial numbers.

?? 64-bit tag application is limited to 16,383 EAN.UCC Company Prefixes
and therefore EAN.UCC EPCglobal implementation strategies will focus
on tag capacity that can accommodate all EAN.UCC member companies.
The 64-bit tag will be approved for use by EAN.UCC member companies
with the restrictions that follow:

