

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 1 of 144

 1

EPC Information Services (EPCIS) Version 1.0 2

Specification 3

Ratified Standard 4
April 12, 2007 5
 6

Disclaimer 7

EPCglobal Inc™ is providing this document as a service to interested industries. 8
This document was developed through a consensus process of interested 9
parties. Although efforts have been to assure that the document is correct, 10
reliable, and technically accurate, EPCglobal Inc makes NO WARRANTY, 11
EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT 12
REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL 13
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR 14
WORKABLE IN ANY APPLICATION, OR OTHERWISE. 15

Use of this document is with the understanding that EPCglobal Inc has no liability 16
for any claim to the contrary, or for any damage or loss of any kind or nature. 17

Copyright notice 18
© 2006, 2007, EPCglobal Inc. 19
All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not 20
permitted. Requests for permission to reproduce should be addressed to 21
epcglobal@epcglobalinc.org. 22
 23
EPCglobal Inc™ is providing this document as a service to interested industries. This 24
document was developed through a consensus process of interested parties. Although efforts 25
have been to assure that the document is correct, reliable, and technically accurate, EPCglobal 26
Inc. makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS 27
CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL 28
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN 29
ANY APPLICATION, OR OTHERWISE. Use of this Document is with the understanding that 30
EPCglobal Inc. has no liability for any claim to the contrary, or for any damage or loss of any kind 31
or nature. 32

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 2 of 144

Abstract 33

This document is an EPCglobal normative specification that defines Version 1.0 of EPC 34
Information Services (EPCIS). The goal of EPCIS is to enable disparate applications to 35
leverage Electronic Product Code (EPC) data via EPC-related data sharing, both within 36
and across enterprises. Ultimately, this sharing is aimed at enabling participants in the 37
EPCglobal Network to gain a shared view of the disposition of EPC-bearing objects 38
within a relevant business context. 39

Status of this document 40

This section describes the status of this document at the time of its publication. Other 41
documents may supersede this document. The latest status of this document series is 42
maintained at EPCglobal. See www.epcglobalinc.org for more information. 43
This version of this document has been ratified by the EPCglobal Board as of April 12, 44
2007. 45
 46
Comments on this document should be sent to the EPCglobal Software Action Group 47
mailing list sag_epcis2_wg@lists.epcglobalinc.org. 48

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 3 of 144

Table of Contents 49

1 Introduction .. 6 50

1.1 Services Approach... 6 51

2 Relationship to the EPCglobal Architecture Framework... 7 52

3 EPCIS Specification Principles.. 12 53

4 Terminology and Typographical Conventions... 13 54

5 EPCIS Specification Framework ... 13 55

5.1 Layers .. 13 56

5.2 Extensibility... 15 57

5.3 Modularity ... 15 58

6 Abstract Data Model Layer .. 16 59

6.1 Event Data and Master Data.. 16 60

6.2 Vocabulary Kinds .. 19 61

6.3 Extension Mechanisms .. 20 62

6.4 Identifier Representation ... 22 63

6.5 Hierarchical Vocabularies ... 23 64

7 Data Definition Layer... 23 65

7.1 General Rules for Specifying Data Definition Layer Modules 23 66

7.1.1 Content.. 24 67

7.1.2 Notation... 25 68

7.1.3 Semantics .. 26 69

7.2 Core Event Types Module... 26 70

7.2.1 Primitive Types... 30 71

7.2.2 Action Type .. 30 72

7.2.3 Location Types.. 31 73

7.2.4 Business Step .. 36 74

7.2.5 Disposition .. 36 75

7.2.6 Business Transaction .. 37 76

7.2.7 EPCClass... 38 77

7.2.8 EPCISEvent .. 39 78

7.2.9 ObjectEvent (subclass of EPCISEvent) .. 40 79

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 4 of 144

7.2.10 AggregationEvent (subclass of EPCISEvent) ... 43 80

7.2.11 QuantityEvent (subclass of EPCISEvent) ... 48 81

7.2.12 TransactionEvent (subclass of EPCISEvent) .. 49 82

8 Service Layer.. 53 83

8.1 Core Capture Operations Module.. 55 84

8.1.1 Authentication and Authorization... 55 85

8.1.2 Capture Service... 55 86

8.2 Core Query Operations Module .. 57 87

8.2.1 Authentication... 57 88

8.2.2 Authorization .. 57 89

8.2.3 Queries for Large Amounts of Data.. 58 90

8.2.4 Overly Complex Queries .. 59 91

8.2.5 Query Framework (EPCIS Query Control Interface) 59 92

8.2.6 Error Conditions.. 69 93

8.2.7 Predefined Queries for EPCIS 1.0 .. 72 94

8.2.8 Query Callback Interface .. 91 95

9 XML Bindings for Data Definition Modules... 91 96

9.1 Extensibility Mechanism ... 91 97

9.2 Standard Business Document Header.. 94 98

9.3 EPCglobal Base Schema ... 95 99

9.4 Additional Information in Location Fields.. 96 100

9.5 Schema for Core Event Types ... 97 101

9.6 Core Event Types – Example (non-normative)... 103 102

9.7 Schema for Master Data .. 104 103

9.8 Master Data – Example (non-normative) .. 107 104

10 Bindings for Core Capture Operations Module .. 108 105

10.1 Messsage Queue Binding ... 108 106

10.2 HTTP Binding .. 110 107

11 Bindings for Core Query Operations Module... 110 108

11.1 XML Schema for Core Query Operations Module.. 111 109

11.2 SOAP/HTTP Binding for the Query Control Interface.................................. 118 110

11.3 AS2 Binding for the Query Control Interface.. 126 111

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 5 of 144

11.4 Bindings for Query Callback Interface .. 132 112

11.4.1 General Considerations for all XML-based Bindings 132 113

11.4.2 HTTP Binding of the Query Callback Interface...................................... 132 114

11.4.3 HTTPS Binding of the Query Callback Interface 133 115

11.4.4 AS2 Binding of the Query Callback Interface... 134 116

12 References... 135 117

13 Acknowledgement of Contributors and Companies .. 137 118

 119

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 6 of 144

1 Introduction 120
This document is an EPCglobal normative specification that defines Version 1.0 of EPC 121
Information Services (EPCIS). The goal of EPCIS is to enable disparate applications to 122
leverage Electronic Product Code (EPC) data via EPC-related data sharing, both within 123
and across enterprises. Ultimately, this sharing is aimed at enabling participants in the 124
EPCglobal Network to gain a shared view of the disposition of EPC-bearing objects 125
within a relevant business context. 126

This Version 1.0 specification is intended to provide a basic capability that meets the 127
above goal. In particular, this specification is designed to meet the requirements of a 128
basic set of use cases that the user community has identified as a minimal useful set. 129
Other use cases and capabilities are expected to be addressed through follow-on versions 130
of this specification, and companion specifications. 131

The scope of this Version 1.0 specification has been guided by an informative document 132
produced by a prior EPCglobal working group, titled “EPC Information Services (EPCIS) 133
User Definition” [EPCIS-User]. Several of the relevant sections are quoted below. 134
Readers should refer to this document for a discussion of the use cases that have guided 135
the design decisions embodied in this specification. 136

1.1 Services Approach 137
(This section is mostly quoted from [EPCIS-User].) 138

The objective of EPCIS as stated above is obviously very broad, implying that the “S” in 139
EPCIS stands for EPC Information Sharing. The intent of this broad objective is to 140
encompass the widest possible set of use cases and to not overly constrain the technical 141
approaches for addressing them. 142

That said, our experience since starting to define EPCIS indicates that attempting to be so 143
broad is confusing and distracting, especially with regard to the technical approaches. 144
For example, this objective could be partially addressed by making existing B2B 145
transactions such as Advanced Shipment Notices (ASNs) and Receipt Advices “EPC 146
enabled.” It could also be addressed by defining a new “Services-based” approach to 147
enable EPC-related data sharing. And there are no doubt other possible alternatives. 148
Because these alternatives call for different development approaches and likely involve 149
different groups of people, it has been difficult to define a path forward. 150

To get past this confusion, this specification focuses on an EPC Information Service 151
approach, recognizing that some of what must be defined in this approach (such as data 152
element standards) will be applicable to other approaches as well. The EPC 153
Information Service approach will define a standard interface to enable EPC-related 154
data to be captured and queried using a defined set of service operations and associated 155
EPC-related data standards, all combined with appropriate security mechanisms that 156
satisfy the needs of user companies. In many or most cases, this will involve the use of 157
one or more persistent databases of EPC-related data, though elements of the Services 158
approach could be used for direct application-to-application sharing without persistent 159
databases. 160

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 7 of 144

With or without persistent databases, the EPCIS specification specifes only a standard 161
data sharing interface between applications that capture EPC-related data and those that 162
need access to it. It does not specify how the service operations or databases themselves 163
should be implemented. This includes not defining how the EPCISs should acquire 164
and/or compute the data they need, except to the extent the data is captured using the 165
standard EPCIS capture operations. The interfaces are needed for interoperability, while 166
the implementations allow for competition among those providing the technology and 167
EPC Information Service. 168

2 Relationship to the EPCglobal Architecture 169
Framework 170

(This section is largely quoted from [EPCIS-User] and [EPCAF]) 171

As depicted in the diagram below, EPCIS sits at the highest level of the EPCglobal 172
Architecture Framework, both above the level of raw EPC observations (e.g., the Tag 173
Protocol and the Reader “Wireline” Protocol), as well as above the level of filtered, 174
consolidated observations (e.g., the Filtering & Collection Interface). In the diagram, the 175
plain green bars denote interfaces governed by EPCglobal standards, while the blue 176
shadowed boxes denote roles played by hardware and/or software components of the 177
system. 178

(A single physical software or hardware component may play more than one role. For 179
example, a “smart reader” may perform middleware functions and expose the ALE 180
interface as its external interface. In that case, the “reader” (the metal box with the 181
antenna) is playing both the Reader and Middleware role in the diagram, and the Reader 182
Protocol Interface is internal to the smart reader (if it exists at all). Likewise, it is 183
common to have enterprise applications such as Warehouse Management Systems that 184
simultaneously play the role of EPCIS Capturing Application (e.g. detecting EPCs during 185
product movement during truck loading), an EPCIS-enabled Repository (e.g. recording 186
case-to-pallet associations), and an EPCIS Accessing Application (e.g. carrying out 187
business decisions based on EPCIS-level data).) 188

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 8 of 144

 189

EPCIS Capture Interface

EPCIS
Repository

Filtering & Collection (ALE) Interface

EPCIS Capturing
Application

Reader Protocol

Filtering & Collection
(“RFID Middleware”)

EPCIS Query Interfaces
(Control and Callback)

EPCIS Accessing
Application

Tag Protocol (UHF Gen 2, Class 0, Class 1)

RFID Reader

RFID Tag

Reader

Management
Interface

Reader
Management

EPCIS Accessing
Application

“Pull”or “Push” mode

“Pull” or “Push”mode

Partner EPCglobal Subscriber EPCglobal Subscriber

Local
ONS

ONS Interface

EPCglobal Core Services

ONS
Root

EPCIS
Discovery

(TBD)

Subscriber
Authentication

(TBD)

Manager
Number

Assignment

(offline service)
ONS I’face (TBD) (TBD)

Optional
bypass for
real-time

“push”

Figure 2-1 EPCIS
and Other EPC

Standards

Key:

 = Interface
 = Role

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 9 of 144

While EPCIS is an integral part of the EPCglobal Network, it differs from elements at the 190
lower layers of the Architecture in three key respects: 191

1. EPCIS deals explicitly with historical data (in addition to current data). The lower 192
layers of the stack, in contrast, are oriented exclusively towards real-time processing 193
of EPC data. 194

2. EPCIS often deals not just with raw EPC observations, but also in contexts that imbue 195
those observations with meaning relative to the physical world and to specific steps in 196
operational or analytical business processes. The lower layers of the stack are more 197
purely observational in nature. An EPCIS-level event, while containing much of the 198
same EPC data as a Filtering & Collection event, is at a semantically higher level 199
because it incorporates an understanding of the business context in which the EPC 200
data were obtained. Moreover, there is no requirement that an EPCIS event be 201
directly related to a specific physical tag observation. For example, an EPCIS 202
Quantity Event (Section 7.2.11) contains information that may be generated purely by 203
software, such as an inventory application. 204

3. EPCIS operates within enterprise IT environments at a level that is much more 205
diverse and multi-faceted than the lower levels of the EPCglobal Network 206
Architecture. In part, and most importantly, this is due to the desire to share EPCIS 207
data between enterprises which are likely to have different solutions deployed to 208
perform similar tasks. In part, it is also due to the persistent nature of EPCIS data. 209
And lastly, it is due to EPCIS being at the highest level of the EPCglobal Network 210
Architecture, and hence the natural point of entry into other enterprise systems, which 211
vary widely from one enterprise to the next (or even within parts of the same 212
enterprise). 213

More specifically, the following outlines the responsibilities of each element of the 214
EPCglobal Architecture Framework. Further information may be found in [EPCAF], 215
from which the diagram above and the following text is quoted. 216

• Readers Make multiple observations of RFID tags while they are in the read zone. 217

• Reader Protocol Interface Defines the control and delivery of raw tag reads from 218
Readers to the Filtering & Collection role. Events at this interface say “Reader A saw 219
EPC X at time T.” 220

• Filtering & Collection This role filters and collects raw tag reads, over time 221
intervals delimited by events defined by the EPCIS Capturing Application (e.g. 222
tripping a motion detector). 223

• Filtering & Collection (ALE) Interface Defines the control and delivery of filtered 224
and collected tag read data from the Filtering & Collection role to the EPCIS 225
Capturing Application role. Events at this interface say “At Logical Reader L, 226
between time T1 and T2, the following EPCs were observed,” where the list of EPCs 227
has no duplicates and has been filtered by criteria defined by the EPCIS Capturing 228
Application. 229

• EPCIS Capturing Application Supervises the operation of the lower-level 230
architectural elements, and provides business context by coordinating with other 231

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 10 of 144

sources of information involved in executing a particular step of a business process. 232
The EPCIS Capturing Application may, for example, coordinate a conveyor system 233
with Filtering & Collection events, may check for exceptional conditions and take 234
corrective action (e.g., diverting a bad case into a rework area), may present 235
information to a human operator, and so on. The EPCIS Capturing Application 236
understands the business process step or steps during which EPCIS data capture takes 237
place. This role may be complex, involving the association of multiple Filtering & 238
Collection events with one or more business events, as in the loading of a shipment. 239
Or it may be straightforward, as in an inventory business process where there may be 240
“smart shelves” deployed that generate periodic observations about objects that enter 241
or leave the shelf. Here, the Filtering & Collection-level event and the EPCIS-level 242
event may be so similar that no actual processing at the EPCIS Capturing Application 243
level is necessary, and the EPCIS Capturing Application merely configures and routes 244
events from the Filtering & Collection interface directly to an EPCIS-enabled 245
Repository. 246

• EPCIS Interfaces The interfaces through which EPCIS data is delivered to 247
enterprise-level roles, including EPCIS Repositories, EPCIS Accessing Applications, 248
and data exchange with partners. Events at these interfaces say, for example, “At 249
location X, at time T, the following contained objects (cases) were verified as being 250
aggregated to the following containing object (pallet).” There are actually three 251
EPCIS Interfaces. The EPCIS Capture Interface defines the delivery of EPCIS events 252
from EPCIS Capturing Applications to other roles that consume the data in real time, 253
including EPCIS Repositories, and real-time “push” to EPCIS Accessing 254
Applications and trading partners. The EPCIS Query Control Interface defines a 255
means for EPCIS Accessing Applications and trading partners to obtain EPCIS data 256
subsequent to capture, typically by interacting with an EPCIS Repository. The 257
EPCIS Query Control Interface provides two modes of interaction. In “on-demand” 258
or “synchronous” mode, a client makes a request through the EPCIS Query Control 259
Interface and receives a response immediately. In “standing request” or 260
“asynchronous” mode, a client establishes a subscription for a periodic query. Each 261
time the periodic query is executed, the results are delivered asynchronously (or 262
“pushed”) to a recipient via the EPCIS Query Callback Interface. The EPCIS Query 263
Callback Interface may also be used to deliver information immediately upon capture; 264
this corresponds to the “optional bypass for real-time push” arrow in the diagram. All 265
three of these EPCIS interfaces are specified normatively in this document. 266

• EPCIS Accessing Application Responsible for carrying out overall enterprise 267
business processes, such as warehouse management, shipping and receiving, 268
historical throughput analysis, and so forth, aided by EPC-related data. 269

• EPCIS-enabled Repository Records EPCIS-level events generated by one or more 270
EPCIS Capturing Applications, and makes them available for later query by EPCIS 271
Accessing Applications. 272

• Partner Application Trading Partner systems that perform the same role as an 273
EPCIS Accessing Application, though from outside the responding party’s network. 274

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 11 of 144

Partner Applications may be granted access to a subset of the information that is 275
available from an EPCIS Capturing Application or within an EPCIS Repository. 276

• ONS ONS is a network service that is used to look up pointers to EPCIS 277
Repositories, starting from an EPC Manager Number or full Electronic Product Code. 278
Specifically, ONS provides a means to look up a pointer to the EPCIS service 279
provided by the organization who commissioned the EPC of the object in question. 280
The most common example is where ONS is used to discover an EPCIS service that 281
contains product data from a manufacturer for a given EPC. ONS may also be used 282
to discover an EPCIS service that has master data pertaining to a particular EPCIS 283
location identifier (this use case is not yet fully addressed in the ONS specification). 284

• Discovery Capability Refers to a mechanism, not yet defined at the time of this 285
writing, for locating all EPCIS-enabled Repositories that might have data about a 286
particular EPC. This is useful when the relevant EPCIS services might not otherwise 287
be known to the party who wishes to query them, such as when the handling history 288
of an object is desired but not known (e.g. in support of track-and-trace across a 289
multi-party supply chain). The initial work to define EPCglobal’s approach towards 290
adding Discovery Capability to the EPCglobal Architecture Framework is currently 291
underway within the EPCglobal Architecture Review Committee. 292

The interfaces within this stack are designed to insulate the higher levels of the stack 293
from unnecessary details of how the lower levels are implemented. One way to 294
understand this is to consider what happens if certain changes are made: 295

• The Reader Protocol Interface insulates the higher layers from knowing what RF 296
protocols are in use, and what reader makes/models have been chosen. If a different 297
reader is substituted, the information at the Reader Protocol Interface remains the 298
same. 299

• The Filtering & Collection Interface insulates the higher layers from the physical 300
design choices made regarding how tags are sensed and accumulated, and how the 301
time boundaries of events are triggered. If a single four-antenna reader is replaced by 302
a constellation of five single-antenna “smart antenna” readers, the events at the 303
Filtering & Collection level remain the same. Likewise, if a different triggering 304
mechanism is used to mark the start and end of the time interval over which reads are 305
accumulated, the Filtering & Collection event remains the same. 306

• EPCIS insulates enterprise applications from understanding the details of how 307
individual steps in a business process are carried out at a detailed level. For example, 308
a typical EPCIS event is “At location X, at time T, the following cases were verified 309
as being on the following pallet.” In a conveyor-based business implementation, this 310
likely corresponds to a single Filtering & Collection event, in which reads are 311
accumulated during a time interval whose start and end is triggered by the case 312
crossing electric eyes surrounding a reader mounted on the conveyor. But another 313
implementation could involve three strong people who move around the cases and use 314
hand-held readers to read the EPC codes. At the Filtering & Collection level, this 315
looks very different (each triggering of the hand-held reader is likely a distinct 316
Filtering & Collection event), and the processing done by the EPCIS Capturing 317

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 12 of 144

Application is quite different (perhaps involving an interactive console that the people 318
use to verify their work). But the EPCIS event is still the same. 319

In summary, EPCIS-level data differs from lower layers in the EPCglobal Network 320
Architecture by incorporating semantic information about the business process in which 321
EPC data is collected, and providing historical observations. In doing so, EPCIS 322
insulates applications that consume this information from knowing the low-level details 323
of exactly how a given business process step is carried out. 324

3 EPCIS Specification Principles 325
The considerations in the previous two sections reveal that the requirements for standards 326
at the EPCIS layer are considerably more complex than at the lower layers of the 327
EPCglobal Network Architecture. The historical nature implies that EPCIS interfaces 328
will need a richer set of access techniques than the ALE or Reader Protocol interfaces. 329
The incorporation of operational or business process context into EPCIS implies that 330
EPCIS will traffic in a richer set of data types, and moreover will need to be much more 331
open to extension in order to accommodate the wide variety of business processes in the 332
world. Finally, the diverse environment in which EPCIS operates implies that the 333
specifications must be layered carefully so that even when EPCIS interfaces with external 334
systems that differ widely in their details of operation, there is consistency and 335
interoperability at the level of what the abstract structure of the data is and what the data 336
means. 337

In response to these requirements, EPCIS is described by a framework specification and 338
narrower, more detailed specifications that populate that framework. The framework is 339
designed to be: 340

• Layered In particular, the structure and meaning of data in an abstract sense is 341
specified separately from the concrete details of data access services and bindings to 342
particular interface protocols. This allows for variation in the concrete details over 343
time and across enterprises while preserving a common meaning of the data itself. It 344
also permits EPCIS data specifications to be reused in approaches other than the 345
service-oriented approach of the present specification. For example, data definitions 346
could be reused in an EDI framework. 347

• Extensible The core specifications provide a core set of data types and operations, 348
but also provide several means whereby the core set may be extended for purposes 349
specific to a given industry or application area. Extensions not only provide for 350
proprietary requirements to be addressed in a way that leverages as much of the 351
standard framework as possible, but also provides a natural path for the standards to 352
evolve and grow over time. 353

• Modular The layering and extensibility mechanisms allow different parts of the 354
complete EPCIS framework to be specified by different documents, while promoting 355
coherence across the entire framework. This allows the process of standardization (as 356
well as of implementation) to scale. 357

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 13 of 144

The remainder of this document specifies the EPCIS framework. It also populates that 358
framework with a core set of specifications at different layers. 359

4 Terminology and Typographical Conventions 360
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, 361
MAY, NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of 362
the ISO/IEC Directives, Part 2, 2001, 4th edition [ISODir2]. When used in this way, 363
these terms will always be shown in ALL CAPS; when these words appear in ordinary 364
typeface they are intended to have their ordinary English meaning. 365

All sections of this document, with the exception of Sections 1, 2, and 3, are normative, 366
except where explicitly noted as non-normative. 367

The following typographical conventions are used throughout the document: 368

• ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 369

• Monospace type is used to denote programming language, UML, and XML 370
identifiers, as well as for the text of XML documents. 371

 Placeholders for changes that need to be made to this document prior to its reaching 372
the final stage of approved EPCglobal specification are prefixed by a rightward-373
facing arrowhead, as this paragraph is. 374

5 EPCIS Specification Framework 375
The EPCIS specification is designed to be layered, extensible, and modular. 376

5.1 Layers 377
The EPCIS specification framework is organized into several layers, as illustrated below: 378

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 14 of 144

 379
These layers are described below. 380

• Abstract Data Model Layer The Abstract Data Model Layer specifies the generic 381
structure of EPCIS data. This is the only layer that is not extensible by mechanisms 382
other than a revision to the EPCIS specification itself. The Abstract Data Model 383
Layer specifies the general requirements for creating data definitions within the Data 384
Definition Layer. 385

• Data Definition Layer The Data Definition Layer specifies what data is exchanged 386
through EPCIS, what its abstract structure is, and what it means. One data definition 387
module is defined within the present specification, called the Core Event Types 388

Data
Definition

Layer

Core Event
Data Types
(Sect. 7.2)

Core
Capture

Operations
(Sect. 8.1)

Capture
Interface

Core
Query

Operations
(Sect. 8.2)

Query
Control

Interface

Query
Callback
Interface

Service
Layer

Bindings

Core Event
XSD

(Sect. 9)

Capture
Interface
Msg Q

(Sect.10.1)

Query
Control

Interface
SOAP

(Sect. 11.2)

depends on

depends on

implements

implements

Abstract
Data

Model
Layer

EPCIS
Abstract

Data Model
(Sect. 6)

depends on

Capture
Interface

HTTP
(Sect.10.2)

Query
Control

Interface
AS2

(Sect. 11.3)

Core Query
XSD

(Sect.11.1)

Query
Callback
Interface

HTTP
(Sect. 11.4.2)

Query
Callback
Interface
HTTPS

(Sect. 11.4.3)

Query
Callback
Interface

AS2
(Sect. 11.4.4)

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 15 of 144

Module. Data definitions in the Data Definition Layer are specified abstractly, 389
following rules defined by the Abstract Data Model Layer. 390

• Service Layer The Service Layer defines service interfaces through which EPCIS 391
clients interact. In the present specification, two service layer modules are defined. 392
The Core Capture Operations Module defines a service interface (the EPCIS Capture 393
Interface) through which EPCIS Capturing Applications use to deliver Core Event 394
Types to interested parties. The Core Query Operations Module defines two service 395
interfaces (the EPCIS Query Control Interface and the EPCIS Query Callback 396
Interface) that EPCIS Accessing Applications use to obtain data previously captured. 397
Interface definitions in the Service Layer are specified abstractly using UML. 398

• Bindings Bindings specify concrete realizations of the Data Definition Layer and 399
the Service Layer. There may be many bindings defined for any given Data 400
Definition or Service module. In this specification, a total of nine bindings are 401
specified for the three modules defined in the Data Definition and Service Layers. 402
The data definitions in the Core Event Types data definition module are given a 403
binding to an XML schema. The EPCIS Capture Interface in the Core Capture 404
Operations Module is given bindings for Message Queue and HTTP. The EPCIS 405
Query Control Interface in the Core Query Operations Module is given a binding to 406
SOAP over HTTP via a WSDL web services description, and a second binding for 407
AS2. The EPCIS Query Callback Interface in the Core Query Operations Module is 408
given bindings to HTTP, HTTPS, and AS2. 409

5.2 Extensibility 410
The layered technique for specification promotes extensibility, as one layer may be 411
reused by more than one implementation in another layer. For example, while this 412
specification includes an XML binding of the Core Event Types data definition module, 413
another specification may define a binding of the same module to a different syntax, for 414
example a CSV file. 415

Besides the extensibility inherent in layering, the EPCIS specification includes several 416
specific mechanisms for extensibility: 417

• Subclassing Data definitions in the Data Definition Layer are defined using UML, 418
which allows a new data definition to be created by creating a subclass of an existing 419
one. A subclass is a new type that includes all of the fields of an existing type, 420
extending it with new fields. An instance of a subclass may be used in any context in 421
which an instance of the parent class is expected. 422

• Extension Points Data definitions and service specifications also include extension 423
points, which vendors may use to provide extended functionality without creating 424
subclasses. 425

5.3 Modularity 426
The EPCIS specification framework is designed to be modular. That is, it does not 427
consist of a single specification, but rather a collection of individual specifications that 428

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 16 of 144

are interrelated. This allows EPCIS to grow and evolve in a distributed fashion. The 429
layered structure and the extension mechanisms provide the essential ingredients to 430
achieving modularity, as does the grouping into modules. 431

While EPCIS specifications are modular, there is no requirement that the module 432
boundaries of the specifications be visible or explicit within implementations of EPCIS. 433
For example, there may be a particular software product that provides a SOAP/HTTP-434
based implementation of a case-to-pallet association service and a product catalog service 435
that traffics in data defined in the relevant data definition modules. This product may 436
conform to as many as six different EPCIS specifications: the data definition module that 437
describes product catalog data, the data definition module that defines case-to-pallet 438
associations, the specifications for the respective services, and the respective 439
SOAP/HTTP bindings. But the source code of the product may have no trace of these 440
boundaries, and indeed the concrete database schema used by the product may 441
denormalize the data so that product catalog and case-to-pallet association data are 442
inextricably entwined. But as long as the net result conforms to the specifications, this 443
implementation is permitted. 444

6 Abstract Data Model Layer 445
This section gives a normative description of the abstract data model that underlies 446
EPCIS. 447

6.1 Event Data and Master Data 448
Generically, EPCIS deals in two kinds of data: event data and master data. Event data 449
arises in the course of carrying out business processes, and is captured through the EPCIS 450
Capture Interface and made available for query through the EPCIS Query Interfaces. 451
Master data is additional data that provides the necessary context for interpreting the 452
event data. It is available for query through the EPCIS Query Control Interface, but the 453
means by which master data enters the system is not specified in the EPCIS 1.0 454
specification. 455

Roadmap (non-normative): It is likely that capture of master data will be addressed in a 456
future version of the EPCIS specification. 457

These relationships are illustrated below: 458

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 17 of 144

 459
The Abstract Data Model Layer does not attempt to define the meaning of the terms 460
“event data” or “master data,” other than to provide precise definitions of the structure of 461
the data as used by the EPCIS specification. The modeling of real-world business 462
information as event data and master data is the responsibility of the Data Definition 463
Layer, and of industry vertical and end-user agreements that build on top of this 464
specification. 465

Explanation (non-normative): While for the purposes of this specification the terms 466
“event data” and “master data” mean nothing more than “data that fits the structure 467
provided here,” the structures defined in the Abstract Data Model Layer are designed to 468
provide an appropriate representation for data commonly requiring exchange through 469
EPCIS within industries seeking to exploit the EPCglobal Network. Informally, these two 470
types of data may be understood as follows. Event data grows in quantity as more 471
business is transacted, and refers to things that happen at specific moments in time. An 472
example of event data is “At 1:23pm on 15 March 2004, EPC X was observed at 473
Location L.” Master data does not generally grow merely because more business is 474
transacted (though master data does tend to grow as organizations grow in size), is not 475
typically tied to specific moments in time (though master data may change slowly over 476
time), and provides interpretation for elements of event data. An example of master data 477
is “Location L refers to the distribution center located at 123 Elm Street, Anytown, US.” 478
All of the data in the set of use cases considered in the creation of the EPCIS 1.0 479
specification can be modeled as a combination of event data and master data of this kind. 480

The structure of event data and master data in EPCIS is illustrated below. (Note that this 481
is an illustration only: the specific vocabulary elements and master data attribute names 482
in this figure are not defined within this specification.) 483

EPCIS Query Interface

EPCIS Capture Interface

Event
Event
Event

Event

Event

Master Data

Master Data capture outside
of EPCIS 1.0 scope

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 18 of 144

 484
The ingredients of the EPCIS Abstract Data Model are defined below: 485

• Event Data A set of Events. 486

• Event A structure consisting of an Event Type and one or more named Event Fields. 487

• Event Type A namespace-qualified name (qname) that indicates to which of several 488
possible Event structures (as defined by the Data Definition Layer) a given event 489
conforms. 490

• Event Field A named field within an Event. The name of the field is given by a 491
qname, referring either to a field name specified by the Data Definition Layer or a 492
field name defined as an extension to this specification. The value of the field may be 493
a primitive type (such as an integer or timestamp), a Vocabulary Element, or a list of 494
primitive types or Vocabulary Elements. 495

• Master Data A set of Vocabularies, together with Master Data Attributes associated 496
with elements of those Vocabularies. 497

• Vocabulary A named set of identifiers. The name of a Vocabulary is a qname that 498
may be used as a type name for an event field. The identifiers within a Vocabulary 499
are called Vocabulary Elements. A Vocabulary represents a set of alternative values 500
that may appear as the values of specific Event Fields. Vocabularies in EPCIS are 501

BizStep Vocabulary

urn:…:receiving
urn:…:shipping
…

BizLocation Vocabulary

urn:epc:id:sgln:0614141.12345.0
urn:epc:id:sgln:0614141.33254.0
urn:epc:id:sgln:0614141.33254.1
…

Event Data

Master Data

sampleattrname = samplevalue
…

ObjectEvent

 Time = 1:23pm 15 Mar 2004
 EPC = urn:epc:id:sgtin:0614141.100734.400
 bizStep = shipping
 bizLocation = urn:epc:id:sgln:0614141.12345.0

address = 123 Elm St
city = Anytown
postalCode = 12345

Children urn:epc:id:sgln:nnnnn …

Master Data Vocabularies Master Data Attributes

Event Fields

Event Type

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 19 of 144

used to model sets such as the set of available location names, the set of available 502
business process step names, and so on. 503

• Vocabulary Element An identifier that names one of the alternatives modeled by a 504
Vocabulary. The value of an Event Field may be a Vocabulary Element. Vocabulary 505
Elements are represented as Uniform Resource Identifiers (URIs). Each Vocabulary 506
Element may have associated Master Data Attributes. 507

• Master Data Attributes An unordered set of name/value pairs associated with an 508
individual Vocabulary Element. The name part of a pair is a qname. The value part 509
of a pair may be a value of arbitrary type. A special attribute is a (possibly empty) 510
list of children, each child being another vocabulary element from the same 511
vocabulary. See Section 6.5. 512

New EPCIS Events are generated at the edge and delivered into EPCIS infrastructure 513
through the EPCIS Capture Interface, where they can subsequently be delivered to 514
interested applications through the EPCIS Query Interfaces. There is no mechanism 515
provided in either interface by which an application can delete or modify an EPCIS 516
Event. The only way to “retract” or “correct” an EPCIS Event is to generate a 517
subsequent event whose business meaning is to rescind or amend the effect of a prior 518
event. 519

While the EPCIS Capture Interface and EPCIS Query Interfaces provide no means for an 520
application to explicitly request the deletion of an event, EPCIS Repositories MAY 521
implement data retention policies that cause old EPCIS events to become inaccessible 522
after some period of time. 523

Master data, in contrast, may change over time, though such changes are expected to be 524
infrequent relative to the rate at which new event data is generated. The current version 525
of this specification does not specify how master data changes (nor, as noted above, does 526
it specify how master data is entered in the first place). 527

6.2 Vocabulary Kinds 528
Vocabularies are used extensively within EPCIS to model conceptual and physical 529
entities that exist in the real world. Examples of vocabularies defined in the core EPCIS 530
Data Definition Layer are location names, object class names (an object class name is 531
something like “Acme Deluxe Widget,” as opposed to an EPC which names a specific 532
instance of an Acme Deluxe Widget), and business step names. In each case, a 533
vocabulary represents a finite (though open-ended) set of alternatives that may appear in 534
specific fields of events. 535

It is useful to distinguish two kinds of vocabularies, which follow different patterns in the 536
way they are defined and extended over time: 537

• Standard Vocabulary A Standard Vocabulary represents a set of Vocabulary 538
Elements whose definition and meaning must be agreed to in advance by trading 539
partners who will exchange events using the vocabulary. For example, the EPCIS 540
Core Data Definition Layer defines a vocabulary called “business step,” whose 541
elements are identifiers denoting such things as “shipping,” “receiving,” and so on. 542

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 20 of 144

One trading partner may generate an event having a business step of “shipping,” and 543
another partner receiving that event through a query can interpret it because of a prior 544
agreement as to what “shipping” means. 545

Standard Vocabulary elements tend to be defined by organizations of multiple end 546
users, such as EPCglobal, industry consortia outside EPCglobal, private trading 547
partner groups, and so on. The master data associated with Standard Vocabulary 548
elements are defined by those same organizations, and tend to be distributed to users 549
as part of a specification or by some similar means. New vocabulary elements within 550
a given Standard Vocabulary tend to be introduced through a very deliberate and 551
occasional process, such as the ratification of a new version of a standard or through a 552
vote of an industry group. While an individual end user organization acting alone 553
may introduce a new Standard Vocabulary element, such an element would have 554
limited use in a data exchange setting, and would probably only be used within an 555
organization’s four walls. 556

• User Vocabulary A User Vocabulary represents a set of Vocabulary Elements 557
whose definition and meaning are under the control of a single organization. For 558
example, the EPCIS Core Data Definition Layer defines a vocabulary called 559
“business location,” whose elements are identifiers denoting such things as “Acme 560
Corp. Distribution Center #3.” Acme Corp may generate an event having a business 561
location of “Acme Corp. Distribution Center #3,” and another partner receiving that 562
event through a query can interpret it either because it correlates it with other events 563
naming the same location, or by looking at master data attributes associated with the 564
location, or both. 565

User Vocabulary elements are primarily defined by individual end user organizations 566
acting independently. The master data associated with User Vocabulary elements are 567
defined by those same organizations, and are usually distributed to trading partners 568
through the EPCIS Query Control Interface or other data exchange / data 569
synchronization mechanisms. New vocabulary elements within a given User 570
Vocabulary are introduced at the sole discretion of an end user, and trading partners 571
must be prepared to respond accordingly. Usually, however, the rules for 572
constructing new User Vocabulary Elements are established by organizations of 573
multiple end users, and in any case must follow the rules defined in Section 6.4 574
below. 575

The lines between these two kinds of vocabularies are somewhat subjective. However, 576
the mechanisms defined in the EPCIS specification make absolutely no distinction 577
between the two vocabulary types, and so it is never necessary to identify a particular 578
vocabulary as belonging to one type or the other. The terms “Standard Vocabulary” and 579
“User Vocabulary” are introduced only because they are useful as a hint as to the way a 580
given vocabulary is expected to be defined and extended. 581

6.3 Extension Mechanisms 582
A key feature of EPCIS is its ability to be extended by different organizations to adapt to 583
particular business situations. In all, the Abstract Data Model Layer provides five 584
methods by which the data processed by EPCIS may be extended (the Service Layer, in 585

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 21 of 144

addition, provides mechanisms for adding additional services), enumerated here from the 586
most invasive type of extension to the least invasive: 587

• New Event Type A new Event Type may be added in the Data Definition Layer. 588
Adding a new Event Type requires each of the Data Definition Bindings to be 589
extended, and may also require extension to the Capture and Query Interfaces and 590
their Bindings. 591

• New Event Field A new field may be added to an existing Event Type in the Data 592
Definition Layer. The bindings, capture interface, and query interfaces defined in this 593
specification are designed to permit this type of extension without requiring changes 594
to the specification itself. (The same may not be true of other bindings or query 595
languages defined outside this specification.) 596

• New Vocabulary Type A new Vocabulary Type may be added to the repertoire of 597
available Vocabulary Types. No change to bindings or interfaces are required. 598

• New Master Data Attribute A new attribute name may be defined for an existing 599
Vocabulary. No change to bindings or interfaces are required. 600

• New Vocabulary Element A new element may be added to an existing Vocabulary. 601

The Abstract Data Model Layer has been designed so that most extensions arising from 602
adoption by different industries or increased understanding within a given industry can be 603
accommodated by the latter methods in the above list, which do not require revision to 604
the specification itself. The more invasive methods at the head of the list are available, 605
however, in case a situation arises that cannot be accommodated by the latter methods. 606

It is expected that there will be several different kinds of organizations who will wish to 607
extend the EPCIS specification, as summarized below: 608

Extension Method Organization
Type New

Event
Type

New
Event
Field

New Vocab
Type

New Master
Data Attr

New Vocab
Element

How
Disseminated

EPCglobal
EPCIS
Working
Group

Yes Yes Yes Occasionally Rarely New Version
of EPCIS Spec

EPCglobal
Business
Action Group
for a specific
industry

Rarely Rarely Occasionally Yes Yes
(Standard
Vocabulary)

Specification
Document

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 22 of 144

Extension Method Organization
Type New

Event
Type

New
Event
Field

New Vocab
Type

New Master
Data Attr

New Vocab
Element

How
Disseminated

Industry
Consortium
or Private
End User
Group
outside
EPCglobal

Rarely Rarely Occasionally Yes Yes
(Standard
Vocabulary)

Private Group
Interoperability
Specification

Individual
End User

Rarely Rarely Rarely Rarely Yes (User
vocabulary)

Updated
Master Data
via EPCIS
Query or other
data sync

 609

6.4 Identifier Representation 610
The Abstract Data Model Layer introduces several kinds of identifiers, including Event 611
Type names, Event Field names, Vocabulary names, Vocabulary Elements, and Master 612
Data Attribute Names. Because all of these namespaces are open to extension, this 613
specification imposes some rules on the construction of these names so that independent 614
organizations may create extensions without fear of name collision. 615

Vocabulary Elements are subject to the following rules. In all cases, a Vocabulary 616
Element is represented as Uniform Resource Identifier (URI) whose general syntax is 617
defined in [RFC2396]. The types of URIs admissible as Vocabulary Elements are those 618
URIs for which there is an owning authority. This includes: 619

• URI representations for EPC codes [TDS1.3, Section 4.1]. The owning authority for 620
a particular EPC URI is the organization to whom the EPC manager number was 621
assigned. 622

• Absolute Uniform Resource Locators (URLs) [RFC1738]. The owning authority for 623
a particular URL is the organization that owns the Internet domain name in the 624
authority portion of the URL. 625

• Uniform Resource Names (URNs) [RFC2141] in the oid namespace that begin with 626
a Private Enterprise Number (PEN) . The owning authority for an OID-URN is the 627
organization to which the PEN was issued. 628

• Uniform Resource Names (URNs) [RFC2141] in the epc or epcglobal 629
namespace, other than URIs used to represent EPC codes [TDS1.3]. The owning 630
authority for these URNs is EPCglobal. 631

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 23 of 144

Event Type names and Event Field names are represented as namespace-qualified names 632
(qnames), consisting of a namespace URI and a name. This has a straightforward 633
representation in XML bindings that is convenient for extension. 634

6.5 Hierarchical Vocabularies 635
Some Vocabularies have a hierarchical or multi-hierarchical structure. For example, a 636
vocabulary of location names may have an element that means “Acme Corp. Retail Store 637
#3” as well others that mean “Acme Corp. Retail Store #3 Backroom” and “Acme Corp. 638
Retail Store #3 Sales Floor.” In this example, there is a natural hierarchical relationship 639
in which the first identifier is the parent and the latter two identifiers are children. 640

Hierarchical relationships between vocabulary elements are represented through master 641
data. Specifically, a parent identifier carries, in addition to its master data attributes, a list 642
of its children identifiers. Each child identifier SHALL belong to the same Vocabulary 643
as the parent. In the example above, the element meaning “Acme Corp. Distribution 644
Center #3” would have a children list including the element that means “Acme Corp. 645
Distribution Center #3 Door #5.” 646

Elsewhere in this specification, the term “direct or indirect descendant” is used to refer to 647
the set of vocabulary elements including the children of a given vocabulary element, the 648
children of those children, etc. That is, the “direct or indirect descendants” of a 649
vocabulary element are the set of vocabulary elements obtained by taking the transitive 650
closure of the “children” relation starting with the given vocabulary element. 651

A given element MAY be the child of more than one parent. This allows for more than 652
one way of grouping vocabulary elements; for example, locations could be grouped both 653
by geography and by function. An element SHALL NOT, however, be a child of itself, 654
either directly or indirectly. 655

Explanation (non-normative): In the present version of this specification, only one 656
hierarchical relationship is provided for, namely the relationship encoded in the special 657
“children” list. Future versions of this specification may generalize this to allow more 658
than one relationship, perhaps encoding each relationship via a different master data 659
attribute. 660

Hierarchical relationships are given special treatment in queries (Section 8.2), and may 661
play a role in carrying out authorization policies (Section 8.2.2), but do not otherwise add 662
any additional complexity or mechanism to the Abstract Data Model Layer. 663

7 Data Definition Layer 664
This section includes normative specifications of modules in the Data Definition Layer. 665

7.1 General Rules for Specifying Data Definition Layer Modules 666
The general rules for specifying modules in the Data Definition Layer are given here. 667
These rules are then applied in Section 7.2 to define the Core Event Types Module. 668
These rules can also be applied by organizations wishing to layer a specification on top of 669
this specification. 670

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 24 of 144

7.1.1 Content 671
In general, a Data Definition Module specification has these components, which populate 672
the Abstract Data Model framework specified in Section 6: 673

• Value Types Definitions of data types that are used to describe the values of Event 674
Fields and of Master Data Attributes. The Core Event Types Module defines the 675
primitive types that are available for use by all Data Definition Modules. Each 676
Vocabulary that is defined is also implicitly a Value Type. 677

• Event Types Definitions of Event Types, each definition giving the name of the 678
Event Type (which must be unique across all Event Types) and a list of standard 679
Event Fields for that type. An Event Type may be defined as a subclass of an existing 680
Event Type, meaning that the new Event Type includes all Event Fields of the 681
existing Event Type plus any additional Event Fields provided as part of its 682
specification. 683

• Event Fields Definitions of Event Fields within Event Types. Each Event Field 684
definition specifies a name for the field (which must be unique across all fields of the 685
enclosing Event Type) and the data type for values in that field. Event Field 686
definitions within a Data Definition Module may be part of new Event Types 687
introduced by that Module, or may extend Event Types defined in other Modules. 688

• Vocabulary Types Definitions of Vocabulary Types, each definition giving the name 689
of the Vocabulary (which must be unique across all Vocabularies), a list of standard 690
Master Data Attributes for elements of that Vocabulary, and rules for constructing 691
new Vocabulary Elements for that Vocabulary. (Any rules specified for constructing 692
Vocabulary Elements in a Vocabulary Type must be consistent with the general rules 693
given in Section 6.4.) 694

• Master Data Attributes Definitions of Master Data Attributes for Vocabulary 695
Types. Each Master Data Attribute definition specifies a name for the Attribute 696
(which must be unique across all attributes of the enclosing Vocabulary Type) and the 697
data type for values of that attribute. Master Data definitions within a Data Definition 698
Module may belong to new Vocabulary Types introduced by that Module, or may 699
extend Vocabulary Types defined in other Modules. 700

• Vocabulary Elements Definitions of Vocabulary Elements, each definition 701
specifying a name (which must be unique across all elements within the Vocabulary, 702
and conform to the general rules for Vocabulary Elements given in Section 6.4 as 703
well as any specific rules specified in the definition of the Vocabulary Type), and 704
optionally specifying master data (specific attribute values) for that element. 705

Amplification (non-normative): As explained in Section 6.3, Data Definition Modules 706
defined in this specification and by companion specifications developed by the EPCIS 707
Working Group will tend to include definitions of Value Types, Event Types, Event 708
Fields, and Vocabulary Types, while modules defined by other groups will tend to include 709
definitions of Event Fields that extend existing Event Types, Master Data Attributes that 710
extend existing Vocabulary Types, and Vocabulary Elements that populate existing 711
Vocabularies. Other groups may also occasionally define Vocabulary Types. 712

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 25 of 144

The word “Vocabulary” is used informally to refer to a Vocabulary Type and the set of 713
all Vocabulary Elements that populate it. 714

7.1.2 Notation 715
In the sections below, Event Types and Event fields are specified using a restricted form 716
of UML class diagram notation. UML class diagrams used for this purpose may contain 717
classes that have attributes (fields) and associations, but not operations. Here is an 718
example: 719

 720
This diagram shows a data definition for two Event Types, EventType1 and 721
EventType2. These event types make use of four Value Types: Type1, Type2, 722
DataClass3, and DataClass4. Type1 and Type2 are primitive types, while 723
DataClass3 and DataClass4 are complex types whose structure is also specified in 724
UML. 725

The Event Type EventType1 in this example has four fields. Field1 and Field2 726
are of primitive type Type1 and Type2 respectively. EventType1 has another field 727
Field3 whose type is DataClass3. Finally, EventType1 has another field 728
Field4 that contains a list of zero or more instances of type DataClass4 (the “0..*” 729
notation indicates “zero or more”). 730

This diagram also shows a data definition for EventType2. The arrow with the open-731
triangle arrowhead indicates that EventType2 is a subclass of EventType1. This 732
means that EventType2 actually has five fields: four fields inherited from 733
EventType1 plus a fifth field5 of type Type1. 734

Within the UML descriptions, the notation <<extension point>> identifies a place 735
where implementations SHALL provide for extensibility through the addition of new 736
data members. (When one type has an extension point, and another type is defined as a 737
subclass of the first type and also has an extension point, it does not mean the second type 738
has two extension points; rather, it merely emphasizes that the second type is also open to 739

EventType1

field1 : Type1
field2 : Type2
<<extension point>>

DataClass3

DataClass4

Field3

Field4

0..*

EventType2

field5 : Type1
<<extension point>>

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 26 of 144

extension.) Extensibility mechanisms SHALL provide for both proprietary extensions by 740
vendors of EPCIS-compliant products, and for extensions defined by EPCglobal through 741
future versions of this specification or through new specifications. 742

In the case of the standard XML bindings, the extension points are implemented within 743
the XML schema following the methodology described in Section 9.1. 744

All definitions of Event Types SHALL include an extension point, to provide for the 745
extensibility defined in Section 6.3 (“New Event Fields”). Value Types MAY include an 746
extension point. 747

7.1.3 Semantics 748
Each event (an instance of an Event Type) encodes several assertions which collectively 749
define the semantics of the event. Some of these assertions say what was true at the time 750
the event was captured. Other assertions say what is expected to be true following the 751
event, until invalidated by a subsequent event. These are called, respectively, the 752
retrospective semantics and the prospective semantics of the event. For example, if 753
widget #23 enters building #5 through door #6 at 11:23pm, then one retrospective 754
assertion is that “widget #23 was observed at door #6 at 11:23pm,”, while a prospective 755
assertion is that “widget #23 is in building #5.” The key difference is that the 756
retrospective assertion refers to a specific time in the past (“widget #23 was 757
observed…”), while the prospective assertion is a statement about the present condition 758
of the object (“widget #23 is in…”). The prospective assertion presumes that if widget 759
#23 ever leaves building #5, another EPCIS capture event will be recorded to supercede 760
the prior one. 761

In general, retrospective semantics are things that were incontrovertibly known to be true 762
at the time of event capture, and can usually be relied upon by EPCIS Accessing 763
Applications as accurate statements of historical fact. Prospective semantics, since they 764
attempt to say what is true after an event has taken place, must be considered at best to be 765
statements of “what ought to be” rather than of “what is.” A prospective assertion may 766
turn out not to be true if the capturing apparatus does not function perfectly, or if the 767
business process or system architecture were not designed to capture EPCIS events in all 768
circumstances. Moreover, in order to make use of a prospective assertion implicit in an 769
event, an EPCIS Accessing Application must be sure that it has access to any subsequent 770
event that might supercede the event in question. 771

The retrospective/prospective dichotomy plays an important role in EPCIS’s definition of 772
location, in Section 7.2.3. 773

7.2 Core Event Types Module 774
The Core Event Types data definition module specifies the Event Types that represent 775
EPCIS data capture events. These events are typically generated by an EPCIS Capturing 776
Application and provided to EPCIS infrastructure using the data capture operations 777
defined in Section 8.1. These events are also returned in response to query operations 778
that retrieve events according to query criteria. 779

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 27 of 144

The components of this module, following the outline given in Section 7.1.1, are as 780
follows: 781

• Value Types Primitive types defined in Section 7.2.1. 782

• Event Types Event types as shown in the UML diagram below, and defined in 783
Sections 7.2.8 through 7.2.12. 784

• Event Fields Included as part of the Event Types definitions. 785

• Vocabulary Types Types defined in Sections 7.2.3 through 7.2.7, and summarized in 786
Section 7.2. 787

• Master Data Attributes Included as part of Vocabulary Types definitions. It is 788
expected that industry vertical working groups will define additional master data 789
attributes for the vocabularies defined here. 790

• Vocabulary Elements None provided as part of this specification. It is expected that 791
industry vertical working groups will define vocabulary elements for the 792
BusinessStep vocabulary (Section 7.2.4), the Disposition vocabulary 793
(Section 7.2.5), and the BusinessTransactionType vocabulary 794
(Section 7.2.6.1). 795

This module defines five event types, one very generic event and four subclasses that can 796
represent events arising from supply chain activity across a wide variety of industries: 797

• EPCISEvent (Section 7.2.8) is a generic base class for all event types in this 798
module as well as others. 799

• ObjectEvent (Section 7.2.9) represents an event that happened to one or more 800
entities denoted by EPCs. 801

• AggregationEvent (Section 7.2.10) represents an event that happened to one or 802
more entities denoted by EPCs that are physically aggregated together (physically 803
constrained to be in the same place at the same time, as when cases are aggregated to 804
a pallet). 805

• QuantityEvent (Section 7.2.11) represents an event concerned with a specific 806
quantity of entities sharing a common EPC class, but where the individual identities 807
of the entities are not specified. 808

• TransactionEvent (Section 7.2.12) represents an event in which one or more 809
entities denoted by EPCs become associated or disassociated with one or more 810
identified business transactions. 811

A UML diagram showing these Event Types is as follows: 812

 813

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 28 of 144

 814
Each of the core event types (not counting the generic EPCISEvent) has fields that 815
represent four key dimensions of any EPCIS event. These four dimensions are: (1) the 816
object(s) or other entities that are the subject of the event; (2) the date and time; (3) the 817
location at which the event occurred; (4) the business context. These four dimensions 818
may be conveniently remembered as “what, when, where, and why” (respectively). The 819

EPCISEvent

eventTime : Time
recordTime : Time

eventTimeZoneOffset : string
<<extension point>>

ObjectEvent

epcList : List<EPC>
action : Action

bizStep : BizStepID
disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
 <<extension point>>

QuantityEvent

epcClass : EPCClass
quantity : int

bizStep : BizStepID
disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
 <<extension point>>

AggregationEvent

parentID : URI
childEPCs : List<EPC>

action : Action
bizStep : BizStepID

disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
<<extension point>>

Note: in this diagram, certain names have been abbreviated owing to space
constraints; e.g., BizLocationID is used in the diagram, whereas the actual
type is called BusinessLocationID. See the text of the specification for the
normative names of fields and their types

TransactionEvent

parentID : URI
epcList : List<EPC>

action : Action
bizStep : BizStepID

disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
<extension point>>

BizTransaction

type : BizTransTypeID
bizTrans : BizTransID 1..*

0..*

0..*

bizTransList

bizTransList
bizTransList

0..* = “zero or more”

1..* = “one or more”

bizTransList

0..*

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 29 of 144

“what” dimension varies depending on the event type (e.g., for an ObjectEvent the 820
“what” dimension is one or more EPCs; for a QuantityEvent the “what” dimension 821
is an EPCClass and a count). The “where” and “why” dimensions have both a 822
retrospective aspect and a prospective aspect (see Section 7.1.3), represented by different 823
fields. 824

The following table summarizes the fields of the event types that pertain to the four key 825
dimensions: 826

 Retrospective

(at the time of the event)

Prospective

(true until contradicted by
subsequent event)

What EPC

EPCClass + quantity (QuantityEvent)

BusinessTransactionList (TransactionEvent)

When Time

Where ReadPointID BusinessLocationID

Why
(business context)

BusinessStepID DispositionID

 827

In addition to the fields belonging to the four key dimensions, events may carry 828
additional descriptive information in other fields. In this specification, the only 829
descriptive field is the bizTransactionList field of ObjectEvent and 830
AggregationEvent, which in each case indicates that the event occurred within the 831
context of a particular business transaction. (The bizTransactionList field of 832
TransactionEvent, however, is not “additional descriptive information,” but rather 833
the primary subject (the “what” dimension) of the event.) It is expected that the majority 834
of additional descriptive information fields will be defined by industry-specific 835
specifications layered on top of this one. 836

The following table summarizes the vocabulary types defined in this module. The URI 837
column gives the formal name for the vocabulary used when the vocabulary must be 838
referred to by name across the EPCIS interface. 839

Vocabulary Type Secti
on

User /
Standard

URI

ReadPointID 7.2.3 User urn:epcglobal:epcis:vtype:ReadPoint

BusinessLocati
onID

7.2.3 User urn:epcglobal:epcis:vtype:BusinessLoc
ation

BusinessStepID 7.2.4 Standard urn:epcglobal:epcis:vtype:BusinessSte
p

DispositionID 7.2.5 Standard urn:epcglobal:epcis:vtype:Disposition

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 30 of 144

Vocabulary Type Secti
on

User /
Standard

URI

BusinessTransa
ction

7.2.6.
2

User urn:epcglobal:epcis:vtype:BusinessTra
nsaction

BusinessTrasac
tionTypeID

7.2.6.
1

Standard urn:epcglobal:epcis:vtype:BusinessTra
nsactionType

EPCClass 7.2.7 User urn:epcglobal:epcis:vtype:EPCClass

 840

7.2.1 Primitive Types 841
The following primitive types are used within the Core Event Types Module. 842

Type Description
int An integer. Range restrictions are noted where applicable.
Time A timestamp, giving the date and time in a time zone-independent manner. For

bindings in which fields of this type are represented textually, an ISO-8601
compliant representation SHOULD be used.

EPC An Electronic Product Code, as defined in [TDS1.3]. Unless otherwise noted,
EPCs are represented in “pure identity” URI form as defined in [TDS1.3],
Section 4.1.

 843

The EPC type is defined as a primitive type for use in events when referring to EPCs that 844
are not part of a Vocabulary Type. For example, an SGTIN EPC used to denote an 845
instance of a trade item in the epcList field of an ObjectEvent is an instance of the 846
EPC primitive type. But an SGLN EPC used as a read point identifier (Section 7.2.3) in 847
the ReadPoint field of an ObjectEvent is a Vocabulary Element, not an instance of 848
the EPC primitive type. 849

Explanation (non-normative): This reflects a design decision not to consider individual 850
trade item instances as Vocabulary Elements having Master Data, owing to the fact that 851
trade item instances are constantly being created and hence new EPCs representing 852
trade items are constantly being commissioned. In part, this design decision reflects 853
consistent treatment of Master Data as excluding data that grows as more business is 854
transacted (see comment in Section 6.1), and in part reflects the pragmatic reality that 855
data about trade item instances is likely to be managed more like event data than master 856
data when it comes to aging, database design, etc. 857

7.2.2 Action Type 858
The Action type says how an event relates to the lifecycle of the entity being described. 859
For example, AggregationEvent (Section 7.2.10) is used to capture events related to 860
physical aggregations of objects, such as cases aggregated to a pallet. Throughout its life, 861

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 31 of 144

the pallet load participates in many business process steps, each of which may generate 862
an EPCIS event. The action field of each event says how the aggregation itself has 863
changed during the event: have objects been added to the aggregation, have objects been 864
removed from the aggregation, or has the aggregation simply been observed without 865
change to its membership? The action is independent of the bizStep (of type 866
BusinessStepID) which identifies the specific business process step in which the 867
action took place. 868

The Action type is an enumerated type having three possible values: 869

Action value Meaning

ADD The entity in question has been created or added to.
OBSERVE The entity in question has not been changed: it has neither been

created, added to, destroyed, or removed from.
DELETE The entity in question has been removed from or destroyed

altogether.

The description below for each event type that includes an Action value says more 870
precisely what Action means in the context of that event. 871

Note that the three values above are the only three values possible for Action. Unlike 872
other types defined below, Action is not a vocabulary type, and SHALL NOT be 873
extended by industry groups. 874

7.2.3 Location Types 875
This section defines four types that all relate to the notion of location information as used 876
in EPCIS. Two of these types are ways of referring to “readers,” or devices that sense the 877
presence of EPC-tagged objects using RFID or other means. These are not actually 878
considered to be “location” types at all for the purposes of EPCIS. They are included in 879
this specification mainly to contrast them to the true location types (though some 880
applications may want to use them as extension fields on observations, for auditing 881
purposes.) 882

The next two concepts are true location types, and are defined as EPCIS Vocabulary 883
Types. 884

Explanation (non-normative): In the EPC context, the term location has been used to 885
signify many different things and this has lead to confusion about the meaning and use of 886
the term, particularly when viewed from a business perspective. This confusion stems 887
from a number of causes: 888

1. In situations where EPC Readers are stationary, there’s a natural tendency to equate 889
the reader with a location, though that may not always be valid if there is more than one 890
reader in a location; 891

2. There are situations where stationary Readers are placed between what business 892
people would consider to be different locations (such as at the door between the 893

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 32 of 144

backroom and sales floor of a retail store) and thus do not inherently determine the 894
location without an indication of the direction in which the tagged object was traveling; 895

3. A single physical Reader having multiple, independently addressable antennas might 896
be used to detect tagged objects in multiple locations as viewed by the business people; 897

4. Conversely, more than one Reader might be used to detect tagged objects in what 898
business people would consider a single location; 899

5. With mobile Readers, a given Reader may read tagged objects in multiple locations, 900
perhaps using “location” tags or other means to determine the specific location 901
associated with a given read event; 902

6. And finally, locations of interest to one party (trading partner or application) may not 903
be of interest to or authorized for viewing by another party, prompting interest in ways to 904
differentiate locations. 905

The key to balancing these seemingly conflicting requirements is to define and relate 906
various location types, and then to rely on the EPCIS Capturing Application to properly 907
record them for a given capture event. This is why EPCIS events contain both a 908
ReadPointID and a BusinessLocationID (the two primitive location types). 909

In addition, there has historically been much confusion around the difference between 910
“location” as needed by EPCIS-level applications and reader identities. This EPCIS 911
specification defines location as something quite distinct from reader identity. To help 912
make this clear, the reader identity types are defined below to provide a contrast to the 913
definitions of the true EPCIS location types. Also, reader identity types may enter into 914
EPCIS as “observational attributes” when an application desires to retain a record of 915
what readers played a role in an observation; e.g., for auditing purposes. (Capture and 916
sharing of “observational attributes” would require use of extension fields not defined in 917
this specification.) 918

The reader/location types are as follows: 919

 Type Description

Primitive Reader Types – not location types for EPCIS

 PhysicalReaderID This is the serialized identity or name of the
specific information source (e.g., a physical RFID
Reader) that reports the results of an EPC read
event. Physical Reader ID is further defined in
[ALE1.0].

 LogicalReaderID This is the identity or name given to an EPC read
event information source independent of the
physical device or devices that are used to
perform the read event. Logical Reader ID is
further defined in [ALE1.0]. There are several
reasons for introducing the Logical Reader
concept as outlined in [ALE1.0], including
allowing physical readers to be replaced without

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 33 of 144

 Type Description

requiring changes to EPCIS Capturing
Applications, allowing multiple physical readers
to be given a single name when they are always
used simultaneously to cover a single location,
and (conversely) allowing a single physical reader
to map to multiple logical readers when a physical
reader has multiple antennas used independently
to cover different locations.

True Location Types

 ReadPointID A Read Point is a discretely recorded location that
is meant to identify the most specific place at
which an EPCIS event took place. Read Points
are determined by the EPCIS Capturing
Application, perhaps inferred as a function of
logical reader if stationary readers are used,
perhaps determined overtly by reading a location
tag if the reader is mobile, or in general
determined by any other means the EPCIS
Capturing Application chooses to use.
Conceptually, the Read Point is designed to
identify “how or where the EPCIS event was
detected.”

 BusinessLocationID A Business Location is a uniquely identified and
discretely recorded location that is meant to
designate the specific place where an object is
assumed to be following an EPCIS event until it is
reported to be at a different Business Location by
a subsequent EPCIS event. As with the Read
Point, the EPCIS Capturing Application
determines the Business Location based on
whatever means it chooses. Conceptually, the
Business Location is designed to identify “where
the object is following the EPCIS event.”

 920

ReadPointID and BusinessLocationID are User Vocabularies as defined in 921
Section 6.2. Some industries may wish to use EPCs as vocabulary elements, in which 922
case pure identity URIs as defined in [TDS1.3] SHALL be used. 923

Illustration (non-normative): For example, in industries governed by EAN.UCC General 924
Specifications, readPointID, and businessLocationID may be SGLN-URIs 925
[TDS1.3, Section 4.3.5], and physicalReaderID may be an SGTIN-URI [TDS1.3, 926
Section 4.3.3]. 927

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 34 of 144

But in all cases, location vocabulary elements are not required to be EPCs. 928

Explanation (non-normative): Allowing non-EPC URIs for locations gives 929
organizations greater freedom to reuse existing ways of naming locations. 930

For all of the EPCIS Event Types defined in this Section 7.2, capture events include 931
separate fields for Read Point and Business Location. In most cases, both are optional, so 932
that it is still possible for an EPCIS Capturing Application to include partial information 933
if both are not known. 934

Explanation (non-normative): Logical Reader and Physical Reader are omitted from 935
the definitions of EPCIS events in this specification. Physical Reader is generally not 936
useful information for exchange between partners. For example, if a reader malfunctions 937
and is replaced by another reader of identical make and model, the Physical Reader ID 938
has changed. This information is of little interest to trading partners. Likewise, the 939
Logical Reader ID may change if the capturing organization makes a change in the way 940
a particular business process is executed; again, not often of interest to a partner. 941

The distinction between Read Point and Business Location is very much related to the 942
dichotomy between retrospective semantics and prospective semantics discussed above. 943
In general, Read Points play a role in retrospective semantics, while Business Locations 944
are involved in prospective statements. This is made explicit in the way each type of 945
location enters the semantic descriptions given at the end of each section below that 946
defines an EPCIS capture event. 947

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 35 of 144

7.2.3.1 Example of the distinction between a Read Point and a Business 948
Location (Non-Normative) 949

 950

 951
Tag Time Read Point Business

Location
Comment

#123 7:00 “RP-
DC#88-A”

DC#88.Receive
& Store

Product entered DC via
DockDoor#R1

#123 9:00 “RP-
DC#88-K”

DC#88.Shipping Product placed on conveyor
for shipping

#123 9:30 “RP-
DC#88-N”

DC#88.Transit Product loaded on truck via
dock door#S2

 952

The figure above shows a typical use case consisting of rooms with fixed doorways at the 953
boundaries of the rooms. In such a case, Read Points correspond to the doorways (with 954
RFID instrumentation) and Business Locations correspond to the rooms. Note that the 955
Read Points and Business Locations are not in one-to-one correspondence; the only 956
situation where Read Points and Business Locations could have a 1:1 relationship is the 957
unusual case of a room with a single door, such a small storeroom. 958

Simple Distribution Center

RP:C

Recv Dock#R3

DC#88

RP:B

Recv Dock#R2
RP:A

Recv Dock#R1

RP:M

Shipping Dock#S1

RP:N

Shipping Dock#S2

RP:O

Shipping Dock#S3

Receive & Store Shipping

Read
Point

K

RP:

RP:

RP: RP:
RP:O

RP:

RP:M R& Shippin

DC#88 Graph
View

Physical
View

1

2

3

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 36 of 144

Still considering the rooms-and-doors example, the Business Location is usually the 959
location type of most interest to a business application, as it says which room an object is 960
in. Thus it is meaningful to ask the inventory of a Business Location such as the 961
backroom. In contrast, the Read Point indicates the doorway through which the object 962
entered the room. It is not meaningful to ask the inventory of a doorway. While 963
sometimes not as relevant to a business application, the Read Point is nevertheless of 964
significant interest to higher level software to understand the business process and the 965
final status of the object, particularly in the presence of less than 100% read rates. Note 966
that that correct designation of the business location requires both that the tagged object 967
be observed at the Read Point and that the direction of movement be correctly 968
determined – again reporting the Read Point in the event will be very valuable for higher 969
level software. 970

A supply chain like the rooms-and-doors example may be represented by a graph in 971
which each node in the graph represents a room in which objects may be found, and each 972
arc represents a doorway that connects two rooms. Business Locations, therefore, 973
correspond to nodes of this graph, and Read Points correspond to the arcs. If the graph 974
were a straight, unidirectional chain, the arcs traversed by a given object could be 975
reconstructed from knowing the nodes; that is, Read Point information would be 976
redundant given the Business Location information. In more real-world situations, 977
however, objects can take multiple paths and move “backwards” in the supply chain. In 978
these real-world situations, providing Read Point information in addition to Business 979
Location information is valuable for higher level software. 980

7.2.4 Business Step 981
BusinessStepID is a vocabulary whose elements denote steps in business processes. 982
An example is an identifier that denotes “shipping.” The business step field of an event 983
specifies the business context of an event: what business process step was taking place 984
that caused the event to be captured? BusinessStepID is an example of a Standard 985
Vocabulary as defined in Section 6.2. 986

Explanation (non-normative): Using an extensible vocabulary for business step 987
identifiers allows EPCglobal standards to define some common terms such as “shipping” 988
or “receiving,” while allowing for industry groups and individual end-users to define 989
their own terms. Master data provides additional information. 990

This specification defines no Master Data Attributes for business step identifiers. 991

7.2.5 Disposition 992
DispositionID is a vocabulary whose elements denote a business state of an object. 993
An example is an identifier that denotes “available for sale.” The disposition field of an 994
event specifies the business condition of the event’s objects, subsequent to the event. The 995
disposition is assumed to hold true until another event indicates a change of disposition. 996
Intervening events that do not specify a disposition field have no effect on the presumed 997
disposition of the object. DispositionID is an example of a Standard Vocabulary as 998
defined in Section 6.2. 999

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 37 of 144

Explanation (non-normative): Using an extensible vocabulary for disposition identifiers 1000
allows EPCglobal standards to define some common terms such as “available for sale” 1001
or “in storage,” while allowing for industry groups and individual end-users to define 1002
their own terms. Master data may provide additional information. 1003

This specification defines no Master Data Attributes for disposition identifiers. 1004

7.2.6 Business Transaction 1005
A BusinessTransaction identifies a particular business transaction. An example 1006
of a business transaction is a specific purchase order. Business Transaction information 1007
may be included in EPCIS events to record an event’s participation in particular business 1008
transactions. 1009

A business transaction is described in EPCIS by a structured type consisting of a pair of 1010
identifiers, as follows. 1011

Field Type Description
type BusinessTransactionTypeID (Optional) An identifier that

indicates what kind of business
transaction this
BusinessTransaction
denotes. If omitted, no
information is available about
the type of business transaction
apart from what is implied by
the value of the
bizTransaction field itself.

bizTransaction BusinessTransactionID An identifier that denotes a
specific business transaction.

 1012

The two vocabulary types BusinessTransactionTypeID and 1013
BusinessTransactionID are defined in the sections below. 1014

7.2.6.1 Business Transaction Type 1015
BusinessTransactionTypeID is a vocabulary whose elements denote a specific 1016
type of business transaction. An example is an identifier that denotes “purchase order.” 1017
BusinessTransactionTypeID is an example of a Standard Vocabulary as defined 1018
in Section 6.2. 1019

Explanation (non-normative): Using an extensible vocabulary for business transaction 1020
type identifiers allows EPCglobal standards to define some common terms such as 1021
“purchase order” while allowing for industry groups and individual end-users to define 1022
their own terms. Master data may provide additional information. 1023

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 38 of 144

This specification defines no Master Data Attributes for business transaction type 1024
identifiers. 1025

7.2.6.2 Business Transaction ID 1026
BusinessTransactionID is a vocabulary whose elements denote specific business 1027
transactions. An example is an identifier that denotes “Acme Corp purchase order 1028
number 12345678.” BusinessTransactionID is a User Vocabulary as defined in 1029
Section 6.2. 1030

Explanation (non-normative): URIs are used to provide extensibility and a convenient 1031
way for organizations to distinguish one kind of transaction identifier from another. For 1032
example, if Acme Corporation has purchase orders (one kind of business transaction) 1033
identified with an 8-digit number as well as shipments (another kind of business 1034
transaction) identified by a 6-character string, and furthermore the PostHaste Shipping 1035
Company uses 12-digit tracking IDs, then the following business transaction IDs might 1036
be associated with a particular EPC over time: 1037
http://transaction.acme.com/po/12345678 1038
http://transaction.acme.com/shipment/34ABC8 1039
urn:posthaste:tracking:123456789012 1040

(In this example, it is assumed that PostHaste Shipping has registered the URN 1041
namespace “posthaste” with IANA.) An EPCIS Accessing Application might query 1042
EPCIS and discover all three of the transaction IDs; using URIs gives the application a 1043
way to understand which ID is of interest to it. 1044

7.2.7 EPCClass 1045
EPCClass is a Vocabulary whose elements denote classes of trade items. EPCClass 1046
is a User Vocabulary as defined in Section 6.2. Any EPC whose structure incorporates 1047
the concept of object class can be referenced as an EPCClass. The standards for SGTIN 1048
EPCs are elaborated below. 1049

When a Vocabulary Element in EPCClass represents a class of SGTIN EPCs, it 1050
SHALL be a URI in the following form, as defined in Version 1.3 and later of the 1051
EPCglobal Tag Data Standards: 1052
urn:epc:idpat:sgtin:CompanyPrefix.ItemRefAndIndicator.* 1053

where CompanyPrefix is an EAN.UCC Company Prefix (including leading zeros) and 1054
ItemRefAndIndicator consists of the indicator digit of a GTIN followed by the 1055
digits of the item reference of a GTIN. 1056

An EPCClass vocabulary element in this form denotes the class of objects whose EPCs 1057
are SGTINs (urn:epc:id:sgtin:…) having the same CompanyPrefix and 1058
ItemRefAndIndicator fields, and having any serial number whatsoever. 1059

Master Data Attributes for the EPCClass vocabulary contain whatever master data is 1060
defined for the referenced objects independent of EPCIS (for example, product catalog 1061
data);definitions of these are outside the scope of this specification. 1062

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 39 of 144

7.2.8 EPCISEvent 1063
EPCISEvent is a common base type for all EPCIS events. All of the more specific 1064
event types in the following sections are subclasses of EPCISEvent. 1065

This common base type only has the following fields. 1066

Field Type Description
eventTime Time The date and time at which the EPCIS

Capturing Applications asserts the event
occurred.

recordTime Time (Optional) The date and time at which
this event was recorded by an EPCIS
Repository. This field SHALL be
ignored when an event is presented to
the EPCIS Capture Interface, and
SHALL be present when an event is
retrieved through the EPCIS Query
Interfaces. The recordTime plays a
role in the interpretation of standing
queries as specified in Section 8.2.5.2.

eventTimeZoneOffset String The time zone offset in effect at the
time and place the event occurred,
expressed as an offset from UTC. The
value of this field SHALL be a string
consisting of the character ‘+’ or the
character ‘-‘, followed by two digits,
followed by a colon character ‘:’,
followed by two digits. For example,
the value +05:30 specifies that where
the event occurred, local time was five
hours and 30 minutes later than UTC
(that is, midnight UTC was 5:30am
local time).

 1067

Explanation (non-normative): The eventTimeZoneOffset field is not necessary to 1068
understand at what moment in time an event occurred. This is because the eventTime 1069
field is of type Time, defined in Section 7.2.1 to be a “date and time in a time zone-1070
independent manner.” For example, in the XML binding (Section 9.5) the eventTime 1071
field is represented as an element of type xsd:dateTime, and Section 9.5 further 1072
stipulates that the XML must include a time zone specifier. Therefore, the XML for 1073
eventTime unambiguously identifies a moment in absolute time, and it is not necessary 1074
to consult eventTimeZoneOffset to understand what moment in time that is. 1075

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 40 of 144

The purpose of eventTimeZoneOffset is to provide additional business context 1076
about the event, namely to identify what time zone offset was in effect at the time and 1077
place the event was captured. This information may be useful, for example, to determine 1078
whether an event took place during business hours, to present the event to a human in a 1079
format consistent with local time, and so on. The local time zone offset information is 1080
not necessarily available from eventTime, because there is no requirement that the 1081
time zone specifier in the XML representation of eventTime be the local time zone 1082
offset where the event was captured. For example, an event taking place at 8:00am US 1083
Eastern Standard Time could have an XML eventTime field that is written 08:00-1084
05:00 (using US Eastern Standard Time), or 13:00Z (using UTC), or even 07:00-1085
06:00 (using US Central Standard Time). Moreover, XML processors are not required 1086
by [XSD2] to retain and present to applications the time zone specifier that was part of 1087
the xsd:dateTime field, and so the time zone specifier in the eventTime field might 1088
not be available to applications at all. Similar considerations would apply for other 1089
(non-XML) bindings of the Core Event Types module. For example, a hypothetical 1090
binary binding might represent Time values as a millisecond offset relative to midnight 1091
UTC on January 1, 1970 – again, unambiguously identifying a moment in absolute time, 1092
but not providing any information about the local time zone. For these reasons, 1093
eventTimeZoneOffset is provided as an additional event field. 1094

7.2.9 ObjectEvent (subclass of EPCISEvent) 1095
An ObjectEvent captures information about an event pertaining to one or more 1096
physical objects identified by EPCs. Most ObjectEvents are envisioned to represent 1097
actual observations of EPCs, but strictly speaking it can be used for any event a 1098
Capturing Application wants to assert about EPCs, including for example capturing the 1099
fact that an expected observation failed to occur. 1100

While more than one EPC may appear in an ObjectEvent, no relationship or 1101
association between those EPCs is implied other than the coincidence of having 1102
experienced identical events in the real world. 1103

The Action field of an ObjectEvent describes the event’s relationship to the 1104
lifecycle of the EPC(s) named in the event. Specifically: 1105

Action value Meaning

ADD The EPC(s) named in the event have been commissioned as part of
this event; that is, the EPC(s) have been issued and associated with
an object (s) for the first time.

OBSERVE The event represents a simple observation of the EPC(s) named in
the event, not their commissioning or decommissioning.

DELETE The EPC(s) named in the event have been decommissioned as part
of this event; that is, the EPC(s) do not exist subsequent to the event
and should not be observed again.

 1106

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 41 of 144

Fields: 1107

Field Type Description
eventTime
recordTime

(Inherited from EPCISEvent; see Section 7.2.8)

epcList List<EPC> An unordered list of one or
more EPCs naming the
physical objects to which
the event pertained. Each
element of this list SHALL
be a URI [RFC2396]
denoting the unique
identity for a physical
object. When the unique
identity is an Electronic
Product Code, the list
element SHALL be the
”pure identity” URI for the
EPC as specified in
[TDS1.3], Section 4.1.
Implementations MAY
accept URI-formatted
identifiers other than EPCs.

action Action How this event relates to
the lifecycle of the EPCs
named in this event. See
above for more detail.

bizStep BusinessStepID (Optional) The business
step of which this event
was a part.

disposition DispositionID (Optional) The business
condition of the objects
associated with the EPCs,
presumed to hold until
contradicted by a
subsequent event.

readPoint ReadPointID (Optional) The read point
at which the event took
place.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 42 of 144

Field Type Description
bizLocation BusinessLocationID (Optional) The business

location where the objects
associated with the EPCs
may be found, until
contradicted by a
subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered
list of business transactions
that define the context of
this event.

 1108

Retrospective semantics: 1109

• An event described by bizStep (and any other fields) took place with respect to 1110
each EPC in epcList at eventTime at location readPoint. 1111

• (If action is ADD) The EPCs in epcList were commissioned (issued for the first 1112
time). 1113

• (If action is DELETE) The EPCs in epcList were decommissioned (retired 1114
from future use). 1115

• (If action is ADD and a non-empty bizTransactionList is specified) An 1116
association exists between the business transactions enumerated in 1117
bizTransactionList and the EPCs in epcList. 1118

• (If action is OBSERVE and a non-empty bizTransactionList is specified) 1119
This event took place within the context of the business transactions enumerated in 1120
bizTransactionList. 1121

• (If action is DELETE and a non-empty bizTransactionList is specified) 1122
This event took place within the context of the business transactions enumerated in 1123
bizTransactionList. 1124

Prospective semantics: 1125

• (If action is ADD) The EPCs in epcList may appear in subsequent events. 1126

• (If action is DELETE) The EPCs in epcList should not appear in subsequent 1127
events. 1128

• (If disposition is specified) The business condition of the objects associated 1129
with the EPCs in epcList is as described by disposition. 1130

• (If disposition is omitted) The business condition of the objects associated with 1131
the EPCs in epcList is unchanged. 1132

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 43 of 144

• (If bizLocation is specified) The physical objects associated with the EPCs in 1133
epcList are at business location bizLocation. 1134

• (If bizLocation is omitted) The business location of the physical objects 1135
associated with the EPCs in epcList is unknown. 1136

• (If action is ADD and a non-empty bizTransactionList is specified) An 1137
association exists between the business transactions enumerated in 1138
bizTransactionList and the EPCs in epcList. 1139

Explanation (non-normative): In the case where action is ADD and a non-empty 1140
bizTransactionList is specified, the semantic effect is equivalent to having an 1141
ObjectEvent with no bizTransactionList together with a TransactionEvent having 1142
the bizTransactionList and all the same field values as the ObjectEvent. Note, 1143
however, that a ObjectEvent with a non-empty bizTransactionList does not cause 1144
a TransactionEvent to be returned from a query. 1145

7.2.10 AggregationEvent (subclass of EPCISEvent) 1146
The event type AggregationEvent describes events that apply to objects that have 1147
been physically aggregated to one another. In such an event, there is a set of “contained” 1148
objects that have been aggregated within a “containing” entity that’s meant to identify the 1149
physical aggregation itself. 1150

This event type is intended to be used for “aggregations,” meaning an association where 1151
there is a strong physical relationship between the containing and the contained objects 1152
such that they will all occupy the same location at the same time, until such time as they 1153
are disaggregated. An example of an aggregation is where cases are loaded onto a pallet 1154
and carried as a unit. The AggregationEvent type is not intended for weaker 1155
associations such as two pallets that are part of the same shipment, but where the pallets 1156
might not always be in exactly the same place at the same time. (The 1157
TransactionEvent may be appropriate for such circumstances.) More specific 1158
semantics may be specified depending on the Business Step. 1159

The Action field of an AggregationEvent describes the event’s relationship to the 1160
lifecycle of the aggregation. Specifically: 1161

Action value Meaning

ADD The EPCs named in the child list have been aggregated to the
parent during this event. This includes situations where the
aggregation is created for the first time, as well as when new
children are added to an existing aggregate.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 44 of 144

Action value Meaning

OBSERVE The event represents neither adding nor removing children from the
aggregation. The observation may be incomplete: there may be
children that are part of the aggregation but not observed during this
event and therefore not included in the childEPCs field of the
AggregationEvent; likewise, the parent identity may not be
observed or known during this event and therefore the parentID
field be omitted from the AggregationEvent.

DELETE The EPCs named in the child list have been disaggregated from the
parent during this event. This includes situations where a subset of
children are removed from the aggregation, as well as when the
entire aggregation is dismantled. The list of child EPCs may be
omitted from the AggregationEvent, which means that all
children have been disaggregated. (This permits dissaggregation
when the event capture software does not know the identities of all
the children.)

 1162

The AggregationEvent type includes fields that refer to a single “parent” (often a 1163
“containing” entity) and one or more “children” (often “contained” objects). A parent 1164
identifier is required when action is ADD or DELETE, but optional when action is 1165
OBSERVE. 1166

Explanation (non-normative): A parent identifier is used when action is ADD so that 1167
there is a way of referring to the association in subsequent events when action is 1168
DELETE. The parent identifier is optional when action is OBSERVE because the 1169
parent is not always known during an intermediate observation. For example, a pallet 1170
receiving process may rely on RFID tags to determine the EPCs of cases on the pallet, 1171
but there might not be an RFID tag for the pallet (or if there is one, it may be 1172
unreadable). 1173

The AggregationEvent is intended to indicate aggregations among physical objects, 1174
and so the children are identified by EPCs. The parent entity, however, is not necessarily 1175
a physical object that’s separate from the aggregation itself, and so the parent is identified 1176
by an arbitrary URI, which MAY be an EPC, but MAY be another identifier drawn from 1177
a suitable private vocabulary. 1178

Explanation (non-normative): In many manufacturing operations, for example, it is 1179
common to create a load several steps before an EPC for the load is assigned. In such 1180
situations, an internal tracking number (often referred to as a “license plate number,” or 1181
LPN) is assigned at the time the load is created, and this is used up to the point of 1182
shipment. At the point of shipment, an SSCC code (which is an EPC) is assigned. In 1183
EPCIS, this would be modeled by (a) an AggregateEvent with action equal to 1184
ADD at the time the load is created, and (b) a second AggregationEvent with 1185
action equal to ADD at the time the SSCC is assigned (the first association may also be 1186
invalidated via a AggregationEvent with action equal to DELETE at this time). 1187

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 45 of 144

The first AggregationEvent would use the LPN as the parent identifier (expressed in 1188
a suitable URI representation; see Section 6.4), while the second AggregationEvent 1189
would use the SSCC (which is a type of EPC) as the parent identifier, thereby changing 1190
the parentID. 1191

An AggregationEvent has the following fields: 1192

Field Type Description
eventTime
recordTime

(Inherited from EPCISEvent; see Section 7.2.8)

parentID URI (Optional when action is
OBSERVE, required
otherwise) The identifier
of the parent of the
association. When the
parent identifier is an EPC,
this field SHALL contain
the “pure identity” URI for
the EPC as specified in
[TDS1.3], Section 4.1.

childEPCs List<EPC> An unordered list of the
EPCs of the contained
objects. Each element of
the list SHALL be a URI
[RFC2396] denoting the
unique identity for a
physical object. When the
unique identity is an
Electronic Product Code,
the list element SHALL be
the “pure identity” URI for
the contained EPC as
specified in [TDS1.3],
Section 4.1.
Implementations MAY
accept URI-formatted
identifiers other than EPCs.

The childEPCs list
MAY be empty if action
is DELETE, indicating that
all children are
disaggregated from the
parent.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 46 of 144

Field Type Description
action Action How this event relates to

the lifecycle of the
aggregation named in this
event. See above for more
detail.

bizStep BusinessStepID (Optional) The business
step of which this event
was a part.

disposition DispositionID (Optional) The business
condition of the objects
associated with the EPCs,
presumed to hold until
contradicted by a
subsequent event.

readPoint ReadPointID (Optional) The read point
at which the event took
place.

bizLocation BusinessLocationID (Optional) The business
location where the objects
associated with the
containing and contained
EPCs may be found, until
contradicted by a
subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered
list of business
transactions that define the
context of this event.

 1193

Retrospective semantics: 1194

• An event described by bizStep (and any other fields) took place involving 1195
containing entity parentID and the contained EPCs in childEPCs, at 1196
eventTime and location readPoint. 1197

• (If action is ADD) The EPCs in childEPCs were aggregated to containing entity 1198
parentID. 1199

• (If action is DELETE and childEPCs is non-empty) The EPCs in childEPCs 1200
were disaggregated from parentID. 1201

• (If action is DELETE and childEPCs is empty) All contained EPCs have been 1202
disaggregated from containing entity parentID. 1203

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 47 of 144

• (If action is ADD and a non-empty bizTransactionList is specified) An 1204
association exists between the business transactions enumerated in 1205
bizTransactionList, the EPCs in childEPCs, and containing entity 1206
parentID. 1207

• (If action is OBSERVE and a non-empty bizTransactionList is specified) 1208
This event took place within the context of the business transactions enumerated in 1209
bizTransactionList. 1210

• (If action is DELETE and a non-empty bizTransactionList is specified) 1211
This event took place within the context of the business transactions enumerated in 1212
bizTransactionList. 1213

Prospective semantics: 1214

• (If action is ADD) An aggregation exists between containing entity parentID 1215
and the contained EPCs in childEPCs. 1216

• (If action is DELETE and childEPCs is non-empty) An aggregation no longer 1217
exists between containing entity parentID and the contained EPCs in 1218
childEPCs. 1219

• (If action is DELETE and childEPCs is empty) An aggregation no longer exists 1220
between containing entity parentID and any contained EPCs. 1221

• (If disposition is specified) The business condition of the objects associated 1222
with the EPCs in parentID and childEPCs is as described by disposition. 1223

• (If disposition is omitted) The business condition of the objects associated with 1224
the EPCs in parentID and childEPCs is unchanged. 1225

• (If bizLocation is specified) The physical objects associated with the EPCs in 1226
parentID and childEPCs are at business location bizLocation. 1227

• (If bizLocation is omitted) The business location of the physical objects 1228
associated with the EPCs in parentID and childEPCs is unknown. 1229

• (If action is ADD and a non-empty bizTransactionList is specified) An 1230
association exists between the business transactions enumerated in 1231
bizTransactionList, the EPCs in childEPCs, and containing entity 1232
parentID (if specified). 1233

Explanation (non-normative): In the case where action is ADD and a non-empty 1234
bizTransactionList is specified, the semantic effect is equivalent to having an 1235
AggregationEvent with no bizTransactionList together with a TransactionEvent 1236
having the bizTransactionList and all same field values as the AggregationEvent. 1237
Note, however, that a AggregationEvent with a non-empty bizTransactionList 1238
does not cause a TransactionEvent to be returned from a query. 1239

Note (non-normative): Many semantically invalid situations can be expressed with 1240
incorrect use of aggregation. For example, the same EPC may be given multiple parents 1241

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 48 of 144

during the same time period by distinct ADD operations without an intervening Delete. 1242
Similarly an object can be specified to be a child of its grand-parent or even of itself. A 1243
non-existent aggregation may be DELETED. These situations cannot be detected 1244
syntactically and in general an individual EPCIS repository may not have sufficient 1245
information to detect them. Thus this specification does not address these error 1246
conditions. 1247

7.2.11 QuantityEvent (subclass of EPCISEvent) 1248
A QuantityEvent captures an event that takes place with respect to a specified 1249
quantity of an object class. This Event Type may be used, for example, to report 1250
inventory levels of a product. 1251

Field Type Description
eventTime
recordTime

(Inherited from EPCISEvent; see Section 7.2.8)

epcClass EPCClass The identifier specifying the
object class to which the
event pertains.

quantity Int The quantity of object within
the class described by this
event.

bizStep BusinessStepID (Optional) The business step
of which this event was a
part.

disposition DispositionID (Optional) The business
condition of the objects
associated with the EPCs,
presumed to hold until
contradicted by a subsequent
event.

readPoint ReadPointID (Optional) The read point at
which the event took place.

bizLocation BusinessLocationID (Optional) The business
location where the objects
may be found, until
contradicted by a subsequent
event.

bizTransactionList Unordered list of zero or
more
BusinessTransaction
instances

(Optional) An unordered list
of business transactions that
define the context of this
event.

 1252

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 49 of 144

Note that because an EPCClass always denotes a specific packaging unit (e.g., a 12-item 1253
case), there is no need for an explicit “unit of measure” field. The unit of measure is 1254
always the object class denoted by epcClass as defined in Master Data for that object 1255
class. 1256

Retrospective semantics: 1257

• An event described by bizStep (and any other fields) took place with respect to 1258
quantity objects of EPC class epcClass at eventTime at location 1259
readPoint. 1260

• (If a non-empty bizTransactionList is specified) This event took place 1261
within the context of the business transactions enumerated in 1262
bizTransactionList. 1263

Prospective semantics: . 1264

• (If disposition is specified) The business condition of the objects is as described 1265
by disposition. 1266

• (If disposition is omitted) The business condition of the objects is unchanged. 1267

• (If bizLocation is specified) The objects are at business location 1268
bizLocation. 1269

• (If bizLocation is omitted) The business location of the objects is unknown. 1270

7.2.12 TransactionEvent (subclass of EPCISEvent) 1271
The event type TransactionEvent describes the association or disassociation of 1272
physical objects to one or more business transactions. While other event types have an 1273
optional bizTransactionList field that may be used to provide context for an 1274
event, the TransactionEvent is used to declare in an unequivocal way that certain 1275
EPCs have been associated or disassociated with one or more business transactions as 1276
part of the event. 1277

The Action field of a TransactionEvent describes the event’s relationship to the 1278
lifecycle of the transaction. Specifically: 1279

Action value Meaning

ADD The EPCs named in the event have been associated to the business
transaction(s) during this event. This includes situations where the
transaction(s) is created for the first time, as well as when new
EPCs are added to an existing transaction(s).

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 50 of 144

Action value Meaning

OBSERVE The EPCs named in the event have been confirmed as continuing to
be associated to the business transaction(s) during this event.

Explanation (non-normative): A TransactionEvent with
action OBSERVE is quite similar to an ObjectEvent that
includes a non-empty bizTransactionList field. When an
end user group agrees to use both kinds of events, the group should
clearly define when each should be used. An example where a
TransactionEvent with action OBSERVE might be
appropriate is an international shipment with transaction ID xxx
moving through a port, and there’s a desire to record the EPCs that
were observed at that point in handling that transaction.
Subsequent queries will concentrate on querying the transaction ID
to find the EPCs, not on the EPCs to find the transaction ID.

DELETE The EPCs named in the event have been disassociated from the
business transaction(s) during this event. This includes situations
where a subset of EPCs are disassociated from the business
transaction(s), as well as when the entire business transaction(s) has
ended. As a convenience, the list of EPCs may be omitted from the
TransactionEvent, which means that all EPCs have been
disassociated.

 1280

A TransactionEvent has the following fields: 1281

Field Type Description
eventTime
recordTime

(Inherited from EPCISEvent; see Section 7.2.8)

bizTransactionList Unordered list of one or
more
BusinessTransaction
instances

The business transaction(s).

parentID URI (Optional) The identifier of
the parent of the EPCs given
in epcList. When the
parent identifier is an EPC,
this field SHALL contain the
“pure identity” URI for the
EPC as specified in
[TDS1.3], Section 4.1. See
also the note following the
table.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 51 of 144

Field Type Description
epcList List<EPC> An unordered list of the

EPCs of the objects
associated with the business
transaction. Each element of
the list SHALL be a URI
[RFC2396] denoting the
unique identity for a physical
object. When the unique
identity is an Electronic
Product Code, the list
element SHALL be the “pure
identity” URI for the
contained EPC as specified
in [TDS1.3], Section 4.1.
Implementations MAY
accept URI-formatted
identifiers other than EPCs.

The epcList MAY be
empty if action is
DELETE, indicating that all
the EPCs are disassociated
from the business
transaction(s).

action Action How this event relates to the
lifecycle of the business
transaction named in this
event. See above for more
detail.

bizStep BusinessStepID (Optional) The business step
of which this event was a
part.

disposition DispositionID (Optional) The business
condition of the objects
associated with the EPCs,
presumed to hold until
contradicted by a subsequent
event.

readPoint ReadPointID (Optional) The read point at
which the event took place.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 52 of 144

Field Type Description
bizLocation BusinessLocationID (Optional) The business

location where the objects
associated with the
containing and contained
EPCs may be found, until
contradicted by a subsequent
event.

 1282

Explanation (non-normative): The use of the field name parentID in both 1283
TransactionEvent and AggregationEvent (Section 7.2.10) does not indicate a 1284
similarity in function or semantics. In general a TransactionEvent carries the 1285
same object identification information as an ObjectEvent, that is, a list of EPCs. All 1286
the non-EPC information fields (bizTransactionList, bizStep, 1287
bizLocation, etc) apply equally and uniformly to all EPCs specified, whether or not 1288
the EPCs are specified in just the epcList field or if the optional parentID field is 1289
also supplied. 1290

The TransactionEvent provides a way to describe the association or disassociation 1291
of business transactions to specific EPCs. The parentID field in the 1292
TransactionEvent highlights a specific EPC or other identifier as the preferred or 1293
primary object but does not imply a physical relationship of any kind, nor is any kind of 1294
nesting or inheritance implied by the TransactionEvent itself. Only 1295
AggregationEvent instances describe actual parent-child relationships and nestable 1296
parent-child relationships. This can be seen by comparing the semantics of 1297
AggregationEvent in Section 7.2.10 with the semantics of TransactionEvent 1298
below. 1299

Retrospective semantics: 1300

• An event described by bizStep (and any other fields) took place involving the 1301
business transactions enumerated in bizTransactionList, the EPCs in 1302
epcList, and containing entity parentID (if specified), at eventTime and 1303
location readPoint. 1304

• (If action is ADD) The EPCs in epcList and containing entity parentID (if 1305
specified) were associated to the business transactions enumerated in 1306
bizTransactionList. 1307

• (If action is DELETE and epcList is non-empty) The EPCs in epcList and 1308
containing entity parentID (if specified) were disassociated from the business 1309
transactions enumerated in bizTransactionList. 1310

• (If action is DELETE, epcList is empty, and parentID is omitted) All EPCs 1311
have been disassociated from the business transactions enumerated in 1312
bizTransactionList. 1313

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 53 of 144

Prospective semantics: 1314

• (If action is ADD) An association exists between the business transactions 1315
enumerated in bizTransactionList, the EPCs in epcList, and containing 1316
entity parentID (if specified). 1317

• (If action is DELETE and epcList is non-empty) An association no longer 1318
exists between the business transactions enumerated in bizTransactionList, 1319
the EPCs in epcList, and containing entity parentID (if specified). 1320

• (If action is DELETE, epcList is empty, and parentID is omitted) An 1321
association no longer exists between the business transactions enumerated in 1322
bizTransactionList and any EPCs. 1323

• (If disposition is specified) The business condition of the objects associated 1324
with the EPCs in epcList and containing entity parentID (if specified) is as 1325
described by disposition. 1326

• (If disposition is omitted) The business condition of the objects associated with 1327
the EPCs in epcList and containing entity parentID (if specified) is unchanged. 1328

• (If bizLocation is specified) The physical objects associated with the EPCs in 1329
epcList and containing entity parentID (if specified) are at business location 1330
bizLocation. 1331

• (If bizLocation is omitted) The business location of the physical objects 1332
associated with the EPCs in epcList and containing entity parentID (if 1333
specified) is unknown. 1334

8 Service Layer 1335
This section includes normative specifications of modules in the Service Layer. 1336
Together, these modules define three interfaces: the EPCIS Capture Interface, the EPCIS 1337
Query Control Interface, and the EPCIS Query Callback Interface. (The latter two 1338
interfaces are referred to collectively as the EPCIS Query Interfaces.) The diagram 1339
below illustrates the relationship between these interfaces, expanding upon the diagram in 1340
Section 2 (this diagram is non-normative): 1341

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 54 of 144

 1342
In the subsections below, services are specified using UML class diagram notation. 1343
UML class diagrams used for this purpose may contain interfaces having operations, but 1344
not fields or associations. Here is an example: 1345

 1346
This diagram shows a service definition for Service1, which provides three operations. 1347
Operation1 takes two arguments, arg11 and arg12, having types ArgType11 and 1348
ArgType12, respectively, and returns a value of type ReturnType1. Operation2 1349
takes one argument but does not return a result. Operation3 does not take any 1350
arguments but returns a value of type ReturnType3. 1351

EPCIS Capture Interface

EPCIS
Repository

EPCIS Capturing Application

EPCIS Query
Callback Interface

 Control

(Manage subscriptions
to scheduled queries)

Optional
bypass for
real-time

“push”

EPCIS Query Control
Interface

Consume Immediate Data

(Accept immediate data
response & exceptions)

Consume Scheduled Data

(Accept callback data
response & exceptions)

EPCIS
Accessing Application

EPCIS
Accessing Application

Request/response

(Synchronous in web services
binding, two coupled one-way

messages in AS2 binding)

One-way

One-way

<<interface>>
Service1

operation1(arg11 : ArgType11, arg12 : ArgType12) : ReturnType1
operation2(arg21 : ArgType21) : void
operation3() : ReturnType3

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 55 of 144

Within the UML descriptions, the notation <<extension point>> identifies a place 1352
where implementations SHALL provide for extensibility through the addition of new 1353
operations. Extensibility mechanisms SHALL provide for both proprietary extensions by 1354
vendors of EPCIS-compliant products, and for extensions defined by EPCglobal through 1355
future versions of this specification or through new specifications. 1356

In the case of the standard WSDL bindings, the extension points are implemented simply 1357
by permitting the addition of additional operations. 1358

8.1 Core Capture Operations Module 1359
The Core Capture Operations Module provides operations by which core events may be 1360
delivered from an EPCIS Capture Application. Within this section, the word “client” 1361
refers to an EPCIS Capture Application and “EPCIS Service” refers to a system that 1362
implements the EPCIS Capture Interface. 1363

8.1.1 Authentication and Authorization 1364
Some bindings of the EPCIS Capture Interface provide a means for the EPCIS Service to 1365
authenticate the client’s identity, for the client to authenticate the EPCIS Service’s 1366
identity, or both. The specification of the means to authenticate is included in the 1367
specification of each binding. If the EPCIS Service authenticates the identity of the 1368
client, an implementation MAY use the client identity to make authorization decisions as 1369
described below. Moreover, an implementation MAY record the client identity with the 1370
captured data, for use in subsequent authorization decisions by the system implementing 1371
the EPCIS Query Interfaces, as described in Section 8.2.2. 1372

Because of the simplicity of the EPCIS Capture Interface, the authorization provisions 1373
are very simple to state: namely, an implementation MAY use the authenticated client 1374
identity to decide whether a capture operation is permitted or not. 1375

Explanation (non-normative): It is expected that trading partners will always use 1376
bindings that provide for client identity authentication or mutual authentication when 1377
using EPCIS interfaces to share data across organizational boundaries. The bindings 1378
that do not offer authentication are expected to be used only within a single organization 1379
in situations where authentication is not required to meet internal security requirements. 1380

8.1.2 Capture Service 1381

 1382
The capture interface contains only a single method, capture, which takes a single 1383
argument and returns no results. Implementations of the EPCIS Capture Interface 1384
SHALL accept each element of the argument list that is a valid EPCISEvent or subtype 1385

<<interface>>
CoreCaptureService

capture(event : List<EPCISEvent>) : void
<<extension point>>

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 56 of 144

thereof according to this specification. Implementations MAY accept other types of 1386
events through vendor extension. The simplicity of this interface admits a wide variety 1387
of bindings, including simple message-queue type bindings. 1388

Explanation (non-normative): “Message-queue type bindings” means the following. 1389
Enterprises commonly use “message bus” technology for interconnection of different 1390
distributed system components. A message bus provides a reliable channel for in-order 1391
delivery of messages from a sender to a receiver. (The relationship between sender and 1392
receiver may be point-to-point (a message “queue”) or one-to-many via a 1393
publish/subscribe mechanism (a message “topic”).) A “message-queue type binding” of 1394
the EPCIS Capture Interface would simply be the designation of a particular message 1395
bus channel for the purpose of delivering EPCIS events from an EPCIS Capture 1396
Application to an EPCIS Repository, or to an EPCIS Accessing Application by way of the 1397
EPCIS Query Callback Interface. Each message would have a payload containing one 1398
or more EPCIS events (serialized through some binding at the Data Definition Layer; 1399
e.g., an XML binding). In such a binding, therefore, each transmission/delivery of a 1400
message corresponds to a single “capture” operation. 1401

The capture operation records one or more EPCIS events, of any type. 1402

Arguments: 1403

Argument Type Description
event List of EPCISEvent The event(s) to capture. All relevant

information such as the event time,
EPCs, etc., are contained within each
event. Exception: the recordTime
MAY be omitted. Whether the
recordTime is omitted or not in
the input, following the capture
operation the recordTime of the
event as recorded by the EPCIS
Repository or EPCIS Accessing
Application is the time of capture.

Explanation (non-normative): this
treatment of recordTime is
necessary in order for standing
queries to be processed properly. See
Section 8.2.5.2.

 1404

Return value: 1405

(none) 1406

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 57 of 144

8.2 Core Query Operations Module 1407
The Core Query Operations Module provides two interfaces, called the EPCIS Query 1408
Control Interface and the EPCIS Query Callback Interface, by which EPCIS data can be 1409
retrieved by an EPCIS Accessing Application. The EPCIS Query Control Interface 1410
defines a means for EPCIS Accessing Applications and trading partners to obtain EPCIS 1411
data subsequent to capture from any source, typically by interacting with an EPCIS 1412
Repository. It provides a means for an EPCIS Accessing Application to retrieve data on-1413
demand, and also enter subscriptions for standing queries. Results of standing queries are 1414
delivered to EPCIS Accessing Applications via the EPCIS Query Callback Interface. 1415
Within this section, the word “client” refers to an EPCIS Accessing Application and 1416
“EPCIS Service” refers to a system that implements the EPCIS Query Control Interface, 1417
and in addition delivers information to a client via the EPCIS Query Callback Interface. 1418

8.2.1 Authentication 1419
Some bindings of the EPCIS Query Control Interface provide a means for the EPCIS 1420
Service to authenticate the client’s identity, for the client to authenticate the EPCIS 1421
Service’s identity, or both. The specification of the means to authenticate is included in 1422
the specification of each binding. . If the EPCIS Service authenticates the identity of the 1423
client, an implementation MAY use the client identity to make authorization decisions as 1424
described in the next section. 1425

Explanation (non-normative): It is expected that trading partners will always use 1426
bindings that provide for client identity authentication or mutual authentication when 1427
using EPCIS interfaces to share data across organizational boundaries. The bindings 1428
that do not offer authentication are expected to be used only within a single organization 1429
in situations where authentication is not required to meet internal security requirements. 1430

8.2.2 Authorization 1431
An EPCIS service may wish to provide access to only a subset of information, depending 1432
on the identity of the requesting client. This situation commonly arises in cross-1433
enterprise scenarios where the requesting client belongs to a different organization than 1434
the operator of an EPCIS service, but may also arise in intra-enterprise scenarios. 1435

Given an EPCIS query, an EPCIS service MAY take any of the following actions in 1436
processing the query, based on the authenticated identity of the client: 1437

• The service MAY refuse to honor the request altogether, by responding with a 1438
SecurityException as defined below. 1439

• The service MAY respond with less data than requested. For example, if a client 1440
presents a query requesting all ObjectEvent instances within a specified time 1441
interval, the service knows of 100 matching events, the service may choose to 1442
respond with fewer than 100 events (e.g., returning only those events whose EPCs are 1443
SGTINs with a company prefix known to be assigned to the client). 1444

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 58 of 144

• The service MAY respond with coarser grained information. In particular, when the 1445
response to a query includes a location type (as defined in Section 7.2.3), the service 1446
may substitute an aggregate location in place of a primitive location. 1447

• The service MAY hide information. For example, if a client presents a query 1448
requesting ObjectEvent instances, the service may choose to delete the 1449
bizTransactionList fields in its response. The information returned, however, 1450
SHALL be well-formed EPCIS events consistent with this specification and industry 1451
guidelines. In addition, if hiding information would otherwise result in ambiguous, or 1452
misleading information, then the entire event SHOULD be withheld. This applies 1453
whether the original information was captured through the EPCIS Capture Interface 1454
or provided by some other means. For example, given an AggregationEvent with 1455
action equal to ADD, an attempt to hide the parentID field would result in a non-1456
well-formed event, because parentID is required when the action is ADD; in this 1457
instance, therefore, the entire event would have to be withheld. 1458

• The service MAY limit the scope of the query to data that was originally captured by 1459
a particular client identity. This allows a single EPCIS service to be “partitioned” for 1460
use by groups of unrelated users whose data should be kept separate. 1461

An EPCIS implementation is free to determine which if any of these actions to take in 1462
processing any query, using any means it chooses. The specification of authorization 1463
rules is outside the scope of this specification. 1464

Explanation (non-normative): Because the EPCIS specification is concerned with the 1465
query interfaces as opposed to any particular implementation, the EPCIS specification 1466
does not take a position as to how authorization decisions are taken. Particular 1467
implementations of EPCIS may have arbitrarily complex business rules for authorization. 1468
That said, the EPCIS specification may contain standard data that is needed for 1469
authorization, whether exclusively for that purpose or not. 1470

8.2.3 Queries for Large Amounts of Data 1471
Many of the query operations defined below allow a client to make a request for a 1472
potentially unlimited amount of data. For example, the response to a query that asks for 1473
all ObjectEvent instances within a given interval of time could conceivably return 1474
one, a thousand, a million, or a billion events depending on the time interval and how 1475
many events had been captured. This may present performance problems for service 1476
implementations. 1477

To mitigate this problem, an EPCIS service MAY reject any request by raising a 1478
QueryTooLarge exception. This exception indicates that the amount of data being 1479
requested is larger than the service is willing to provide to the client. The 1480
QueryTooLarge exception is a hint to the client that the client might succeed by 1481
narrowing the scope of the original query, or by presenting the query at a different time 1482
(e.g., if the service accepts or rejects queries based on the current computational load on 1483
the service). 1484

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 59 of 144

Roadmap (non-normative): It is expected that future versions of this specification will 1485
provide more sophisticated ways to deal with the large query problem, such as paging, 1486
cursoring, etc. Nothing more complicated was agreed to in this version for the sake of 1487
expedience. 1488

8.2.4 Overly Complex Queries 1489
EPCIS service implementations may wish to restrict the kinds of queries that can be 1490
processed, to avoid processing queries that will consume more resources than the service 1491
is willing to expend. For example, a query that is looking for events having a specific 1492
value in a particular event field may require more or fewer resources to process 1493
depending on whether the implementation anticipated searching on that field (e.g., 1494
depending on whether or not a database column corresponding to that field is indexed). 1495
As with queries for too much data (Section 8.2.3), this may present performance 1496
problems for service implementations. 1497

To mitigate this problem, an EPCIS service MAY reject any request by raising a 1498
QueryTooComplex exception. This exception indicates that structure of the query is 1499
such that the service is unwilling to carry it out for the client. Unlike the 1500
QueryTooLarge exception (Section 8.2.3), the QueryTooComplex indicates that 1501
merely narrowing the scope of the query (e.g., by asking for one week’s worth of events 1502
instead of one month’s) is unlikely to make the query succeed. 1503

A particular query language may specify conditions under which an EPCIS service is not 1504
permitted to reject a query with a QueryTooComplex exception. This provides a 1505
minimum level of interoperability. 1506

8.2.5 Query Framework (EPCIS Query Control Interface) 1507
The EPCIS Query Control Interface provides a general framework by which client 1508
applications may query EPCIS data. The interface provides both on-demand queries, in 1509
which an explicit request from a client causes a query to be executed and results returned 1510
in response, and standing queries, in which a client registers ongoing interest in a query 1511
and thereafter receives periodic delivery of results via the EPCIS Query Callback 1512
Interface without making further requests. These two modes are informally referred to as 1513
“pull” and “push,” respectively. 1514

The EPCIS Query Control Interface is defined below. An implementation of the Query 1515
Control Interface SHALL implement all of the methods defined below. 1516

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 60 of 144

<<interface>> 1517
EPCISQueryControlInterface 1518
--- 1519
subscribe(queryName : String, params : QueryParams, dest : 1520
URI, controls : SubscriptionControls, subscriptionID : 1521
String) 1522
unsubscribe(subscriptionID : String) 1523
poll(queryName : String, params : QueryParams) : 1524
QueryResults 1525
getQueryNames() : List // of names 1526
getSubscriptionIDs(queryName : String) : List // of Strings 1527
getStandardVersion() : string 1528
getVendorVersion() : string 1529
<<extension point>> 1530

Standing queries are made by making one or more subscriptions to a previously defined 1531
query using the subscribe method. Results will be delivered periodically via the 1532
Query Callback Interface to a specified destination, until the subscription is cancelled 1533
using the unsubscribe method. On-demand queries are made by executing a 1534
previously defined query using the poll method. Each invocation of the poll method 1535
returns a result directly to the caller. In either case, if the query is parameterized, specific 1536
settings for the parameters may be provided as arguments to subscribe or poll. 1537

An implementation MAY provide one or more “pre-defined” queries. A pre-defined 1538
query is available for use by subscribe or poll, and is returned in the list of query 1539
names returned by getQueryNames, without the client having previously taken any 1540
action to define the query. In particular, EPCIS 1.0 does not support any mechanism by 1541
which a client can define a new query, and so pre-defined queries are the only queries 1542
available. See Section 8.2.7 for specific pre-defined queries that SHALL be provided by 1543
an implementation of the EPCIS 1.0 Query Interface. 1544

An implementation MAY permit a given query to be used with poll but not with 1545
subscribe. Generally, queries for event data may be used with both poll and 1546
subscribe, but queries for master data may be used only with poll. This is because 1547
subscribe establishes a periodic schedule for running a query multiple times, each 1548
time restricting attention to new events recorded since the last time the query was run. 1549
This mechanism cannot apply to queries for master data, because master data is presumed 1550
to be quasi-static and does not have anything corresponding to a record time. 1551

The specification of these methods is as follows: 1552

Method Description

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 61 of 144

Method Description
subscribe Registers a subscriber for a previously defined query having

the specified name. The params argument provides the
values to be used for any named parameters defined by the
query. The dest parameter specifies a destination where
results from the query are to be delivered, via the Query
Callback Interface. The dest parameter is a URI that both
identifies a specific binding of the Query Callback Interface
to use and specifies addressing information. The
controls parameter controls how the subscription is to be
processed; in particular, it specifies the conditions under
which the query is to be invoked (e.g., specifying a periodic
schedule). The subscriptionID is an arbitrary string
that is copied into every response delivered to the specified
destination, and otherwise not interpreted by the EPCIS
service. The client may use the subscriptionID to
identify from which subscription a given result was
generated, especially when several subscriptions are made to
the same destination.

The dest argument MAY be null or empty, in which case
results are delivered to a pre-arranged destination based on
the authenticated identity of the caller. If the EPCIS
implementation does not have a destination pre-arranged for
the caller, or does not permit this usage, it SHALL raise an
InvalidURIException.

unsubscribe Removes a previously registered subscription having the
specified subscriptionID.

poll Invokes a previously defined query having the specified
name, returning the results. The params argument provides
the values to be used for any named parameters defined by
the query.

getQueryNames Returns a list of all query names available for use with the
subscribe and poll methods. This includes all pre-
defined queries provided by the implementation, including
those specified in Section 8.2.7.

getSubscriptionIDs Returns a list of all subscriptionIDs currently
subscribed to the specified named query.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 62 of 144

Method Description
getStandardVersion Returns a string that identifies what version of the

specification this implementation complies with. The
possible values for this string are defined by EPCglobal. An
implementation SHALL return a string corresponding to a
version of this specification to which the implementation
fully complies, and SHOULD return the string
corresponding to the latest version to which it complies. To
indicate compliance with this Version 1.0 of the EPCIS
specification, the implementation SHALL return the string
1.0.

getVendorVersion Returns a string that identifies what vendor extensions this
implementation provides. The possible values of this string
and their meanings are vendor-defined, except that the empty
string SHALL indicate that the implementation implements
only standard functionality with no vendor extensions. When
an implementation chooses to return a non-empty string, the
value returned SHALL be a URI where the vendor is the
owning authority. For example, this may be an HTTP URL
whose authority portion is a domain name owned by the
vendor, a URN having a URN namespace identifier issued to
the vendor by IANA, an OID URN whose initial path is a
Private Enterprise Number assigned to the vendor, etc.

 1553

This framework applies regardless of the content of a query. The detailed contents of a 1554
query, and the results as returned from poll or delivered to a subscriber via the Query 1555
Callback Interface, are defined in later sections of this document. This structure is 1556
designed to facilitate extensibility, as new types of queries may be specified and fit into 1557
this general framework. 1558

An implementation MAY restrict the behavior of any method according to authorization 1559
decisions based on the authenticated client identity of the client making the request. For 1560
example, an implementation may limit the IDs returned by getSubscriptionIDs 1561
and recognized by unsubscribe to just those subscribers that were previously 1562
subscribed by the same client identity. This allows a single EPCIS service to be 1563
“partitioned” for use by groups of unrelated users whose data should be kept separate. 1564

If a pre-defined query defines named parameters, values for those parameters may be 1565
supplied when the query is subsequently referred to using poll or subscribe. A 1566
QueryParams instance is simply a set of name/value pairs, where the names 1567
correspond to parameter names defined by the query, and the values are the specific 1568
values to be used for that invocation of (poll) or subscription to (subscribe) the 1569
query. If a QueryParams instance includes a name/value pair where the value is 1570
empty, it SHALL be interpreted as though that query parameter were omitted altogether. 1571

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 63 of 144

The poll or subscribe method SHALL raise a QueryParameterException 1572
under any of the following circumstances: 1573

• A parameter required by the specified query was omitted or was supplied with an 1574
empty value 1575

• A parameter was supplied whose name does not correspond to any parameter name 1576
defined by the specified query 1577

• Two parameters are supplied having the same name 1578

• Any other constraint imposed by the specified query is violated. Such constraints 1579
may include restrictions on the range of values permitted for a given parameter, 1580
requirements that two or more parameters be mutually exclusive or must be supplied 1581
together, and so on. The specific constraints imposed by a given query are specified 1582
in the documentation for that query. 1583

8.2.5.1 Subscription Controls 1584
Standing queries are subscribed to via the subscribe method. For each subscription, a 1585
SubscriptionControls instance defines how the query is to be processed. 1586

SubscriptionControls 1587
--- 1588
schedule : QuerySchedule // see Section 8.2.5.3 1589
trigger : URI // specifies a trigger event known by the 1590
service 1591
initialRecordTime : Time // see Section 8.2.5.2 1592
reportIfEmpty : boolean 1593
<<extension point>> 1594

The fields of a SubscriptionControls instance are defined below. 1595

Argument Type Description
schedule QuerySchedule (Optional) Defines the periodic

schedule on which the query is to
be executed. See Section 8.2.5.3.
Exactly one of schedule or
trigger is required; if both are
specified or both are omitted, the
implementation SHALL raise a
SubscriptionControls-
Exception..

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 64 of 144

Argument Type Description
trigger URI (Optional) Specifies a triggering

event known to the EPCIS service
that will serve to trigger execution
of this query. The available
trigger URIs are service-
dependent. Exactly one of
schedule or trigger is
required; if both are specified or
both are omitted, the
implementation SHALL raise a
SubscriptionControls-
Exception..

initialRecordTime Time (Optional) Specifies a time used
to constrain what events are
considered when processing the
query when it is executed for the
first time. See Section 8.2.5.2. If
omitted, defaults to the time at
which the subscription is created.

reportIfEmpty boolean If true, a QueryResults
instance is always sent to the
subscriber when the query is
executed. If false, a
QueryResults instance is sent
to the subscriber only when the
results are non-empty.

 1596

8.2.5.2 Automatic Limitation Based On Event Record Time 1597
Each subscription to a query results in the query being executed many times in 1598
succession, the timing of each execution being controlled by the specified schedule or 1599
being triggered by a triggering condition specified by trigger. Having multiple 1600
executions of the same query is only sensible if each execution is limited in scope to new 1601
event data generated since the last execution – otherwise, the same events would be 1602
returned more than once. However, the time constraints cannot be specified explicitly in 1603
the query or query parameters, because these do not change from one execution to the 1604
next. 1605

For this reason, an EPCIS service SHALL constrain the scope of each query execution 1606
for a subscribed query in the following manner. The first time the query is executed for a 1607
given subscription, the only events considered are those whose recordTime field is 1608
greater than or equal to initialRecordTime specified when the subscription was 1609
created. For each execution of the query following the first, the only events considered 1610

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 65 of 144

are those whose recordTime field is greater than or equal to the time when the query 1611
was last executed. It is implementation dependent as to the extent that failure to deliver 1612
query results to the subscriber affects this calculation; implementations SHOULD make 1613
best efforts to insure reliable delivery of query results so that a subscriber does not miss 1614
any data. The query or query parameters may specify additional constraints upon record 1615
time; these are applied after restricting the universe of events as described above. 1616

Explanation (non-normative): one possible implementation of this requirement is that 1617
the EPCIS service maintains a minRecordTime value for each subscription that exists. 1618
The minRecordTime for a given subscription is initially set to 1619
initialRecordTime, and updated to the current time each time the query is 1620
executed for that subscription. Each time the query is executed, the only events 1621
considered are those whose recordTime is greater than or equal to 1622
minRecordTime for that subscription. 1623

8.2.5.3 Query Schedule 1624
A QuerySchedule may be specified to specify a periodic schedule for query 1625
execution for a specific subscription. Each field of QuerySchedule is a string that 1626
specifies a pattern for matching some part of the current time. The query will be 1627
executed each time the current date and time matches the specification in the 1628
QuerySchedule. 1629

Each QuerySchedule field is a string, whose value must conform to the following 1630
grammar: 1631
QueryScheduleField ::= Element (“,” Element)* 1632
 1633
Element ::= Number | Range 1634
 1635
Range ::= “[“ Number “-“ Number “]” 1636
 1637
Number ::= Digit+ 1638
 1639
Digit ::= “0” | “1” | “2” | “3” | “4” 1640
 | “5” | “6” | “7” | “8” | “9” 1641

Each Number that is part of the query schedule field value must fall within the legal 1642
range for that field as specified in the table below. An EPCIS implementation SHALL 1643
raise a SubscriptionControlsException if any query schedule field value does 1644
not conform to the grammar above, or contains a Number that falls outside the legal 1645
range, or includes a Range where the first Number is greater than the second Number. 1646

The QuerySchedule specifies a periodic sequence of time values (the “query times”). 1647
A query time is any time value that matches the QuerySchedule, according to the 1648
following rule: 1649

• Given a time value, extract the second, minute, hour (0 through 23, inclusive), 1650
dayOfMonth (1 through 31, inclusive), and dayOfWeek (1 through 7, inclusive, 1651

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 66 of 144

denoting Monday through Sunday). This calculation is to be performed relative to a 1652
time zone chosen by the EPCIS Service. 1653

• The time value matches the QuerySchedule if each of the values extracted above 1654
matches (as defined below) the corresponding field of the QuerySchedule, for all 1655
QuerySchedule fields that are not omitted. 1656

• A value extracted from the time value matches a field of the QuerySchedule if it 1657
matches any of the comma-separated Elements of the query schedule field. 1658

• A value extracted from the time value matches an Element of a query schedule field 1659
if 1660

• the Element is a Number and the value extracted from the time value is equal 1661
to the Number; or 1662

• the Element is a Range and the value extracted from the time value is greater 1663
than or equal to the first Number in the Range and less than or equal to the 1664
second Number in the Range. 1665

See examples following the table below. 1666

An EPCIS implementation SHALL interpret the QuerySchedule as a client’s 1667
statement of when it would like the query to be executed, and SHOULD make reasonable 1668
efforts to adhere to that schedule. An EPCIS implementation MAY, however, deviate 1669
from the requested schedule according to its own policies regarding server load, 1670
authorization, or any other reason. If an EPCIS implementation knows, at the time the 1671
subscribe method is called, that it will not be able to honor the specified 1672
QuerySchedule without deviating widely from the request, the EPCIS 1673
implementation SHOULD raise a SubscriptionControlsException instead. 1674

Explanation (non-normative): The QuerySchedule, taken literally, specifies the exact 1675
timing of query execution down to the second. In practice, an implementation may not 1676
wish to or may not be able to honor that request precisely, but can honor the general 1677
intent. For example, a QuerySchedule may specify that a query be executed every 1678
hour on the hour, while an implementation may choose to execute the query every hour 1679
plus or minus five minutes from the top of the hour. The paragraph above is intended to 1680
give implementations latitude for this kind of deviation. 1681

In any case, the automatic handling of recordTime as specified earlier SHALL be 1682
based on the actual time the query is executed, whether or not that exactly matches the 1683
QuerySchedule. 1684

The field of a QuerySchedule instance are as follows. 1685

Argument Type Description
second String (Optional) Specifies that the query time must have a

matching seconds value. The range for this
parameter is 0 through 59, inclusive.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 67 of 144

Argument Type Description
minute String (Optional) Specifies that the query time must have a

matching minute value. The range for this parameter
is 0 through 59, inclusive.

hour String (Optional) Specifies that the query time must have a
matching hour value. The range for this parameter is
0 through 23, inclusive, with 0 denoting the hour that
begins at midnight, and 23 denoting the hour that
ends at midnight.

dayOfMonth String (Optional) Specifies that the query time must have a
matching day of month value. The range for this
parameter is 1 through 31, inclusive. (Values of 29,
30, and 31 will only match during months that have at
least that many days.)

month String (Optional) Specifies that the query time must have a
matching month value. The range for this parameter
is 1 through 12, inclusive.

dayOfWeek String (Optional) Specifies that the query time must have a
matching day of week value. The range for this
parameter is 1 through 7, inclusive, with 1 denoting
Monday, 2 denoting Tuesday, and so forth, up to 7
denoting Sunday.

Explanation (non-normative): this numbering
scheme is consistent with ISO-8601.

 1686

Examples (non-normative): Here are some examples of QuerySchedule and what 1687
they mean. 1688

Example 1 1689

QuerySchedule 1690
 second = “0” 1691
 minute = “0” 1692
 all other fields omitted 1693

This means “run the query once per hour, at the top of the hour.” If the 1694
reportIfEmpty argument to subscribe is false, then this does not necessarily 1695
cause a report to be sent each hour – a report would be sent within an hour of any new 1696
event data becoming available that matches the query. 1697

Example 2 1698

QuerySchedule 1699
 second = “0” 1700
 minute = “30” 1701

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 68 of 144

 hour = “2” 1702
 all other fields omitted 1703

This means “run the query once per day, at 2:30 am.” 1704

Example 3 1705

QuerySchedule 1706
 second = “0” 1707
 minute = “0” 1708
 dayOfWeek = “[1-5]” 1709

This means “run the query once per hour at the top of the hour, but only on weekdays.” 1710

Example 4 1711

QuerySchedule 1712
 hour = “2” 1713
 all other fields omitted 1714

This means “run the query once per second between 2:00:00 and 2:59:59 each day.” 1715
This example illustrates that it usually not desirable to omit a field of finer granularity 1716
than the fields that are specified. 1717

8.2.5.4 QueryResults 1718
A QueryResults instance is returned synchronously from the poll method of the 1719
EPCIS Query Control Interface, and also delivered asynchronously to a subscriber of a 1720
standing query via the EPCIS Query Callback Interface. 1721

QueryResults 1722
--- 1723
queryName : string 1724
subscriptionID : string 1725
resultsBody : QueryResultsBody 1726
<<extension point>> 1727

The fields of a QueryResults instance are defined below. 1728

Field Type Description
queryName String This field SHALL contain the name of

the query (the queryName argument
that was specified in the call to poll
or subscribe).

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 69 of 144

Field Type Description
subscriptionID string (Conditional) When a

QueryResults instance is delivered
to a subscriber as the result of a
standing query, subscriptionID
SHALL contain the same string
provided as the subscriptionID
argument the call to subscribe.

When a QueryResults instance is
returned as the result of a poll
method, this field SHALL be omitted.

resultsBody QueryResultsBody The information returned as the result
of a query. The exact type of this field
depends on which query is executed.
Each of the predefined queries in
Section 8.2.7 specifies the
corresponding type for this field.

 1729

8.2.6 Error Conditions 1730
Methods of the EPCIS Query Control API signal error conditions to the client by means 1731
of exceptions. The following exceptions are defined. All the exception types in the 1732
following table are extensions of a common EPCISException base type, which 1733
contains one required string element giving the reason for the exception. 1734

Exception Name Meaning
SecurityException The operation was not permitted due to an

access control violation or other security
concern. This includes the case where the
service wishes to deny authorization to
execute a particular operation based on
the authenticated client identity. The
specific circumstances that may cause this
exception are implementation-specific,
and outside the scope of this specification.

DuplicateNameException (Not implemented in EPCIS 1.0)

The specified query name already exists.
QueryValidationException (Not implemented in EPCIS 1.0)

The specified query is invalid; e.g., it
contains a syntax error.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 70 of 144

Exception Name Meaning
QueryParameterException One or more query parameters are invalid,

including any of the following situations:

• the parameter name is not a
recognized parameter for the specified
query

• the value of a parameter is of the
wrong type or out of range

• two or more query parameters have
the same parameter name

QueryTooLargeException An attempt to execute a query resulted in
more data than the service was willing to
provide.

QueryTooComplexException The specified query parameters, while
otherwise valid, implied a query that was
more complex than the service was
willing to execute.

InvalidURIException The URI specified for a subscriber cannot
be parsed, does not name a scheme
recognized by the implementation, or
violates rules imposed by a particular
scheme.

SubscriptionControlsException The specified subscription controls was
invalid; e.g., the schedule parameters were
out of range, the trigger URI could not be
parsed or did not name a recognized
trigger, etc.

NoSuchNameException The specified query name does not exist.
NoSuchSubscriptionException The specified subscriptionID does

not exist.
DuplicateSubscriptionException The specified subscriptionID is

identical to a previous subscription that
was created and not yet unsubscribed.

SubscribeNotPermittedException The specified query name may not be
used with subscribe, only with poll.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 71 of 144

Exception Name Meaning
ValidationException The input to the operation was not

syntactically valid according to the syntax
defined by the binding. Each binding
specifies the particular circumstances
under which this exception is raised.

ImplementationException A generic exception thrown by the
implementation for reasons that are
implementation-specific. This exception
contains one additional element: a
severity member whose values are
either ERROR or SEVERE. ERROR
indicates that the EPCIS implementation
is left in the same state it had before the
operation was attempted. SEVERE
indicates that the EPCIS implementation
is left in an indeterminate state.

 1735

The exceptions that may be thrown by each method of the EPCIS Query Control 1736
Interface are indicated in the table below: 1737

EPCIS Method Exceptions
getQueryNames SecurityException

ValidationException
ImplementationException

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

unsubscribe NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 72 of 144

EPCIS Method Exceptions
poll NoSuchNameException

QueryParameterException
QueryTooComplexException
QueryTooLargeException
SecurityException
ValidationException
ImplementationException

getSubscriptionIDs NoSuchNameException
SecurityException
ValidationException
ImplementationException

getStandardVersion SecurityException
ValidationException
ImplementationException

getVendorVersion SecurityException
ValidationException
ImplementationException

 1738

In addition to exceptions thrown from methods of theEPCIS Query Control Interface as 1739
enumerated above, an attempt to execute a standing query may result in a 1740
QueryTooLargeException or an ImplementationException being sent to a 1741
subscriber via the EPCIS Query Callback Interface instead of a normal query result. In 1742
this case, the QueryTooLargeException or ImplementationException 1743
SHALL include, in addition to the reason string, the query name and the 1744
subscriptionID as specified in the subscribe call that created the standing query. 1745

8.2.7 Predefined Queries for EPCIS 1.0 1746
In EPCIS 1.0, no query language is provided by which a client may express an arbitrary 1747
query for data. Instead, an EPCIS 1.0 implementation SHALL provide the following 1748
predefined queries, which a client may invoke using the poll and subscribe methods 1749
of the EPCIS Query Control Interface. Each poll or subscribe call may include 1750
parameters via the params argument. The predefined queries defined in this section each 1751
have a large number of optional parameters; by appropriate choice of parameters a client 1752
can achieve a variety of effects. 1753

The parameters for each predefined query and what results it returns are specified in this 1754
section. An implementation of EPCIS is free to use any internal representation for data it 1755
wishes, and implement these predefined queries using any database or query technology 1756
it chooses, so long as the results seen by a client are consistent with this specification. 1757

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 73 of 144

8.2.7.1 SimpleEventQuery 1758
This query is invoked by specifying the string SimpleEventQuery as the 1759
queryName argument to poll or subscribe. The result is a QueryResults 1760
instance whose body contains a (possibly empty) list of EPCISEvent instances. Unless 1761
constrained by the eventType parameter, each element of the result list could be of any 1762
event type; i.e., ObjectEvent, AggregationEvent, QuantityEvent, 1763
TransactionEvent, or any extension event type that is a subclass of EPCISEvent. 1764

The SimpleEventQuery SHALL be available via both poll and subscribe; that 1765
is, an implementation SHALL NOT raise SubscribeNotPermittedException 1766
when SimpleEventQuery is specified as the queryName argument to subscribe. 1767

The SimpleEventQuery is defined to return a set of events that matches the criteria 1768
specified in the query parameters (as specified below). When returning events that were 1769
captured via the EPCIS Capture Interface, each event that is selected to be returned 1770
SHALL be identical to the originally captured event, subject to the provisions of 1771
authorization (Section 8.2.2), the inclusion of the recordTime field, and any necessary 1772
conversions to and from an abstract internal representation. For any event field defined 1773
to hold an unordered list, however, an EPCIS implementation NEED NOT preserve the 1774
order. 1775

The parameters for this query are as follows: 1776

Parameter Name Parameter
Value
Type

Required Meaning

eventType List of
String

No If specified, the result will only include
events whose type matches one of the
types specified in the parameter value.
Each element of the parameter value may
be one of the following strings:
ObjectEvent,
AggregationEvent,
QuantityEvent, or
TransactionEvent. An element of
the parameter value may also be the name
of an extension event type.

If omitted, all event types will be
considered for inclusion in the result.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 74 of 144

Parameter Name Parameter
Value
Type

Required Meaning

GE_eventTime Time No If specified, only events with
eventTime greater than or equal to the
specified value will be included in the
result.

If omitted, events are included regardless
of their eventTime (unless constrained
by the LT_eventTime parameter).

LT_eventTime Time No If specified, only events with
eventTime less than the specified
value will be included in the result.

If omitted, events are included regardless
of their eventTime (unless constrained
by the GE_eventTime parameter).

GE_recordTime Time No If provided, only events with
recordTime greater than or equal to
the specified value will be returned. The
automatic limitation based on event
record time (Section 8.2.5.2) may
implicitly provide a constraint similar to
this parameter.

If omitted, events are included regardless
of their recordTime, other than
automatic limitation based on event
record time (Section 8.2.5.2).

LT_recordTime Time No If provided, only events with
recordTime less than the specified
value will be returned.

If omitted, events are included regardless
of their recordTime (unless
constrained by the GE_recordTime
parameter or the automatic limitation
based on event record time).

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 75 of 144

Parameter Name Parameter
Value
Type

Required Meaning

EQ_action List of
String

No If specified, the result will only include
events that (a) have an action field;
and where (b) the value of the action
field matches one of the specified values.
The elements of the value of this
parameter each must be one of the strings
ADD, OBSERVE, or DELETE; if not, the
implementation SHALL raise a
QueryParameterException.

If omitted, events are included regardless
of their action field.

EQ_bizStep List of
String

No If specified, the result will only include
events that (a) have a non-null bizStep
field; and where (b) the value of the
bizStep field matches one of the
specified values.

If this parameter is omitted, events are
returned regardless of the value of the
bizStep field or whether the bizStep
field exists at all.

EQ_disposition List of
String

No Like the EQ_bizStep parameter, but
for the disposition field.

EQ_readPoint List of
String

No If specified, the result will only include
events that (a) have a non-null
readPoint field; and where (b) the
value of the readPoint field matches
one of the specified values.

If this parameter and WD_readPoint
are both omitted, events are returned
regardless of the value of the
readPoint field or whether the
readPoint field exists at all.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 76 of 144

Parameter Name Parameter
Value
Type

Required Meaning

WD_readPoint List of
String

No If specified, the result will only include
events that (a) have a non-null
readPoint field; and where (b) the
value of the readPoint field matches
one of the specified values, or is a direct
or indirect descendant of one of the
specified values. The meaning of “direct
or indirect descendant” is specified by
master data, as described in Section 6.5.
(WD is an abbreviation for “with
descendants.”)

If this parameter and EQ_readPoint
are both omitted, events are returned
regardless of the value of the
readPoint field or whether the
readPoint field exists at all.

EQ_bizLocation List of
String

No Like the EQ_readPoint parameter, but
for the bizLocation field.

WD_bizLocation List of
String

No Like the WD_readPoint parameter, but
for the bizLocation field.

EQ_bizTransaction_type List of
String

No This is not a single parameter, but a
family of parameters.

If a parameter of this form is specified,
the result will only include events that (a)
include a bizTransactionList; (b)
where the business transaction list
includes an entry whose type subfield is
equal to type extracted from the name
of this parameter; and (c) where the
bizTransaction subfield of that
entry is equal to one of the values
specified in this parameter.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 77 of 144

Parameter Name Parameter
Value
Type

Required Meaning

MATCH_epc List of
String

No If this parameter is specified, the result
will only include events that (a) have an
epcList or a childEPCs field (that
is, ObjectEvent,
AggregationEvent,
TransactionEvent or extension
event types that extend one of those
three); and where (b) one of the EPCs
listed in the epcList or childEPCs
field (depending on event type) matches
one of the EPC patterns or URIs specified
in this parameter. Each element of the
parameter list may be a pure identity
pattern as specified in [TDS1.3], or any
other URI. If the element is a pure
identity pattern, it is matched against
event field values using the procedure for
matching identity patterns specified in
[TDS1.3, Section 6]. If the element is
any other URI, it is matched against event
field values by testing string equality.

If this parameter is omitted, events are
included regardless of their epcList or
childEPCs field or whether the
epcList or childEPCs field exists.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 78 of 144

Parameter Name Parameter
Value
Type

Required Meaning

MATCH_parentID List of
String

No Like MATCH_epc, but applies to the
parentID field of
AggregationEvent, the parentID
field of TransactionEvent, and
extension event types that extend either
AggregationEvent or
TransactionEvent.

Each element of the parameter list may be
a pure identity pattern as specified in
[TDS1.3], or any other URI. If the
element is a pure identity pattern, it is
matched against event field values using
the procedure for matching identity
patterns specified in [TDS1.3, Section 6].
If the element is any other URI, it is
matched against event field values by
testing string equality.

MATCH_anyEPC List of
String

No If this parameter is specified, the result
will only include events that (a) have an
epcList field, a childEPCs field, or
a parentID field (that is,
ObjectEvent,
AggregationEvent,
TransactionEvent or extension
event types that extend one of those
three); and where (b) the parentID
field or one of the EPCs listed in the
epcList or childEPCs field
(depending on event type) matches one of
the EPC patterns or URIs specified in this
parameter. Each element of the parameter
list may be a pure identity pattern as
specified in [TDS1.3], or any other URI.
If the element is a pure identity pattern, it
is matched against event field values
using the procedure for matching identity
patterns specified in [TDS1.3, Section 6].
If the element is any other URI, it is
matched against event field values by
testing string equality.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 79 of 144

Parameter Name Parameter
Value
Type

Required Meaning

MATCH_epcClass List of
String

No Like MATCH_epc, but applies to the
epcClass field of QuantityEvents
or extension event types that extend
QuantityEvent. The definition of a
“match” for the purposes of this query
parameter is as follows. Let P be one of
the patterns specified in the value for this
parameter, and let C be the value of the
epcClass field of a QuantityEvent
being considered for inclusion in the
result. Then the QuantityEvent is
included if each component Pi of P
matches the corresponding component Ci
of C, where “matches” is as defined in
[TDS1.3, Section 6].

Explanation (non-normative): The
difference between MATCH_epcClass
and MATCH_epc is that for
MATCH_epcClass the value in the event
(the epcClass field of the QuantityEvent)
may itself be a pattern, as specified in
Section 7.2.7). This means that the value
in the event may contain a ‘*’ component.
The above specification says that a ‘*’ in
the QuantityEvent is only matched by a
‘*’ in the query parameter. For example,
if the epcClass field of a QuantityEvent is
urn:epc:idpat:sgtin:0614141.112345.*,
then this event would be matched by the
query parameter
urn:epc:idpat:sgtin:0614141.*.* or by
urn:epc:idpat:sgtin:0614141.112345.*,
but not by
urn:epc:idpat:sgtin:0614141.112345.400.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 80 of 144

Parameter Name Parameter
Value
Type

Required Meaning

EQ_quantity Int No If this parameter is specified, the result
will only include events that (a) have a
quantity field (that is,
QuantityEvents or extension event
type that extend QuantityEvent); and
where (b) the quantity field is equal to
the specified parameter.

GT_quantity Int No Like EQ_quantity, but includes events
whose quantity field is greater than
the specified parameter.

GE_quantity Int No Like EQ_quantity, but includes events
whose quantity field is greater than or
equal to the specified parameter.

LT_quantity Int No Like EQ_quantity, but includes events
whose quantity field is less than the
specified parameter.

LE_quantity Int No Like EQ_quantity, but includes events
whose quantity field is less than or
equal to the specified parameter.

EQ_fieldname List of
String

No This is not a single parameter, but a
family of parameters.

If a parameter of this form is specified,
the result will only include events that (a)
have a field named fieldname whose
type is either String or a vocabulary type;
and where (b) the value of that field
matches one of the values specified in
this parameter.

Fieldname is the fully qualified name
of an extension field. The name of an
extension field is an XML qname; that is,
a pair consisting of an XML namespace
URI and a name. The name of the
corresponding query parameter is
constructed by concatenating the
following: the string EQ_, the namespace
URI for the extension field, a pound sign
(#), and the name of the extension field.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 81 of 144

Parameter Name Parameter
Value
Type

Required Meaning

EQ_fieldname Int
Float
Time

No Like EQ_fieldname as described
above, but may be applied to a field of
type Int, Float, or Time. The result will
include events that (a) have a field named
fieldname; and where (b) the type of
the field matches the type of this
parameter (Int, Float, or Time); and
where (c) the value of the field is equal to
the specified value.

Fieldname is constructed as for
EQ_fieldname.

GT_fieldname Int
Float
Time

No Like EQ_fieldname as described
above, but may be applied to a field of
type Int, Float, or Time. The result will
include events that (a) have a field named
fieldname; and where (b) the type of
the field matches the type of this
parameter (Int, Float, or Time); and
where (c) the value of the field is greater
than the specified value.

Fieldname is constructed as for
EQ_fieldname.

GE_fieldname
LT_fieldname
LE_fieldname

Int
Float
Time

No Analogous to GT_fieldname

EXISTS_fieldname Void No Like EQ_fieldname as described
above, but may be applied to a field of
any type (including complex types). The
result will include events that have a non-
empty field named fieldname.

Fieldname is constructed as for
EQ_fieldname.

Note that the value for this query
parameter is ignored.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 82 of 144

Parameter Name Parameter
Value
Type

Required Meaning

HASATTR_fieldname List of
String

No This is not a single parameter, but a
family of parameters.

If a parameter of this form is specified,
the result will only include events that (a)
have a field named fieldname whose
type is a vocabulary type; and (b) where
the value of that field is a vocabulary
element for which master data is
available; and (c) the master data has a
non-null attribute whose name matches
one of the values specified in this
parameter.

Fieldname is the fully qualified name
of a field. For a standard field, this is
simply the field name; e.g.,
bizLocation. For an extension field,
the name of an extension field is an XML
qname; that is, a pair consisting of an
XML namespace URI and a name. The
name of the corresponding query
parameter is constructed by concatenating
the following: the string HASATTR_, the
namespace URI for the extension field, a
pound sign (#), and the name of the
extension field.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 83 of 144

Parameter Name Parameter
Value
Type

Required Meaning

EQATTR_fieldname
_attrname

List of
String

No This is not a single parameter, but a
family of parameters.

If a parameter of this form is specified,
the result will only include events that (a)
have a field named fieldname whose
type is a vocabulary type; and (b) where
the value of that field is a vocabulary
element for which master data is
available; and (c) the master data has a
non-null attribute named attrname;
and (d) where the value of that attribute
matches one of the values specified in
this parameter.

Fieldname is constructed as for
HASATTR_fieldname.

The implementation MAY raise a
QueryParameterException if
fieldname or attrname includes an
underscore character.

Explanation (non-normative): because
the presence of an underscore in
fieldname or attrname presents an
ambiguity as to where the division
between fieldname and attrname lies, an
implementation is free to reject the query
parameter if it cannot disambiguate.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 84 of 144

Parameter Name Parameter
Value
Type

Required Meaning

orderBy String No If specified, names a single field that will
be used to order the results. The
orderDirection field specifies
whether the ordering is in ascending
sequence or descending sequence.
Events included in the result that lack the
specified field altogether may occur in
any position within the result event list.

The value of this parameter SHALL be
one of: eventTime, recordTime,
quantity, or the fully qualified name
of an extension field whose type is Int,
Float, Time, or String. A fully qualified
fieldname is constructed as for the
EQ_fieldname parameter. In the case
of a field of type String, the ordering
SHOULD be in lexicographic order based
on the Unicode encoding of the strings, or
in some other collating sequence
appropriate to the locale.

If omitted, no order is specified. The
implementation MAY order the results in
any order it chooses, and that order MAY
differ even when the same query is
executed twice on the same data.

orderDirection String No If specified and orderBy is also
specified, specifies whether the results
are ordered in ascending or descending
sequence according to the key specified
by orderBy. The value of this
parameter must be one of ASC (for
ascending order) or DESC (for
descencing order); if not, the
implementation SHALL raise a
QueryParameterException.

If omitted, defaults to DESC.

eventCountLimit Int No If specified, the results will only include
the first N events that match the other
criteria, where N is the value of this
parameter. The ordering specified by the

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 85 of 144

Parameter Name Parameter
Value
Type

Required Meaning

orderBy and orderDirection
parameters determine the meaning of
“first” for this purpose.

If omitted, all events matching the
specified criteria will be included in the
results.

This parameter and maxEventCount
are mutually exclusive; if both are
specified, a
QueryParameterException
SHALL be raised.

This parameter may only be used when
orderBy is specified; if orderBy is
omitted and eventCountLimit is
specified, a
QueryParameterException
SHALL be raised.

This parameter differs from
maxEventCount in that this parameter
limits the amount of data returned,
whereas maxEventCount causes an
exception to be thrown if the limit is
exceeded.

Explanation (non-normative): A common
use of the orderBy,
orderDirection, and
eventCountLimit parameters is for
extremal queries. For example, to select
the most recent event matching some
criteria, the query would include
parameters that select events matching
the desired critera, and set orderBy to
eventTime, orderDirection to
DESC, and eventCountLimit to one.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 86 of 144

Parameter Name Parameter
Value
Type

Required Meaning

maxEventCount Int No If specified, at most this many events will
be included in the query result. If the
query would otherwise return more than
this number of events, a
QueryTooLargeException SHALL
be raised instead of a normal query result.

This parameter and eventCountLimit
are mutually exclusive; if both are
specified, a
QueryParameterException
SHALL be raised.

If this parameter is omitted, any number
of events may be included in the query
result. Note, however, that the EPCIS
implementation is free to raise a
QueryTooLargeException
regardless of the setting of this parameter
(see Section 8.2.3).

 1777

As the descriptions above suggest, if multiple parameters are specified an event must 1778
satisfy all criteria in order to be included in the result set. In other words, if each 1779
parameter is considered to be a predicate, all such predicates are implicitly conjoined as 1780
though by an AND operator. For example, if a given call to poll specifies a value for 1781
both the EQ_bizStep and EQ_disposition parameters, then an event must match 1782
one of the specified bizStep values AND match one of the specified disposition 1783
values in order to be included in the result. 1784

On the other hand, for those parameters whose value is a list, an event must match at 1785
least one of the elements of the list in order to be included in the result set. In other 1786
words, if each element of the list is considered to be a predicate, all such predicates for a 1787
given list are implicitly disjoined as though by an OR operator. For example, if the value 1788
of the EQ_bizStep parameter is a two element list (“bs1”, “bs2”), then an event is 1789
included if its bizStep field contains the value bs1 OR its bizStep field contains the 1790
value bs2. 1791

As another example, if the value of the EQ_bizStep parameter is a two element list 1792
(“bs1”, “bs2”) and the EQ_disposition parameter is a two element list (“d1”, 1793
“d2”), then the effect is to include events satisfying the following predicate: 1794

((bizStep = “bs1” OR bizStep = “bs2”) 1795
 AND (disposition = “d1” OR disposition = “d2”)) 1796

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 87 of 144

8.2.7.2 SimpleMasterDataQuery 1797
This query is invoked by specifying the string SimpleMasterDataQuery as the 1798
queryName argument to poll. The result is a QueryResults instance whose body 1799
contains a (possibly empty) list of vocabulary elements together with selected attributes. 1800

The SimpleMasterDataQuery SHALL be available via poll but not via 1801
subscribe; that is, an implementation SHALL raise 1802
SubscribeNotPermittedException when SimpleMasterDataQuery is 1803
specified as the queryName argument to subscribe. 1804

The parameters for this query are as follows: 1805

Parameter Name Parameter
Value
Type

Required Meaning

vocabularyName List of
String

No If specified, only vocabulary
elements drawn from one of the
specified vocabularies will be
included in the results. Each
element of the specified list is the
formal URI name for a vocabulary;
e.g., one of the URIs specifed in the
table at the end of Section 7.2.

If omitted, all vocabularies are
considered.

includeAttributes Boolean Yes If true, the results will include
attribute names and values for
matching vocabulary elements. If
false, attribute names and values
will not be included in the result.

includeChildren Boolean Yes If true, the results will include the
children list for matching
vocabulary elements. If false,
children lists will not be included in
the result.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 88 of 144

Parameter Name Parameter
Value
Type

Required Meaning

attributeNames List of
String

No If specified, only those attributes
whose names match one of the
specified names will be included in
the results.

If omitted, all attributes for each
matching vocabulary element will
be included. (To obtain a list of
vocabulary element names with no
attributes, specify false for
includeAttributes.)

The value of this parameter SHALL
be ignored if
includeAttributes is false.

Note that this parameter does not
affect which vocabulary elements
are included in the result; it only
limits which attributes will be
included with each vocabulary
element.

EQ_name List of
String

No If specified, the result will only
include vocabulary elements whose
names are equal to one of the
specified values.

If this parameter and WD_name are
both omitted, vocabulary elements
are included regardless of their
names.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 89 of 144

Parameter Name Parameter
Value
Type

Required Meaning

WD_name List of
String

No If specified, the result will only
include vocabulary elements that
either match one of the specified
names, or are direct or indirect
descendants of a vocabulary
element that matches one of the
specified names. The meaning of
“direct or indirect descendant” is
described in Section 6.5. (WD is an
abbreviation for “with
descendants.”)

If this parameter and EQ_name are
both omitted, vocabulary elements
are included regardless of their
names.

HASATTR List of
String

No If specified, the result will only
include vocabulary elements that
have a non-null attribute whose
name matches one of the values
specified in this parameter.

EQATTR_attrname List of
String

No This is not a single parameter, but a
family of parameters.

If a parameter of this form is
specified, the result will only
include vocabulary elements that
have a non-null attribute named
attrname, and where the value of
that attribute matches one of the
values specified in this parameter.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 90 of 144

Parameter Name Parameter
Value
Type

Required Meaning

maxElementCount Int No If specified, at most this many
vocabulary elements will be
included in the query result. If the
query would otherwise return more
than this number of vocabulary
elements, a
QueryTooLargeException
SHALL be raised instead of a
normal query result.

If this parameter is omitted, any
number of vocabulary elements
may be included in the query result.
Note, however, that the EPCIS
implementation is free to raise a
QueryTooLargeException
regardless of the setting of this
parameter (see Section 8.2.3).

 1806

As the descriptions above suggest, if multiple parameters are specified a vocabulary 1807
element must satisfy all criteria in order to be included in the result set. In other words, if 1808
each parameter is considered to be a predicate, all such predicates are implicitly 1809
conjoined as though by an AND operator. For example, if a given call to poll specifies 1810
a value for both the WD_name and HASATTR parameters, then a vocabulary element 1811
must be a descendant of the specified element AND possess one of the specified 1812
attributes in order to be included in the result. 1813

On the other hand, for those parameters whose value is a list, a vocabulary element must 1814
match at least one of the elements of the list in order to be included in the result set. In 1815
other words, if each element of the list is considered to be a predicate, all such predicates 1816
for a given list are implicitly disjoined as though by an OR operator. For example, if the 1817
value of the EQATTR_sample parameter is a two element list (“s1”, “s2”), then a 1818
vocabulary element is included if it has a sample attribute whose value is equal to s1 1819
OR equal to s2. 1820

As another example, if the value of the EQ_name parameter is a two element list 1821
(“ve1”, “ve2”) and the EQATTR_sample parameter is a two element list (“s1”, 1822
“s2”), then the effect is to include events satisfying the following predicate: 1823

((name = “ve1” OR name = “ve2”) 1824
 AND (sample = “s1” OR sample = “s2”)) 1825

where name informally refers to the name of the vocabulary element and sample 1826
informally refers to the value of the sample attribute. 1827

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 91 of 144

8.2.8 Query Callback Interface 1828
The Query Callback Interface is the path by which an EPCIS service delivers standing 1829
query results to a client. 1830

<<interface>> 1831
EPCISQueryCallbackInterface 1832
--- 1833
callbackResults(resultData : QueryResults) : void 1834
callbackQueryTooLargeException(e : QueryTooLargeException) 1835
: void 1836
callbackImplementationException(e : 1837
ImplementationException) : void 1838

Each time the EPCIS service executes a standing query according to the 1839
QuerySchedule, it SHALL attempt to deliver results to the subscriber by invoking 1840
one of the three methods of the Query Callback Interface. If the query executed 1841
normally, the EPCIS service SHALL invoke the callbackResults method. If the 1842
query resulted in a QueryTooLargeException or 1843
ImplementationException, the EPCIS service SHALL invoke the corresponding 1844
method of the Query Callback Interface. 1845

Note that “exceptions” in the Query Callback Interface are not exceptions in the usual 1846
sense of an API exception, because they are not raised as a consequence of a client 1847
invoking a method. Instead, the exception is delivered to the recipient in a similar 1848
manner to a normal result, as an argument to an interface method. 1849

9 XML Bindings for Data Definition Modules 1850
This section specifies a standard XML binding for the Core Event Types data definition 1851
module, using the W3C XML Schema language [XSD1, XSD2]. Samples are also 1852
shown. 1853

The schema below conforms to EPCglobal standard schema design rules. The schema 1854
below imports the EPCglobal standard base schema, as mandated by the design rules 1855
[XMLDR]. 1856

9.1 Extensibility Mechanism 1857
The XML schema in this section implements the <<extension point>> given in 1858
the UML of Section 6 using a methodology described in [XMLVersioning]. This 1859
methodology provides for both vendor extension, and for extension by EPCglobal in 1860
future versions of this specification or in supplemental specifications. Extensions 1861
introduced through this mechanism will be backward compatible, in that documents 1862
conforming to older versions of the schema will also conform to newer versions of the 1863
standard schema and to schema containing vendor-specific extensions. Extensions will 1864
also be forward compatible, in that documents that contain vendor extensions or that 1865

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 92 of 144

conform to newer versions of the standard schema will also conform to older versions of 1866
the schema. 1867

When a document contains extensions (vendor-specific or standardized in newer versions 1868
of schema), it may conform to more than one schema. For example, a document 1869
containing vendor extensions to the EPCglobal Version 1.0 schema will conform both to 1870
the EPCglobal Version 1.0 schema and to a vendor-specific schema that includes the 1871
vendor extensions. In this example, when the document is parsed using the standard 1872
schema there will be no type-checking of the extension elements and attributes, but when 1873
the document is parsed using the vendor-specific schema the extensions will be type-1874
checked. Similarly, a document containing new features introduced in a hypothetical 1875
EPCglobal Version 1.1 schema will conform both to the EPCglobal Version 1.0 schema 1876
and to the EPCglobal Version 1.1 schema, but type checking of the new features will 1877
only be available using the Version 1.1 schema. 1878

The design rules for this extensibility pattern are given in [XMLVersioning]. In 1879
summary, it amounts to the following rules: 1880

• For each type in which <<extension point>> occurs, include an 1881
xsd:anyAttribute declaration. This declaration provides for the addition of 1882
new attributes, either in subsequent versions of the standard schema or in vendor-1883
specific schema. 1884

• For each type in which <<extension point>> occurs, include an optional 1885
(minOccurs = 0) element named extension. The type declared for the 1886
extension element will always be as follows: 1887

 <xsd:sequence> 1888
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 1889
 namespace="##local"/> 1890
 </xsd:sequence> 1891
 <xsd:anyAttribute processContents="lax"/> 1892

This declaration provides for forward-compatibility with new elements introduced 1893
into subsequent versions of the standard schema. 1894

• For each type in which <<extension point>> occurs, include at the end of the 1895
element list a declaration 1896

 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 1897
 namespace="##other"/> 1898

This declaration provides for forward-compatibility with new elements introduced in 1899
vendor-specific schema. 1900

The rules for adding vendor-specific extensions to the schema are as follows: 1901

• Vendor-specific attributes may be added to any type in which <<extension 1902
point>> occurs. Vendor-specific attributes SHALL NOT be in the EPCglobal 1903
EPCIS namespace (urn:epcglobal:epcis:xsd:1). Vendor-specific 1904
attributes SHALL be in a namespace whose namespace URI has the vendor as the 1905
owning authority. (In schema parlance, this means that all vendor-specific attributes 1906
must have qualified as their form.) For example, the namespace URI may be an 1907
HTTP URL whose authority portion is a domain name owned by the vendor, a URN 1908

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 93 of 144

having a URN namespace identifier issued to the vendor by IANA, an OID URN 1909
whose initial path is a Private Enterprise Number assigned to the vendor, etc. 1910
Declarations of vendor-specific attributes SHALL specify use="optional". 1911

• Vendor-specific elements may be added to any type in which <<extension 1912
point>> occurs. Vendor-specific elements SHALL NOT be in the EPCglobal 1913
EPCIS namespace (urn:epcglobal:epcis:xsd:1). Vendor-specific 1914
elements SHALL be in a namespace whose namespace URI has the vendor as the 1915
owning authority (as described above). (In schema parlance, this means that all 1916
vendor-specific elements must have qualified as their form.) 1917

To create a schema that contains vendor extensions, replace the <xsd:any … 1918
namespace=”##other”/> declaration with a content group reference to a group 1919
defined in the vendor namespace; e.g., <xsd:group 1920
ref="vendor:VendorExtension">. In the schema file defining elements for 1921
the vendor namespace, define a content group using a declaration of the following 1922
form: 1923
 <xsd:group name="VendorExtension"> 1924
 <xsd:sequence> 1925
 <!-- 1926
 Definitions or references to vendor elements 1927
 go here. Each SHALL specify minOccurs="0". 1928
 --> 1929
 <xsd:any processContents="lax" 1930
 minOccurs="0" maxOccurs="unbounded" 1931
 namespace="##other"/> 1932
 </xsd:sequence> 1933
</xsd:group> 1934

(In the foregoing illustrations, vendor and VendorExtension may be any 1935
strings the vendor chooses.) 1936

Explanation (non-normative): Because vendor-specific elements must be optional, 1937
including references to their definitions directly into the EPCIS schema would violate the 1938
XML Schema Unique Particle Attribution constraint, because the <xsd:any …> 1939
element in the EPCIS schema can also match vendor-specific elements. Moving the 1940
<xsd:any …> into the vendor’s schema avoids this problem, because ##other in 1941
that schema means “match an element that has a namespace other than the vendor’s 1942
namespace.” This does not conflict with standard elements, because the element form 1943
default for the standard EPCIS schema is unqualified, and hence the ##other in 1944
the vendor’s schema does not match standard EPCIS elements, either. 1945

The rules for adding attributes or elements to future versions of the EPCglobal standard 1946
schema are as follows: 1947

• Standard attributes may be added to any type in which <<extension point>> 1948
occurs. Standard attributes SHALL NOT be in any namespace, and SHALL NOT 1949
conflict with any existing standard attribute name. 1950

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 94 of 144

• Standard elements may be added to any type in which <<extension point>> 1951
occurs. New elements are added using the following rules: 1952

• Find the innermost extension element type. 1953

• Replace the <xsd:any … namespace="##local"/> declaration with (a) 1954
new elements (which SHALL NOT be in any namespace); followed by (b) a new 1955
extension element whose type is constructed as described before. In 1956
subsequent revisions of the standard schema, new standard elements will be added 1957
within this new extension element rather than within this one. 1958

Explanation (non-normative): the reason that new standard attributes and elements are 1959
specified above not to be in any namespace is to be consistent with the EPCIS schema’s 1960
attribute and element form default of unqualified. 1961

9.2 Standard Business Document Header 1962
The XML binding for the Core Event Types data definition module includes an optional 1963
EPCISHeader element, which may be used by industry groups to incorporate 1964
additional information required for processing within that industry. The core schema 1965
includes a “Standard Business Document Header” (SBDH) as defined in [SBDH] as a 1966
required component of the EPCISHeader element. Industry groups MAY also require 1967
some other kind of header within the EPCISHeader element in addition to the SBDH. 1968

The XSD schema for the Standard Business Document Header may be obtained from the 1969
UN/CEFACT website; see [SBDH]. This schema is incorporated herein by reference. 1970

When the Standard Business Document Header is included, the following values SHALL 1971
be used for those elements of the SBDH schema specified below. 1972

SBDH Field (XPath) Value
HeaderVersion 1.0

DocumentIdentification/Standard EPCglobal

DocumentIdentification/TypeVersion 1.0

DocumentIdentification/Type As specified below.

 1973

The value for DocumentIdentification/Type SHALL be set according to the 1974
following table, which specifies a value for this field based on the kind of EPCIS 1975
document and the context in which it is used. 1976

Document Type and Context Value for DocumentIdentification/Type

EPCISDocument used in any
context

Events

EPCISMasterData used in any
context

MasterData

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 95 of 144

Document Type and Context Value for DocumentIdentification/Type

EPCISQueryDocument used as
the request side of the binding in
Section 11.3

QueryControl-Request

EPCISQueryDocument used as
the response side of the binding in
Section 11.3

QueryControl-Response

EPCISQueryDocument used in
any XML binding of the Query
Callback interface (Sections 11.4.2
– 11.4.4)

QueryCallback

EPCISQueryDocument used in
any other context

Query

 1977

The AS2 binding for the Query Control Interface (Section 11.3) also specifies additional 1978
Standard Business Document Header fields that must be present in an 1979
EPCISQueryDocument instance used as a Query Control Interface response message. 1980
See Section 11.3 for details. 1981

In addition to the fields specified above, the Standard Business Document Header 1982
SHALL include all other fields that are required by the SBDH schema, and MAY include 1983
additional SBDH fields. In all cases, the values for those fields SHALL be set in 1984
accordance with [SBDH]. An industry group MAY specify additional constraints on 1985
SBDH contents to be used within that industry group, but such constraints SHALL be 1986
consistent with the specifications herein. 1987

9.3 EPCglobal Base Schema 1988
The XML binding for the Core Event Types data definition module, as well as other 1989
XML bindings in this specification, make reference to the EPCglobal Base Schema. This 1990
schema is reproduced below. 1991
<xsd:schema targetNamespace="urn:epcglobal:xsd:1" 1992
 xmlns:epcglobal="urn:epcglobal:xsd:1" 1993
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1994
 elementFormDefault="unqualified" 1995
 attributeFormDefault="unqualified" 1996
 version="1.0"> 1997
 <xsd:annotation> 1998
 <xsd:documentation> 1999
 <epcglobal:copyright>Copyright (C) 2004 Epcglobal Inc., All Rights 2000
Reserved.</epcglobal:copyright> 2001
 <epcglobal:disclaimer>EPCglobal Inc., its members, officers, directors, employees, 2002
or agents shall not be liable for any injury, loss, damages, financial or otherwise, 2003
arising from, related to, or caused by the use of this document. The use of said 2004
document shall constitute your express consent to the foregoing 2005
exculpation.</epcglobal:disclaimer> 2006
 <epcglobal:specification>EPCglobal common components Version 2007
1.0</epcglobal:specification> 2008
 </xsd:documentation> 2009
 </xsd:annotation> 2010

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 96 of 144

 <xsd:complexType name="Document" abstract="true"> 2011
 <xsd:annotation> 2012
 <xsd:documentation xml:lang="en"> 2013
 EPCglobal document properties for all messages. 2014
 </xsd:documentation> 2015
 </xsd:annotation> 2016
 <xsd:attribute name="schemaVersion" type="xsd:decimal" use="required"> 2017
 <xsd:annotation> 2018
 <xsd:documentation xml:lang="en"> 2019
 The version of the schema corresponding to which the instance conforms. 2020
 </xsd:documentation> 2021
 </xsd:annotation> 2022
 </xsd:attribute> 2023
 <xsd:attribute name="creationDate" type="xsd:dateTime" use="required"> 2024
 <xsd:annotation> 2025
 <xsd:documentation xml:lang="en"> 2026
 The date the message was created. Used for auditing and logging. 2027
 </xsd:documentation> 2028
 </xsd:annotation> 2029
 </xsd:attribute> 2030
 </xsd:complexType> 2031
 <xsd:complexType name="EPC"> 2032
 <xsd:annotation> 2033
 <xsd:documentation xml:lang="en"> 2034
 EPC represents the Electronic Product Code. 2035
 </xsd:documentation> 2036
 </xsd:annotation> 2037
 <xsd:simpleContent> 2038
 <xsd:extension base="xsd:string"/> 2039
 </xsd:simpleContent> 2040
 </xsd:complexType> 2041
</xsd:schema> 2042

9.4 Additional Information in Location Fields 2043
The XML binding for the Core Event Types data definition module includes a facility for 2044
the inclusion of additional, industry-specific information in the readPoint and 2045
bizLocation fields of all event types. An industry group or other set of cooperating 2046
trading partners MAY include additional subelements within the readPoint or 2047
bizLocation fields, following the required id subelement. This facility MAY be 2048
used to communicate master data for location identifiers, or for any other purpose. 2049

In all cases, however, the id subelement SHALL contain a unique identifier for the read 2050
point or business location, to the level of granularity that is intended to be communicated. 2051
This unique identifier SHALL be sufficient to distinguish one location from another. 2052
Extension elements added to readPoint or bizLocation SHALL NOT be required 2053
to distinguish one location from another. 2054

Explanation (non-normative): This mechanism has been introduced as a short term 2055
measure to assist trading partners in exchanging master data about location identifiers. 2056
In the long term, it is expected that EPCIS events will include location identifiers, and 2057
information that describes the identifiers will be exchanged separately as master data. In 2058
the short term, however, the infrastructure to exchange location master data does not 2059
exist or is not widely implemented. In the absence of this infrastructure, extension 2060
elements within the events may be used to accompany each location identifier with its 2061
descriptive information. The standard SimpleEventQuery (Section 8.2.7.1) does not 2062
provide any direct means to use these extension elements to query for events. An industry 2063
group may determine that a given extension element is used to provide master data, in 2064

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 97 of 144

which case the master data features of the SimpleEventQuery (HASATTR and EQATTR) 2065
may be used in the query. It is up to an individual implementation to use the extension 2066
elements to populate whatever store is used to provide master data for the benefit of the 2067
query processor. 2068

9.5 Schema for Core Event Types 2069
The following is an XML Schema (XSD) for the Core Event Types data definition 2070
module. This schema imports additional schemas as shown in the following table: 2071

Namespace Location Reference Source
urn:epcglobal:xsd:1 EPCglobal.xsd Section 0
http://www.unece.org/ce
fact/namespaces/Standar
dBusinessDocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT
web site; see
Section 9.2

 2072

In addition to the constraints implied by the schema, any value of type xsd:dateTime 2073
in an instance document SHALL include a time zone specifier (either “Z” for UTC or an 2074
explicit offset from UTC). 2075

For any XML element that specifies minOccurs="0" of type xsd:anyURI, 2076
xsd:string, or a type derived from one of those, an EPCIS implementation SHALL 2077
treat an instance having the empty string as its value in exactly the same way as it would 2078
if the element were omitted altogether. The same is true for any XML attribute of similar 2079
type that specifies use="optional". 2080

The XML Schema (XSD) for the Core Event Types data definition module is given 2081
below.: 2082
<?xml version="1.0" encoding="UTF-8"?> 2083
<xsd:schema xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2084
xmlns:sbdh="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2085
xmlns:epcglobal="urn:epcglobal:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2086
targetNamespace="urn:epcglobal:epcis:xsd:1" elementFormDefault="unqualified" 2087
attributeFormDefault="unqualified" version="1.0"> 2088
 <xsd:annotation> 2089
 <xsd:documentation xml:lang="en"> 2090
 <epcglobal:copyright>Copyright (C) 2006, 2005, 2004 EPCglobal Inc., 2091
All Rights Reserved.</epcglobal:copyright> 2092
 <epcglobal:disclaimer>EPCglobal Inc., its members, officers, 2093
directors, employees, or agents shall not be liable for any injury, loss, damages, 2094
financial or otherwise, arising from, related to, or caused by the use of this document. 2095
The use of said document shall constitute your express consent to the foregoing 2096
exculpation.</epcglobal:disclaimer> 2097
 <epcglobal:specification>EPC INFORMATION SERVICE (EPCIS) Version 2098
1.0</epcglobal:specification> 2099
 </xsd:documentation> 2100
 </xsd:annotation> 2101
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 2102
 <xsd:import 2103
namespace="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2104
schemaLocation="./StandardBusinessDocumentHeader.xsd"/> 2105
 <!-- EPCIS CORE ELEMENTS --> 2106
 <xsd:element name="EPCISDocument" type="epcis:EPCISDocumentType"/> 2107
 <xsd:complexType name="EPCISDocumentType"> 2108
 <xsd:annotation> 2109

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 98 of 144

 <xsd:documentation xml:lang="en"> 2110
 document that contains a Header and a Body. 2111
 </xsd:documentation> 2112
 </xsd:annotation> 2113
 <xsd:complexContent> 2114
 <xsd:extension base="epcglobal:Document"> 2115
 <xsd:sequence> 2116
 <xsd:element name="EPCISHeader" 2117
type="epcis:EPCISHeaderType" minOccurs="0"/> 2118
 <xsd:element name="EPCISBody" 2119
type="epcis:EPCISBodyType"/> 2120
 <xsd:element name="extension" 2121
type="epcis:EPCISDocumentExtensionType" minOccurs="0"/> 2122
 <xsd:any namespace="##other" processContents="lax" 2123
minOccurs="0" maxOccurs="unbounded"/> 2124
 </xsd:sequence> 2125
 <xsd:anyAttribute processContents="lax"/> 2126
 </xsd:extension> 2127
 </xsd:complexContent> 2128
 </xsd:complexType> 2129
 <xsd:complexType name="EPCISHeaderType"> 2130
 <xsd:annotation> 2131
 <xsd:documentation xml:lang="en"> 2132
 specific header(s) including the Standard Business Document Header. 2133
 </xsd:documentation> 2134
 </xsd:annotation> 2135
 <xsd:sequence> 2136
 <xsd:element ref="sbdh:StandardBusinessDocumentHeader"/> 2137
 <xsd:element name="extension" type="epcis:EPCISHeaderExtensionType" 2138
minOccurs="0"/> 2139
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2140
maxOccurs="unbounded"/> 2141
 </xsd:sequence> 2142
 <xsd:anyAttribute processContents="lax"/> 2143
 </xsd:complexType> 2144
 <xsd:complexType name="EPCISBodyType"> 2145
 <xsd:annotation> 2146
 <xsd:documentation xml:lang="en"> 2147
 specific body that contains EPCIS related Events. 2148
 </xsd:documentation> 2149
 </xsd:annotation> 2150
 <xsd:sequence> 2151
 <xsd:element name="EventList" type="epcis:EventListType" 2152
minOccurs="0"/> 2153
 <xsd:element name="extension" type="epcis:EPCISBodyExtensionType" 2154
minOccurs="0"/> 2155
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2156
maxOccurs="unbounded"/> 2157
 </xsd:sequence> 2158
 <xsd:anyAttribute processContents="lax"/> 2159
 </xsd:complexType> 2160
 <!-- EPCIS CORE ELEMENT TYPES --> 2161
 <xsd:complexType name="EventListType"> 2162
 <!-- Note: the use of "unbounded" in both the xsd:choice element 2163
 and the enclosed xsd:element elements is, strictly speaking, 2164
 redundant. However, this was found to avoid problems with 2165
 certain XML processing tools, and so is retained here. 2166
 --> 2167
 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 2168
 <xsd:element name="ObjectEvent" type="epcis:ObjectEventType" 2169
minOccurs="0" maxOccurs="unbounded"/> 2170
 <xsd:element name="AggregationEvent" 2171
type="epcis:AggregationEventType" minOccurs="0" maxOccurs="unbounded"/> 2172
 <xsd:element name="QuantityEvent" type="epcis:QuantityEventType" 2173
minOccurs="0" maxOccurs="unbounded"/> 2174
 <xsd:element name="TransactionEvent" 2175
type="epcis:TransactionEventType" minOccurs="0" maxOccurs="unbounded"/> 2176
 <xsd:element name="extension" 2177
type="epcis:EPCISEventListExtensionType"/> 2178
 <xsd:any namespace="##other" processContents="lax"/> 2179

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved. Page 99 of 144

 </xsd:choice> 2180
 </xsd:complexType> 2181
 <xsd:complexType name="EPCListType"> 2182
 <xsd:sequence> 2183
 <xsd:element name="epc" type="epcglobal:EPC" minOccurs="0" 2184
maxOccurs="unbounded"/> 2185
 </xsd:sequence> 2186
 </xsd:complexType> 2187
 <xsd:simpleType name="ActionType"> 2188
 <xsd:restriction base="xsd:string"> 2189
 <xsd:enumeration value="ADD"/> 2190
 <xsd:enumeration value="OBSERVE"/> 2191
 <xsd:enumeration value="DELETE"/> 2192
 </xsd:restriction> 2193
 </xsd:simpleType> 2194
 <xsd:simpleType name="ParentIDType"> 2195
 <xsd:restriction base="xsd:anyURI"/> 2196
 </xsd:simpleType> 2197
 <!-- Standard Vocabulary --> 2198
 <xsd:simpleType name="BusinessStepIDType"> 2199
 <xsd:restriction base="xsd:anyURI"/> 2200
 </xsd:simpleType> 2201
 <!-- Standard Vocabulary --> 2202
 <xsd:simpleType name="DispositionIDType"> 2203
 <xsd:restriction base="xsd:anyURI"/> 2204
 </xsd:simpleType> 2205
 <!-- User Vocabulary --> 2206
 <xsd:simpleType name="EPCClassType"> 2207
 <xsd:restriction base="xsd:anyURI"/> 2208
 </xsd:simpleType> 2209
 <!-- User Vocabulary --> 2210
 <xsd:simpleType name="ReadPointIDType"> 2211
 <xsd:restriction base="xsd:anyURI"/> 2212
 </xsd:simpleType> 2213
 <xsd:complexType name="ReadPointType"> 2214
 <xsd:sequence> 2215
 <xsd:element name="id" type="epcis:ReadPointIDType"/> 2216
 <xsd:element name="extension" type="epcis:ReadPointExtensionType" 2217
minOccurs="0"/> 2218
 <!-- The wildcard below provides the extension mechanism described in Section 2219
9.4 --> 2220
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2221
maxOccurs="unbounded"/> 2222
 </xsd:sequence> 2223
 </xsd:complexType> 2224
 <xsd:complexType name="ReadPointExtensionType"> 2225
 <xsd:sequence> 2226
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2227
 </xsd:sequence> 2228
 <xsd:anyAttribute processContents="lax"/> 2229
 </xsd:complexType> 2230
 <!-- User Vocabulary --> 2231
 <xsd:simpleType name="BusinessLocationIDType"> 2232
 <xsd:restriction base="xsd:anyURI"/> 2233
 </xsd:simpleType> 2234
 <xsd:complexType name="BusinessLocationType"> 2235
 <xsd:sequence> 2236
 <xsd:element name="id" type="epcis:BusinessLocationIDType"/> 2237
 <xsd:element name="extension" type="epcis:BusinessLocationExtensionType" 2238
minOccurs="0"/> 2239
 <!-- The wildcard below provides the extension mechanism described in Section 2240
9.4 --> 2241
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2242
maxOccurs="unbounded"/> 2243
 </xsd:sequence> 2244
 </xsd:complexType> 2245
 <xsd:complexType name="BusinessLocationExtensionType"> 2246
 <xsd:sequence> 2247
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2248
 </xsd:sequence> 2249

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 100 of 144

 <xsd:anyAttribute processContents="lax"/> 2250
 </xsd:complexType> 2251
 <!-- User Vocabulary --> 2252
 <xsd:simpleType name="BusinessTransactionIDType"> 2253
 <xsd:restriction base="xsd:anyURI"/> 2254
 </xsd:simpleType> 2255
 <!-- Standard Vocabulary --> 2256
 <xsd:simpleType name="BusinessTransactionTypeIDType"> 2257
 <xsd:restriction base="xsd:anyURI"/> 2258
 </xsd:simpleType> 2259
 <xsd:complexType name="BusinessTransactionType"> 2260
 <xsd:simpleContent> 2261
 <xsd:extension base="epcis:BusinessTransactionIDType"> 2262
 <xsd:attribute name="type" 2263
type="epcis:BusinessTransactionTypeIDType" use="optional"/> 2264
 </xsd:extension> 2265
 </xsd:simpleContent> 2266
 </xsd:complexType> 2267
 <xsd:complexType name="BusinessTransactionListType"> 2268
 <xsd:sequence> 2269
 <xsd:element name="bizTransaction" 2270
type="epcis:BusinessTransactionType" maxOccurs="unbounded"/> 2271
 </xsd:sequence> 2272
 </xsd:complexType> 2273
 <!-- items listed alphabetically by name --> 2274
 <!-- Some element types accommodate extensibility in the manner of 2275
 "Versioning XML Vocabularies" by David Orchard (see 2276
 http://www.xml.com/pub/a/2003/12/03/versioning.html). 2277
 2278
 In this approach, an optional <extension> element is defined 2279
 for each extensible element type, where an <extension> element 2280
 may contain future elements defined in the target namespace. 2281
 2282
 In addition to the optional <extension> element, extensible element 2283
 types are declared with a final xsd:any wildcard to accommodate 2284
 future elements defined by third parties (as denoted by the ##other 2285
 namespace). 2286
 2287
 Finally, the xsd:anyAttribute facility is used to allow arbitrary 2288
 attributes to be added to extensible element types. --> 2289
 <xsd:complexType name="EPCISEventType" abstract="true"> 2290
 <xsd:annotation> 2291
 <xsd:documentation xml:lang="en"> 2292
 base type for all EPCIS events. 2293
 </xsd:documentation> 2294
 </xsd:annotation> 2295
 <xsd:sequence> 2296
 <xsd:element name="eventTime" type="xsd:dateTime"/> 2297
 <xsd:element name="recordTime" type="xsd:dateTime" minOccurs="0"/> 2298

<xsd:element name="eventTimeZoneOffset" type="xsd:string"/> 2299
 <xsd:element name="baseExtension" 2300
type="epcis:EPCISEventExtensionType" minOccurs="0"/> 2301
 </xsd:sequence> 2302
 <xsd:anyAttribute processContents="lax"/> 2303
 </xsd:complexType> 2304
 <xsd:complexType name="ObjectEventType"> 2305
 <xsd:annotation> 2306
 <xsd:documentation xml:lang="en"> 2307
 Object Event captures information about an event pertaining to one 2308
or more 2309
 objects identified by EPCs. 2310
 </xsd:documentation> 2311
 </xsd:annotation> 2312
 <xsd:complexContent> 2313
 <xsd:extension base="epcis:EPCISEventType"> 2314
 <xsd:sequence> 2315
 <xsd:element name="epcList" 2316
type="epcis:EPCListType"/> 2317
 <xsd:element name="action" type="epcis:ActionType"/> 2318

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 101 of 144

 <xsd:element name="bizStep" 2319
type="epcis:BusinessStepIDType" minOccurs="0"/> 2320
 <xsd:element name="disposition" 2321
type="epcis:DispositionIDType" minOccurs="0"/> 2322
 <xsd:element name="readPoint" 2323
type="epcis:ReadPointType" minOccurs="0"/> 2324
 <xsd:element name="bizLocation" 2325
type="epcis:BusinessLocationType" minOccurs="0"/> 2326
 <xsd:element name="bizTransactionList" 2327
type="epcis:BusinessTransactionListType" minOccurs="0"/> 2328
 <xsd:element name="extension" 2329
type="epcis:ObjectEventExtensionType" minOccurs="0"/> 2330
 <xsd:any namespace="##other" processContents="lax" 2331
minOccurs="0" maxOccurs="unbounded"/> 2332
 </xsd:sequence> 2333
 <xsd:anyAttribute processContents="lax"/> 2334
 </xsd:extension> 2335
 </xsd:complexContent> 2336
 </xsd:complexType> 2337
 <xsd:complexType name="AggregationEventType"> 2338
 <xsd:annotation> 2339
 <xsd:documentation xml:lang="en"> 2340
 Aggregation Event captures an event that applies to objects that 2341
 have a physical association with one another. 2342
 </xsd:documentation> 2343
 </xsd:annotation> 2344
 <xsd:complexContent> 2345
 <xsd:extension base="epcis:EPCISEventType"> 2346
 <xsd:sequence> 2347
 <xsd:element name="parentID" 2348
type="epcis:ParentIDType" minOccurs="0"/> 2349
 <xsd:element name="childEPCs" 2350
type="epcis:EPCListType"/> 2351
 <xsd:element name="action" type="epcis:ActionType"/> 2352
 <xsd:element name="bizStep" 2353
type="epcis:BusinessStepIDType" minOccurs="0"/> 2354
 <xsd:element name="disposition" 2355
type="epcis:DispositionIDType" minOccurs="0"/> 2356
 <xsd:element name="readPoint" 2357
type="epcis:ReadPointType" minOccurs="0"/> 2358
 <xsd:element name="bizLocation" 2359
type="epcis:BusinessLocationType" minOccurs="0"/> 2360
 <xsd:element name="bizTransactionList" 2361
type="epcis:BusinessTransactionListType" minOccurs="0"/> 2362
 <xsd:element name="extension" 2363
type="epcis:AggregationEventExtensionType" minOccurs="0"/> 2364
 <xsd:any namespace="##other" processContents="lax" 2365
minOccurs="0" maxOccurs="unbounded"/> 2366
 </xsd:sequence> 2367
 <xsd:anyAttribute processContents="lax"/> 2368
 </xsd:extension> 2369
 </xsd:complexContent> 2370
 </xsd:complexType> 2371
 <xsd:complexType name="QuantityEventType"> 2372
 <xsd:annotation> 2373
 <xsd:documentation xml:lang="en"> 2374
 Quantity Event captures an event that takes place with respect to a 2375
specified quantity of 2376
 object class. 2377
 </xsd:documentation> 2378
 </xsd:annotation> 2379
 <xsd:complexContent> 2380
 <xsd:extension base="epcis:EPCISEventType"> 2381
 <xsd:sequence> 2382
 <xsd:element name="epcClass" 2383
type="epcis:EPCClassType"/> 2384
 <xsd:element name="quantity" type="xsd:int"/> 2385
 <xsd:element name="bizStep" 2386
type="epcis:BusinessStepIDType" minOccurs="0"/> 2387

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 102 of 144

 <xsd:element name="disposition" 2388
type="epcis:DispositionIDType" minOccurs="0"/> 2389
 <xsd:element name="readPoint" 2390
type="epcis:ReadPointType" minOccurs="0"/> 2391
 <xsd:element name="bizLocation" 2392
type="epcis:BusinessLocationType" minOccurs="0"/> 2393
 <xsd:element name="bizTransactionList" 2394
type="epcis:BusinessTransactionListType" minOccurs="0"/> 2395
 <xsd:element name="extension" 2396
type="epcis:QuantityEventExtensionType" minOccurs="0"/> 2397
 <xsd:any namespace="##other" processContents="lax" 2398
minOccurs="0" maxOccurs="unbounded"/> 2399
 </xsd:sequence> 2400
 <xsd:anyAttribute processContents="lax"/> 2401
 </xsd:extension> 2402
 </xsd:complexContent> 2403
 </xsd:complexType> 2404
 <xsd:complexType name="TransactionEventType"> 2405
 <xsd:annotation> 2406
 <xsd:documentation xml:lang="en"> 2407
 Transaction Event describes the association or disassociation of 2408
physical objects to one or more business 2409
 transactions. 2410
 </xsd:documentation> 2411
 </xsd:annotation> 2412
 <xsd:complexContent> 2413
 <xsd:extension base="epcis:EPCISEventType"> 2414
 <xsd:sequence> 2415
 <xsd:element name="bizTransactionList" 2416
type="epcis:BusinessTransactionListType"/> 2417
 <xsd:element name="parentID" 2418
type="epcis:ParentIDType" minOccurs="0"/> 2419
 <xsd:element name="epcList" 2420
type="epcis:EPCListType"/> 2421
 <xsd:element name="action" type="epcis:ActionType"/> 2422
 <xsd:element name="bizStep" 2423
type="epcis:BusinessStepIDType" minOccurs="0"/> 2424
 <xsd:element name="disposition" 2425
type="epcis:DispositionIDType" minOccurs="0"/> 2426
 <xsd:element name="readPoint" 2427
type="epcis:ReadPointType" minOccurs="0"/> 2428
 <xsd:element name="bizLocation" 2429
type="epcis:BusinessLocationType" minOccurs="0"/> 2430
 <xsd:element name="extension" 2431
type="epcis:TransactionEventExtensionType" minOccurs="0"/> 2432
 <xsd:any namespace="##other" processContents="lax" 2433
minOccurs="0" maxOccurs="unbounded"/> 2434
 </xsd:sequence> 2435
 <xsd:anyAttribute processContents="lax"/> 2436
 </xsd:extension> 2437
 </xsd:complexContent> 2438
 </xsd:complexType> 2439
 <xsd:complexType name="EPCISDocumentExtensionType"> 2440
 <xsd:sequence> 2441
 <xsd:any namespace="##local" processContents="lax" 2442
maxOccurs="unbounded"/> 2443
 </xsd:sequence> 2444
 <xsd:anyAttribute processContents="lax"/> 2445
 </xsd:complexType> 2446
 <xsd:complexType name="EPCISHeaderExtensionType"> 2447
 <xsd:sequence> 2448
 <xsd:any namespace="##local" processContents="lax" 2449
maxOccurs="unbounded"/> 2450
 </xsd:sequence> 2451
 <xsd:anyAttribute processContents="lax"/> 2452
 </xsd:complexType> 2453
 <xsd:complexType name="EPCISBodyExtensionType"> 2454
 <xsd:sequence> 2455
 <xsd:any namespace="##local" processContents="lax" 2456
maxOccurs="unbounded"/> 2457

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 103 of 144

 </xsd:sequence> 2458
 <xsd:anyAttribute processContents="lax"/> 2459
 </xsd:complexType> 2460
 <xsd:complexType name="EPCISEventListExtensionType"> 2461
 <xsd:sequence> 2462
 <xsd:any namespace="##local" processContents="lax" 2463
maxOccurs="unbounded"/> 2464
 </xsd:sequence> 2465
 <xsd:anyAttribute processContents="lax"/> 2466
 </xsd:complexType> 2467
 <xsd:complexType name="EPCISEventExtensionType"> 2468
 <xsd:sequence> 2469
 <xsd:any namespace="##local" processContents="lax" 2470
maxOccurs="unbounded"/> 2471
 </xsd:sequence> 2472
 <xsd:anyAttribute processContents="lax"/> 2473
 </xsd:complexType> 2474
 <xsd:complexType name="ObjectEventExtensionType"> 2475
 <xsd:sequence> 2476
 <xsd:any namespace="##local" processContents="lax" 2477
maxOccurs="unbounded"/> 2478
 </xsd:sequence> 2479
 <xsd:anyAttribute processContents="lax"/> 2480
 </xsd:complexType> 2481
 <xsd:complexType name="AggregationEventExtensionType"> 2482
 <xsd:sequence> 2483
 <xsd:any namespace="##local" processContents="lax" 2484
maxOccurs="unbounded"/> 2485
 </xsd:sequence> 2486
 <xsd:anyAttribute processContents="lax"/> 2487
 </xsd:complexType> 2488
 <xsd:complexType name="QuantityEventExtensionType"> 2489
 <xsd:sequence> 2490
 <xsd:any namespace="##local" processContents="lax" 2491
maxOccurs="unbounded"/> 2492
 </xsd:sequence> 2493
 <xsd:anyAttribute processContents="lax"/> 2494
 </xsd:complexType> 2495
 <xsd:complexType name="TransactionEventExtensionType"> 2496
 <xsd:sequence> 2497
 <xsd:any namespace="##local" processContents="lax" 2498
maxOccurs="unbounded"/> 2499
 </xsd:sequence> 2500
 <xsd:anyAttribute processContents="lax"/> 2501
 </xsd:complexType> 2502
</xsd:schema> 2503
 2504
 2505

9.6 Core Event Types – Example (non-normative) 2506
Here is an example EPCISDocument containing two ObjectEvents, rendered into 2507
XML [XML1.0]: 2508
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 2509
<epcis:EPCISDocument 2510
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2511
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2512
 creationDate="2005-07-11T11:30:47.0Z" 2513
 schemaVersion="1"> 2514
 <EPCISBody> 2515
 <EventList> 2516
 <ObjectEvent> 2517
 <eventTime>2005-04-03T20:33:31.116-06:00</eventTime> 2518
 <eventTimeZoneOffset>-06:00</eventTimeZoneOffset> 2519
 <epcList> 2520
 <epc>urn:epc:id:sgtin:0614141.107346.2017</epc> 2521
 </epcList> 2522

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 104 of 144

 <action>OBSERVE</action> 2523
 <bizStep>urn:epcglobal:epcis:bizstep:fmcg:shipped</bizStep> 2524
 <disposition>urn:epcglobal:epcis:disp:fmcg:unknown</disposition> 2525
 <readPoint> 2526
 <id>urn:epc:id:sgln:0614141.07346.1234</id> 2527
 </readPoint> 2528
 <bizLocation> 2529
 <id>urn:epcglobal:fmcg:loc:0614141073467.A23-49</id> 2530
 </bizLocation> 2531
 <bizTransactionList> 2532
 <bizTransaction 2533
type="urn:epcglobal:fmcg:btt:po">http://transaction.acme.com/po/12345678</bizTransaction> 2534
 </bizTransactionList> 2535
 </ObjectEvent> 2536
 <ObjectEvent> 2537
 <eventTime>2005-04-04T20:33:31.116-06:00</eventTime> 2538
 <eventTimeZoneOffset>-06:00</eventTimeZoneOffset> 2539
 <epcList> 2540
 <epc>urn:epc:id:sgtin:0614141.107346.2018</epc> 2541
 </epcList> 2542
 <action>OBSERVE</action> 2543
 <bizStep>urn:epcglobal:epcis:bizstep:fmcg:received</bizStep> 2544
 <disposition>urn:epcglobal:epcis:disp:fmcg:processing</disposition> 2545
 <readPoint> 2546
 <id>urn:epcglobal:fmcg:loc:0614141073467.RP-1529</id> 2547
 </readPoint> 2548
 <bizLocation> 2549
 <id>urn:epcglobal:fmcg:loc:0614141073467.A23-49-shelf1234</id> 2550
 </bizLocation> 2551
 <bizTransactionList> 2552
 <bizTransaction 2553
type="urn:epcglobal:fmcg:btt:po">http://transaction.acme.com/po/12345678</bizTransaction> 2554
 <bizTransaction 2555
type="urn:epcglobal:fmcg:btt:asn">http://transaction.acme.com/asn/1152</bizTransaction> 2556
 </bizTransactionList> 2557
 </ObjectEvent> 2558
 </EventList> 2559
 </EPCISBody> 2560
</epcis:EPCISDocument> 2561
 2562

9.7 Schema for Master Data 2563
The following is an XML Schema (XSD) defining the XML binding of master data for 2564
the Core Event Types data definition module. This schema is only used for returning 2565
results from the SimpleMasterDataQuery query type (Section 8.2.7.2). This 2566
schema imports additional schemas as shown in the following table: 2567

Namespace Location Reference Source
urn:epcglobal:xsd:1 EPCglobal.xsd Section 0
http://www.unece.org/ce
fact/namespaces/Standar
dBusinessDocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT
web site; see
Section 9.2

urn:epcglobal:epcis:xsd
:1

EPCglobal-epcis-1_0.xsd Section 9.5

 2568

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 105 of 144

In addition to the constraints implied by the schema, any value of type xsd:dateTime 2569
in an instance document SHALL include a time zone specifier (either “Z” for UTC or an 2570
explicit offset from UTC). 2571

For any XML element of type xsd:anyURI or xsd:string that specifies 2572
minOccurs="0", an EPCIS implementation SHALL treat an instance having the 2573
empty string as its value in exactly the same way as it would if the element were omitted 2574
altogether. 2575

The XML Schema (XSD) for master data is given below.: 2576
<?xml version="1.0" encoding="UTF-8"?> 2577
<xsd:schema xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 2578
 xmlns:sbdh="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2579
 xmlns:epcglobal="urn:epcglobal:xsd:1" 2580
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2581
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2582
 targetNamespace="urn:epcglobal:epcis-masterdata:xsd:1" 2583
 elementFormDefault="unqualified" 2584
 attributeFormDefault="unqualified" 2585
 version="1.0"> 2586
 <xsd:annotation> 2587
 <xsd:documentation xml:lang="en"> 2588
 <epcglobal:copyright>Copyright (C) 2006, 2005, 2004 EPCglobal Inc., All Rights 2589
Reserved.</epcglobal:copyright> 2590
 <epcglobal:disclaimer>EPCglobal Inc., its members, officers, directors, employees, 2591
or agents shall not be liable for any injury, loss, damages, financial or otherwise, 2592
arising from, related to, or caused by the use of this document. The use of said 2593
document shall constitute your express consent to the foregoing 2594
exculpation.</epcglobal:disclaimer> 2595
 <epcglobal:specification>EPC INFORMATION SERVICE (EPCIS) Version 2596
1.0</epcglobal:specification> 2597
 </xsd:documentation> 2598
 </xsd:annotation> 2599
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 2600
 <xsd:import 2601
 namespace="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2602
 schemaLocation="./StandardBusinessDocumentHeader.xsd"/> 2603
 <xsd:import 2604
 namespace="urn:epcglobal:epcis:xsd:1" 2605
 schemaLocation="./EPCglobal-epcis-1_0.xsd"/> 2606
 2607
 <!-- MasterData CORE ELEMENTS --> 2608
 <xsd:element name="EPCISMasterDataDocument" 2609
type="epcismd:EPCISMasterDataDocumentType"/> 2610
 <xsd:complexType name="EPCISMasterDataDocumentType"> 2611
 <xsd:annotation> 2612
 <xsd:documentation xml:lang="en"> 2613
 MasterData document that contains a Header and a Body. 2614
 </xsd:documentation> 2615
 </xsd:annotation> 2616
 <xsd:complexContent> 2617
 <xsd:extension base="epcglobal:Document"> 2618
 <xsd:sequence> 2619
 <xsd:element name="EPCISHeader" type="epcis:EPCISHeaderType" minOccurs="0"/> 2620
 <xsd:element name="EPCISBody" type="epcismd:EPCISMasterDataBodyType"/> 2621
 <xsd:element name="extension" 2622
type="epcismd:EPCISMasterDataDocumentExtensionType" minOccurs="0"/> 2623
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2624
maxOccurs="unbounded"/> 2625
 </xsd:sequence> 2626
 <xsd:anyAttribute processContents="lax"/> 2627
 </xsd:extension> 2628
 </xsd:complexContent> 2629
 </xsd:complexType> 2630
 2631
 <xsd:complexType name="EPCISMasterDataBodyType"> 2632

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 106 of 144

 <xsd:annotation> 2633
 <xsd:documentation xml:lang="en"> 2634
 MasterData specific body that contains Vocabularies. 2635
 </xsd:documentation> 2636
 </xsd:annotation> 2637
 <xsd:sequence> 2638
 <xsd:element name="VocabularyList" type="epcismd:VocabularyListType" 2639
minOccurs="0"/> 2640
 <xsd:element name="extension" type="epcismd:EPCISMasterDataBodyExtensionType" 2641
minOccurs="0"/> 2642
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2643
maxOccurs="unbounded"/> 2644
 </xsd:sequence> 2645
 <xsd:anyAttribute processContents="lax"/> 2646
 </xsd:complexType> 2647
 2648
 <!-- MasterData CORE ELEMENT TYPES --> 2649
 <xsd:complexType name="VocabularyListType"> 2650
 <xsd:sequence> 2651
 <xsd:element name="Vocabulary" type="epcismd:VocabularyType" minOccurs="0" 2652
maxOccurs="unbounded"/> 2653
 </xsd:sequence> 2654
 </xsd:complexType> 2655
 2656
 <xsd:complexType name="VocabularyType"> 2657
 <xsd:sequence> 2658
 <xsd:element name="VocabularyElementList" type="epcismd:VocabularyElementListType" 2659
minOccurs="0"/> 2660
 <xsd:element name="extension" type="epcismd:VocabularyExtensionType" 2661
minOccurs="0"/> 2662
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2663
maxOccurs="unbounded"/> 2664
 </xsd:sequence> 2665
 <xsd:attribute name="type" type="xsd:anyURI" use="required"/> 2666
 <xsd:anyAttribute processContents="lax"/> 2667
 </xsd:complexType> 2668
 2669
 <xsd:complexType name="VocabularyElementListType"> 2670
 <xsd:sequence> 2671
 <xsd:element name="VocabularyElement" type="epcismd:VocabularyElementType" 2672
maxOccurs="unbounded"/> 2673
 </xsd:sequence> 2674
 </xsd:complexType> 2675
 2676
 <!-- Implementations SHALL treat a <children list containing zero elements 2677
 in the same way as if the <children> element were omitted altogether. 2678
 --> 2679
 <xsd:complexType name="VocabularyElementType"> 2680
 <xsd:sequence> 2681
 <xsd:element name="attribute" type="epcismd:AttributeType" minOccurs="0" 2682
maxOccurs="unbounded"/> 2683
 <xsd:element name="children" type="epcismd:IDListType" minOccurs="0"/> 2684
 <xsd:element name="extension" type="epcismd:VocabularyElementExtensionType" 2685
minOccurs="0"/> 2686
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2687
maxOccurs="unbounded"/> 2688
 </xsd:sequence> 2689
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/> 2690
 <xsd:anyAttribute processContents="lax"/> 2691
 </xsd:complexType> 2692
 2693
 <xsd:complexType name="AttributeType"> 2694
 <xsd:complexContent> 2695
 <xsd:extension base="xsd:anyType"> 2696
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/> 2697
 <xsd:anyAttribute processContents="lax"/> 2698
 </xsd:extension> 2699
 </xsd:complexContent> 2700
 </xsd:complexType> 2701
 2702

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 107 of 144

 <xsd:complexType name="IDListType"> 2703
 <xsd:sequence> 2704
 <xsd:element name="id" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/> 2705
 </xsd:sequence> 2706
 <xsd:anyAttribute processContents="lax"/> 2707
 </xsd:complexType> 2708
 2709
 <xsd:complexType name="EPCISMasterDataDocumentExtensionType"> 2710
 <xsd:sequence> 2711
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2712
 </xsd:sequence> 2713
 <xsd:anyAttribute processContents="lax"/> 2714
 </xsd:complexType> 2715
 2716
 <xsd:complexType name="EPCISMasterDataHeaderExtensionType"> 2717
 <xsd:sequence> 2718
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2719
 </xsd:sequence> 2720
 <xsd:anyAttribute processContents="lax"/> 2721
 </xsd:complexType> 2722
 2723
 <xsd:complexType name="EPCISMasterDataBodyExtensionType"> 2724
 <xsd:sequence> 2725
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2726
 </xsd:sequence> 2727
 <xsd:anyAttribute processContents="lax"/> 2728
 </xsd:complexType> 2729
 2730
 <xsd:complexType name="VocabularyExtensionType"> 2731
 <xsd:sequence> 2732
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2733
 </xsd:sequence> 2734
 <xsd:anyAttribute processContents="lax"/> 2735
 </xsd:complexType> 2736
 2737
 <xsd:complexType name="VocabularyElementExtensionType"> 2738
 <xsd:sequence> 2739
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2740
 </xsd:sequence> 2741
 <xsd:anyAttribute processContents="lax"/> 2742
 </xsd:complexType> 2743
</xsd:schema> 2744

9.8 Master Data – Example (non-normative) 2745
Here is an example EPCISMasterDataDocument containing master data for 2746
BusinessLocation and ReadPoint vocabularies,, rendered into XML [XML1.0]: 2747
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 2748
<epcismd:EPCISMasterDataDocument 2749
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 2750
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2751
 schemaVersion="1" 2752
 creationDate="2005-07-11T11:30:47.0Z"> 2753
 <EPCISBody> 2754
 <VocabularyList> 2755
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation"> 2756
 <VocabularyElementList> 2757
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.0"> 2758
 <attribute id="urn:epcglobal:fmcg:mda:slt:retail"/> 2759
 <attribute id="urn:epcglobal:fmcg:mda:latitude">+18.0000</attribute> 2760
 <attribute id="urn:epcglobal:fmcg:mda:longitude">-70.0000</attribute> 2761
 <attribute id="urn:epcglobal:fmcg:mda:address"> 2762
 <sample:Address xmlns:sample="http://sample.com/ComplexTypeExample"> 2763
 <Street>100 Nowhere Street</Street> 2764
 <City>Fancy</City> 2765
 <State>FiftyOne</State> 2766
 <Zip>99999</Zip> 2767

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 108 of 144

 </sample:Address> 2768
 </attribute> 2769
 <children> 2770
 <id>urn:epcglobal:fmcg:ssl:0037000.00729.201</id> 2771
 <id>urn:epcglobal:fmcg:ssl:0037000.00729.202</id> 2772
 <id>urn:epcglobal:fmcg:ssl:0037000.00729.203</id> 2773
 </children> 2774
 </VocabularyElement> 2775
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.201"> 2776
 <attribute id="urn:epcglobal:fmcg:mda:sslt:201"/> 2777
 </VocabularyElement> 2778
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.202"> 2779
 <attribute id="urn:epcglobal:fmcg:mda:sslt:202"/> 2780
 <children> 2781
 <id>urn:epcglobal:fmcg:ssl:0037000.00729.202,402</id> 2782
 </children> 2783
 </VocabularyElement> 2784
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.202,402"> 2785
 <attribute id="urn:epcglobal:fmcg:mda:sslt:202"/> 2786
 <attribute id="urn:epcglobal:fmcg:mda:sslta:402"/> 2787
 </VocabularyElement> 2788
 </VocabularyElementList> 2789
 </Vocabulary> 2790
 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint"> 2791
 <VocabularyElementList> 2792
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.201"> 2793
 <attribute 2794
id="urn:epcglobal:epcis:mda:site">urn:epc:id:sgln:0037000.00729.0</attribute> 2795
 <attribute id="urn:epcglobal:fmcg:mda:sslt:201"/> 2796
 </VocabularyElement> 2797
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.202"> 2798
 <attribute 2799
id="urn:epcglobal:epcis:mda:site">urn:epc:id:sgln:0037000.00729.0</attribute> 2800
 <attribute id="urn:epcglobal:fmcg:mda:sslt:202"/> 2801
 </VocabularyElement> 2802
 <VocabularyElement id="urn:epcglobal:fmcg:ssl:0037000.00729.203"> 2803
 <attribute 2804
id="urn:epcglobal:epcis:mda:site">urn:epc:id:sgln:0037000.00729.0</attribute> 2805
 <attribute id="urn:epcglobal:fmcg:mda:sslt:203"/> 2806
 </VocabularyElement> 2807
 </VocabularyElementList> 2808
 </Vocabulary> 2809
 </VocabularyList> 2810
 </EPCISBody> 2811
</epcismd:EPCISMasterDataDocument> 2812

10 Bindings for Core Capture Operations Module 2813
This section defines bindings for the Core Capture Operations Module. All bindings 2814
specified here are based on the XML representation of events defined in Section 9.5. An 2815
implementation of EPCIS MAY provide support for one or more Core Capture 2816
Operations Module bindings as specified below. 2817

10.1 Messsage Queue Binding 2818
This section defines a binding of the Core Capture Operations Module to a message 2819
queue system, as commonly deployed within large enterprises. A message queue system 2820
is defined for the purpose of this section as any system which allows one application to 2821
send an XML message to another application. Message queue systems commonly 2822
support both point-to-point message delivery and publish/subscribe message delivery. 2823
Message queue systems often include features for guaranteed reliable delivery and other 2824
quality-of-service (QoS) guarantees. 2825

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 109 of 144

Because there is no universally accepted industry standard message queue system, this 2826
specification is designed to apply to any such system. Many implementation details, 2827
therefore, necessarily fall outside the scope of this specification. Such details include 2828
message queue system to use, addressing, protocols, use of QoS or other system-specific 2829
parameters, and so on. 2830

An EPCIS implementation MAY provide a message queue binding of the Core Capture 2831
Operations Module in the following manner. For the purposes of this binding, a “capture 2832
client” is an EPCIS Capture Application that wishes to deliver an EPCIS event through 2833
the EPCIS Capture Interface, and a “capture server” is an EPCIS Repository or EPCIS 2834
Accessing Application that receives an event from a capture client. 2835

A capture server SHALL provide one or more message queue endpoints through which a 2836
capture client may deliver one or more EPCIS events. Each message queue endpoint 2837
MAY be a point-to-point queue, a publish/subscribe topic, or some other appropriate 2838
addressable channel provided by the message queue system; the specifics are outside the 2839
scope of this specification. 2840

A capture client SHALL exercise the capture operation defined in Section 8.1.2 by 2841
delivering a message to the endpoint provided by the capture server. The message 2842
SHALL be one of the following: 2843

• an XML document whose root element conforms to the EPCISDocument element 2844
as defined by the schema of Section 9.5; or 2845

• an XML document whose root element conforms to the EPCISQueryDocument 2846
element as defined by the schema of Section 11.1, where the element immediately 2847
nested within the EPCISBody element is a QueryResults element, and where the 2848
resultsBody element within the QueryResults element contains an 2849
EventList element. 2850

An implementation of the capture interface SHALL accept the EPCISDocument form 2851
and SHOULD accept the EPCISQueryDocument form. Successful delivery of this 2852
message to the server SHALL constitute capture of all EPCIS events included in the 2853
message. 2854

Message queue systems vary in their ability to provide positive and negative 2855
acknowledgements to message senders. When a positive acknowledgement feature is 2856
available from the message queue system, a positive acknowledgement MAY be used to 2857
indicate successful capture by the capture server. When a negative acknowledgement 2858
feature is available from the message queue system, a negative acknowledgement MAY 2859
be used to indicate a failure to complete the capture operation. Failure may be due to an 2860
authorization failure as described in Section 8.1.1 or for some other reason. The specific 2861
circumstances under which a positive or negative acknowledgement are indicated is 2862
implementation-dependent. All implementations, however, SHALL either accept all 2863
events in the message or reject all events. 2864

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 110 of 144

10.2 HTTP Binding 2865
This section defines a binding of the Core Capture Operations Module to HTTP 2866
[RFC2616]. 2867

An EPCIS implementation MAY provide an HTTP binding of the Core Capture 2868
Operations Module in the following manner. For the purposes of this binding, a “capture 2869
client” is an EPCIS Capture Application that wishes to deliver an EPCIS event through 2870
the EPCIS Capture Interface, and a “capture server” is an EPCIS Repository or EPCIS 2871
Accessing Application that receives an event from a capture client. 2872

A capture server SHALL provide an HTTP URL through which a capture client may 2873
deliver one or more EPCIS events. 2874

A capture client SHALL exercise the capture operation defined in Section 8.1.2 by 2875
invoking an HTTP POST operation on the URL provided by the capture server. The 2876
message payload SHALL be one of the following: 2877

• an XML document whose root element conforms to the EPCISDocument element 2878
as defined by the schema of Section 9.5; or 2879

• an XML document whose root element conforms to the EPCISQueryDocument 2880
element as defined by the schema of Section 11.1, where the element immediately 2881
nested within the EPCISBody element is a QueryResults element, and where the 2882
resultsBody element within the QueryResults element contains an 2883
EventList element. 2884

An implementation of the capture interface SHALL accept the EPCISDocument form 2885
and SHOULD accept the EPCISQueryDocument form. Successful delivery of this 2886
message to the server SHALL constitute capture of all EPCIS events included in the 2887
message. 2888

Status codes returned by the capture server SHALL conform to [RFC2616], Section 10. 2889
In particular, the capture server SHALL return status code 200 to indicate successful 2890
completion of the capture operation, and any status code 3xx, 4xx, or 5xx SHALL 2891
indicate that the capture operation was not successfully completed. 2892

11 Bindings for Core Query Operations Module 2893
This section defines bindings for the Core Query Operations Module, as follows: 2894

Interface Binding Document Section

SOAP over HTTP (WSDL) Section 11.2 Query Control Interface

XML over AS2 Section 11.3

XML over HTTP Section 11.4.2

XML over HTTP+TLS (HTTPS) Section 11.4.3

Query Callback Interface

XML over AS2 Section 11.4.4

 2895

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 111 of 144

All of these bindings share a common XML syntax, specified in Section 11.1. The XML 2896
schema has the following ingredients: 2897

• XML elements for the argument and return signature of each method in the Query 2898
Control Interface as defined in Section 8.2.5 2899

• XML types for each of the datatypes used in those argument and return signatures 2900

• XML elements for each of the exceptions defined in Section 8.2.6 2901

• XML elements for the Query Callback Interface as defined in Section 8.2.8. (These 2902
are actually just a subset of the previous three bullets.) 2903

• An EPCISQueryDocument element, which is used as an “envelope” by bindings 2904
whose underlying technology does not provide its own envelope or header 2905
mechanism (specifically, all bindings except for the SOAP binding). The AS2 2906
binding uses this to provide a header to match requests and responses. The 2907
EPCISQueryDocument element shares the EPCISHeader type defined in 2908
Section 9.5. Each binding specifies its own rules for using this header, if applicable. 2909

11.1 XML Schema for Core Query Operations Module 2910
The following schema defines XML representations of data types, requests, responses, 2911
and exceptions used by the EPCIS Query Control Interface and EPCIS Query Callback 2912
Interface in the Core Query Operations Module. This schema is incorporated by 2913
reference into all of the bindings for these two interfaces specified in the remainder of 2914
this Section 11. This schema SHOULD be used by any new binding of any interface 2915
within the Core Query Operations Module that uses XML as the underlying message 2916
format. 2917

The QueryParam type defined in the schema below is used to represent a query 2918
parameter as used by the poll and subscribe methods of the query interface defined 2919
in Section 8.2.5. A query parameter consists of a name and a value. The XML schema 2920
specifies xsd:anyType for the value, so that a parameter value of any type can be 2921
represented. When creating a document instance, the actual value SHALL conform to a 2922
type appropriate for the query parameter, as defined in the following table: 2923

Parameter type XML type for value element

Int xsd:integer

Float xsd:double

Time xsd:dateTime

String xsd:string

List of String epcisq:ArrayOfString

Void epcisq:VoidHolder

 2924

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 112 of 144

In particular, the table above SHALL be used to map the parameter types specified for 2925
the predefined queries of Section 8.2.7 into the corresponding XML types. 2926

Each <value> element specifying a query parameter value in an instance document 2927
MAY include an xsi:type attribute as specified in [XSD1]. The following rules 2928
specify how query parameter values are processed: 2929

• When a <value> element does not include an xsi:type attribute, the 2930
subscribe or poll method of the Query Control Interface SHALL raise a 2931
QueryParameterException if the specified value is not valid syntax for the 2932
type required by the query parameter. 2933

• When a <value> element does include an xsi:type attribute, the following rules 2934
apply: 2935

• If the body of the <value> element is not valid syntax for the type specified by 2936
the xsi:type attribute, the EPCISQueryDocument or SOAP request MAY 2937
be rejected by the implementation’s XML parser. 2938

• If the value of the xsi:type attribute is not the correct type for that query 2939
parameter as specified in the second column of the table above, the subscribe 2940
or poll method of the Query Control Interface MAY raise a 2941
QueryParameterException, even if the body of the <value> element is 2942
valid syntax for the type required by the query parameter. 2943

• If the body of the <value> element is not valid syntax for the type required by 2944
the query parameter, the subscribe or poll method of the Query Control 2945
Interface SHALL raise a QueryParameterException unless the 2946
EPCISQueryDocument or SOAP request was rejected by the 2947
implementation’s XML parser according to the rule above. 2948

This schema imports additional schemas as shown in the following table: 2949

Namespace Location Reference Source
urn:epcglobal:xsd:1 EPCglobal.xsd Section 0
http://www.unece.org/ce
fact/namespaces/Standar
dBusinessDocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT
web site; see
Section 9.2

urn:epcglobal:epcis:xsd
:1

EPCglobal-epcis-1_0.xsd Section 9.5

urn:epcglobal:epcis-
masterdata:xsd:1

EPCglobal-epcis-masterdata-1_0.xsd Section 9.7

 2950

In addition to the constraints implied by the schema, any value of type xsd:dateTime 2951
in an instance document SHALL include a time zone specifier (either “Z” for UTC or an 2952
explicit offset from UTC). 2953

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 113 of 144

For any XML element of type xsd:anyURI or xsd:string that specifies 2954
minOccurs="0", an EPCIS implementation SHALL treat an instance having the 2955
empty string as its value in exactly the same way as it would if the element were omitted 2956
altogether. 2957

The XML Schema (XSD) for the Core Query Operations Module is given below.: 2958
<?xml version="1.0" encoding="UTF-8"?> 2959
 2960
<xsd:schema targetNamespace="urn:epcglobal:epcis-query:xsd:1" 2961
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2962
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 2963
 xmlns:epcisq="urn:epcglobal:epcis-query:xsd:1" 2964
 xmlns:epcglobal="urn:epcglobal:xsd:1" 2965
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2966
 elementFormDefault="unqualified" 2967
 attributeFormDefault="unqualified" 2968
 version="1.0"> 2969
 2970
 <xsd:annotation> 2971
 <xsd:documentation xml:lang="en"> 2972
 <epcglobal:copyright> 2973
 Copyright (C) 2006, 2005 EPCglobal Inc., All Rights Reserved. 2974
 </epcglobal:copyright> 2975
 <epcglobal:disclaimer> 2976
 EPCglobal Inc., its members, officers, directors, employees, or 2977
 agents shall not be liable for any injury, loss, damages, financial 2978
 or otherwise, arising from, related to, or caused by the use of 2979
 this document. The use of said document shall constitute your 2980
 express consent to the foregoing exculpation. 2981
 </epcglobal:disclaimer> 2982
 <epcglobal:specification> 2983
 EPCIS Query 1.0 2984
 </epcglobal:specification> 2985
 </xsd:documentation> 2986
 </xsd:annotation> 2987
 2988
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 2989
 <xsd:import namespace="urn:epcglobal:epcis:xsd:1" schemaLocation="./EPCglobal-epcis-2990
1_0.xsd"/> 2991
 <xsd:import namespace="urn:epcglobal:epcis-masterdata:xsd:1" 2992
schemaLocation="./EPCglobal-epcis-masterdata-1_0.xsd"/> 2993
 2994
 <xsd:element name="EPCISQueryDocument" type="epcisq:EPCISQueryDocumentType"/> 2995
 <xsd:complexType name="EPCISQueryDocumentType"> 2996
 <xsd:complexContent> 2997
 <xsd:extension base="epcglobal:Document"> 2998
 <xsd:sequence> 2999
 <xsd:element name="EPCISHeader" type="epcis:EPCISHeaderType" minOccurs="0"/> 3000
 <xsd:element name="EPCISBody" type="epcisq:EPCISQueryBodyType"/> 3001
 <xsd:element name="extension" type="epcisq:EPCISQueryDocumentExtensionType" 3002
minOccurs="0"/> 3003
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3004
maxOccurs="unbounded"/> 3005
 </xsd:sequence> 3006
 <xsd:anyAttribute processContents="lax"/> 3007
 </xsd:extension> 3008
 </xsd:complexContent> 3009
 </xsd:complexType> 3010
 3011
 <xsd:complexType name="EPCISQueryDocumentExtensionType"> 3012
 <xsd:sequence> 3013
 <xsd:any namespace="##local" processContents="lax" 3014
maxOccurs="unbounded"/> 3015
 </xsd:sequence> 3016
 <xsd:anyAttribute processContents="lax"/> 3017
 </xsd:complexType> 3018
 3019

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 114 of 144

 <xsd:complexType name="EPCISQueryBodyType"> 3020
 <xsd:choice> 3021
 <xsd:element ref="epcisq:GetQueryNames"/> 3022
 <xsd:element ref="epcisq:GetQueryNamesResult"/> 3023
 <xsd:element ref="epcisq:Subscribe"/> 3024
 <xsd:element ref="epcisq:SubscribeResult"/> 3025
 <xsd:element ref="epcisq:Unsubscribe"/> 3026
 <xsd:element ref="epcisq:UnsubscribeResult"/> 3027
 <xsd:element ref="epcisq:GetSubscriptionIDs"/> 3028
 <xsd:element ref="epcisq:GetSubscriptionIDsResult"/> 3029
 <xsd:element ref="epcisq:Poll"/> 3030
 <xsd:element ref="epcisq:GetStandardVersion"/> 3031
 <xsd:element ref="epcisq:GetStandardVersionResult"/> 3032
 <xsd:element ref="epcisq:GetVendorVersion"/> 3033
 <xsd:element ref="epcisq:GetVendorVersionResult"/> 3034
 <xsd:element ref="epcisq:DuplicateNameException"/> 3035
 <!-- queryValidationException unimplemented in EPCIS 1.0 3036
 <xsd:element ref="epcisq:QueryValidationException"/> 3037
 --> 3038
 <xsd:element ref="epcisq:InvalidURIException"/> 3039
 <xsd:element ref="epcisq:NoSuchNameException"/> 3040
 <xsd:element ref="epcisq:NoSuchSubscriptionException"/> 3041
 <xsd:element ref="epcisq:DuplicateSubscriptionException"/> 3042
 <xsd:element ref="epcisq:QueryParameterException"/> 3043
 <xsd:element ref="epcisq:QueryTooLargeException"/> 3044
 <xsd:element ref="epcisq:QueryTooComplexException"/> 3045
 <xsd:element ref="epcisq:SubscriptionControlsException"/> 3046
 <xsd:element ref="epcisq:SubscribeNotPermittedException"/> 3047
 <xsd:element ref="epcisq:SecurityException"/> 3048
 <xsd:element ref="epcisq:ValidationException"/> 3049
 <xsd:element ref="epcisq:ImplementationException"/> 3050
 <xsd:element ref="epcisq:QueryResults"/> 3051
 </xsd:choice> 3052
 </xsd:complexType> 3053
 3054
 <!-- EPCISSERVICE MESSAGE WRAPPERS --> 3055
 3056
 <xsd:element name="GetQueryNames" type="epcisq:EmptyParms"/> 3057
 <xsd:element name="GetQueryNamesResult" type="epcisq:ArrayOfString"/> 3058
 3059
 <xsd:element name="Subscribe" type="epcisq:Subscribe"/> 3060
 <xsd:complexType name="Subscribe"> 3061
 <xsd:sequence> 3062
 <xsd:element name="queryName" type="xsd:string"/> 3063
 <xsd:element name="params" type="epcisq:QueryParams"/> 3064
 <xsd:element name="dest" type="xsd:anyURI"/> 3065
 <xsd:element name="controls" type="epcisq:SubscriptionControls"/> 3066
 <xsd:element name="subscriptionID" type="xsd:string"/> 3067
 </xsd:sequence> 3068
 </xsd:complexType> 3069
 <xsd:element name="SubscribeResult" type="epcisq:VoidHolder"/> 3070
 3071
 <xsd:element name="Unsubscribe" type="epcisq:Unsubscribe"/> 3072
 <xsd:complexType name="Unsubscribe"> 3073
 <xsd:sequence> 3074
 <xsd:element name="subscriptionID" type="xsd:string"/> 3075
 </xsd:sequence> 3076
 </xsd:complexType> 3077
 <xsd:element name="UnsubscribeResult" type="epcisq:VoidHolder"/> 3078
 3079
 <xsd:element name="GetSubscriptionIDs" type="epcisq:GetSubscriptionIDs"/> 3080
 <xsd:complexType name="GetSubscriptionIDs"> 3081
 <xsd:sequence> 3082
 <xsd:element name="queryName" type="xsd:string"/> 3083
 </xsd:sequence> 3084
 </xsd:complexType> 3085
 <xsd:element name="GetSubscriptionIDsResult" type="epcisq:ArrayOfString"/> 3086
 3087
 <xsd:element name="Poll" type="epcisq:Poll"/> 3088
 <xsd:complexType name="Poll"> 3089

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 115 of 144

 <xsd:sequence> 3090
 <xsd:element name="queryName" type="xsd:string"/> 3091
 <xsd:element name="params" type="epcisq:QueryParams"/> 3092
 </xsd:sequence> 3093
 </xsd:complexType> 3094
 <!-- The response from a Poll method is the QueryResults element, defined below. 3095
 The QueryResults element is also used to deliver standing query results 3096
 through the Query Callback Interface --> 3097
 3098
 <xsd:element name="GetStandardVersion" type="epcisq:EmptyParms"/> 3099
 <xsd:element name="GetStandardVersionResult" type="xsd:string"/> 3100
 3101
 <xsd:element name="GetVendorVersion" type="epcisq:EmptyParms"/> 3102
 <xsd:element name="GetVendorVersionResult" type="xsd:string"/> 3103
 3104
 <xsd:element name="VoidHolder" type="epcisq:VoidHolder"/> 3105
 <xsd:complexType name="VoidHolder"> 3106
 <xsd:sequence> 3107
 </xsd:sequence> 3108
 </xsd:complexType> 3109
 3110
 <xsd:complexType name="EmptyParms"/> 3111
 3112
 <xsd:complexType name="ArrayOfString"> 3113
 <xsd:sequence> 3114
 <xsd:element name="string" type="xsd:string" minOccurs="0" 3115
maxOccurs="unbounded"/> 3116
 </xsd:sequence> 3117
 </xsd:complexType> 3118
 3119
 <xsd:complexType name="SubscriptionControls"> 3120
 <xsd:sequence> 3121
 <xsd:element name="schedule" type="epcisq:QuerySchedule" minOccurs="0"/> 3122
 <xsd:element name="trigger" type="xsd:anyURI" minOccurs="0"/> 3123
 <xsd:element name="initialRecordTime" type="xsd:dateTime" minOccurs="0"/> 3124
 <xsd:element name="reportIfEmpty" type="xsd:boolean"/> 3125
 <xsd:element name="extension" type="epcisq:SubscriptionControlsExtensionType" 3126
minOccurs="0"/> 3127
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3128
maxOccurs="unbounded"/> 3129
 </xsd:sequence> 3130
 </xsd:complexType> 3131
 3132
 <xsd:complexType name="SubscriptionControlsExtensionType"> 3133
 <xsd:sequence> 3134
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3135
 </xsd:sequence> 3136
 <xsd:anyAttribute processContents="lax"/> 3137
 </xsd:complexType> 3138
 3139
 <xsd:complexType name="QuerySchedule"> 3140
 <xsd:sequence> 3141
 <xsd:element name="second" type="xsd:string" minOccurs="0"/> 3142
 <xsd:element name="minute" type="xsd:string" minOccurs="0"/> 3143
 <xsd:element name="hour" type="xsd:string" minOccurs="0"/> 3144
 <xsd:element name="dayOfMonth" type="xsd:string" minOccurs="0"/> 3145
 <xsd:element name="month" type="xsd:string" minOccurs="0"/> 3146
 <xsd:element name="dayOfWeek" type="xsd:string" minOccurs="0"/> 3147
 <xsd:element name="extension" type="epcisq:QueryScheduleExtensionType" 3148
minOccurs="0"/> 3149
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3150
maxOccurs="unbounded"/> 3151
 </xsd:sequence> 3152
 </xsd:complexType> 3153
 3154
 <xsd:complexType name="QueryScheduleExtensionType"> 3155
 <xsd:sequence> 3156
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3157
 </xsd:sequence> 3158
 <xsd:anyAttribute processContents="lax"/> 3159

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 116 of 144

 </xsd:complexType> 3160
 3161
 <xsd:complexType name="QueryParams"> 3162
 <xsd:sequence> 3163
 <xsd:element name="param" type="epcisq:QueryParam" minOccurs="0" 3164
maxOccurs="unbounded"/> 3165
 </xsd:sequence> 3166
 </xsd:complexType> 3167
 3168
 <xsd:complexType name="QueryParam"> 3169
 <xsd:sequence> 3170
 <xsd:element name="name" type="xsd:string"/> 3171
 <!-- See note in EPCIS spec text regarding the value for this element --> 3172
 <xsd:element name="value" type="xsd:anyType"/> 3173
 </xsd:sequence> 3174
 </xsd:complexType> 3175
 3176
 <xsd:element name="QueryResults" type="epcisq:QueryResults"/> 3177
 <xsd:complexType name="QueryResults"> 3178
 <xsd:sequence> 3179
 <xsd:element name="queryName" type="xsd:string"/> 3180
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 3181
 <xsd:element name="resultsBody" type="epcisq:QueryResultsBody"/> 3182
 <xsd:element name="extension" type="epcisq:QueryResultsExtensionType" 3183
minOccurs="0"/> 3184
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3185
maxOccurs="unbounded"/> 3186
 </xsd:sequence> 3187
 </xsd:complexType> 3188
 3189
 <xsd:complexType name="QueryResultsExtensionType"> 3190
 <xsd:sequence> 3191
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3192
 </xsd:sequence> 3193
 <xsd:anyAttribute processContents="lax"/> 3194
 </xsd:complexType> 3195
 3196
 <xsd:complexType name="QueryResultsBody"> 3197
 <xsd:choice> 3198
 <xsd:element name="EventList" type="epcis:EventListType"/> 3199
 <xsd:element name="VocabularyList" type="epcismd:VocabularyListType"/> 3200
 </xsd:choice> 3201
 </xsd:complexType> 3202
 3203
 <!-- EPCIS EXCEPTIONS --> 3204
 3205
 <xsd:element name="EPCISException" type="epcisq:EPCISException"/> 3206
 <xsd:complexType name="EPCISException"> 3207
 <xsd:sequence> 3208
 <xsd:element name="reason" type="xsd:string"/> 3209
 </xsd:sequence> 3210
 </xsd:complexType> 3211
 3212
 <xsd:element name="DuplicateNameException" type="epcisq:DuplicateNameException"/> 3213
 <xsd:complexType name="DuplicateNameException"> 3214
 <xsd:complexContent> 3215
 <xsd:extension base="epcisq:EPCISException"> 3216
 <xsd:sequence/> 3217
 </xsd:extension> 3218
 </xsd:complexContent> 3219
 </xsd:complexType> 3220
 3221
 <!-- QueryValidationException not implemented in EPCIS 1.0 3222
 <xsd:element name="QueryValidationException" type="epcisq:QueryValidationException"/> 3223
 <xsd:complexType name="QueryValidationException"> 3224
 <xsd:complexContent> 3225
 <xsd:extension base="epcisq:EPCISException"> 3226
 <xsd:sequence/> 3227
 </xsd:extension> 3228
 </xsd:complexContent> 3229

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 117 of 144

 </xsd:complexType> 3230
 --> 3231
 3232
 <xsd:element name="InvalidURIException" type="epcisq:InvalidURIException"/> 3233
 <xsd:complexType name="InvalidURIException"> 3234
 <xsd:complexContent> 3235
 <xsd:extension base="epcisq:EPCISException"> 3236
 <xsd:sequence/> 3237
 </xsd:extension> 3238
 </xsd:complexContent> 3239
 </xsd:complexType> 3240
 3241
 <xsd:element name="NoSuchNameException" type="epcisq:NoSuchNameException"/> 3242
 <xsd:complexType name="NoSuchNameException"> 3243
 <xsd:complexContent> 3244
 <xsd:extension base="epcisq:EPCISException"> 3245
 <xsd:sequence/> 3246
 </xsd:extension> 3247
 </xsd:complexContent> 3248
 </xsd:complexType> 3249
 3250
 <xsd:element name="NoSuchSubscriptionException" 3251
type="epcisq:NoSuchSubscriptionException"/> 3252
 <xsd:complexType name="NoSuchSubscriptionException"> 3253
 <xsd:complexContent> 3254
 <xsd:extension base="epcisq:EPCISException"> 3255
 <xsd:sequence/> 3256
 </xsd:extension> 3257
 </xsd:complexContent> 3258
 </xsd:complexType> 3259
 3260
 <xsd:element name="DuplicateSubscriptionException" 3261
type="epcisq:DuplicateSubscriptionException"/> 3262
 <xsd:complexType name="DuplicateSubscriptionException"> 3263
 <xsd:complexContent> 3264
 <xsd:extension base="epcisq:EPCISException"> 3265
 <xsd:sequence/> 3266
 </xsd:extension> 3267
 </xsd:complexContent> 3268
 </xsd:complexType> 3269
 3270
 <xsd:element name="QueryParameterException" type="epcisq:QueryParameterException"/> 3271
 <xsd:complexType name="QueryParameterException"> 3272
 <xsd:complexContent> 3273
 <xsd:extension base="epcisq:EPCISException"> 3274
 <xsd:sequence/> 3275
 </xsd:extension> 3276
 </xsd:complexContent> 3277
 </xsd:complexType> 3278
 3279
 <xsd:element name="QueryTooLargeException" type="epcisq:QueryTooLargeException"/> 3280
 <xsd:complexType name="QueryTooLargeException"> 3281
 <xsd:complexContent> 3282
 <xsd:extension base="epcisq:EPCISException"> 3283
 <xsd:sequence> 3284
 <xsd:element name="queryName" type="xsd:string" minOccurs="0"/> 3285
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 3286
 </xsd:sequence> 3287
 </xsd:extension> 3288
 </xsd:complexContent> 3289
 </xsd:complexType> 3290
 3291
 <xsd:element name="QueryTooComplexException" type="epcisq:QueryTooComplexException"/> 3292
 <xsd:complexType name="QueryTooComplexException"> 3293
 <xsd:complexContent> 3294
 <xsd:extension base="epcisq:EPCISException"> 3295
 <xsd:sequence/> 3296
 </xsd:extension> 3297
 </xsd:complexContent> 3298
 </xsd:complexType> 3299

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 118 of 144

 3300
 <xsd:element name="SubscriptionControlsException" 3301
type="epcisq:SubscriptionControlsException"/> 3302
 <xsd:complexType name="SubscriptionControlsException"> 3303
 <xsd:complexContent> 3304
 <xsd:extension base="epcisq:EPCISException"> 3305
 <xsd:sequence/> 3306
 </xsd:extension> 3307
 </xsd:complexContent> 3308
 </xsd:complexType> 3309
 3310
 <xsd:element name="SubscribeNotPermittedException" 3311
type="epcisq:SubscribeNotPermittedException"/> 3312
 <xsd:complexType name="SubscribeNotPermittedException"> 3313
 <xsd:complexContent> 3314
 <xsd:extension base="epcisq:EPCISException"> 3315
 <xsd:sequence/> 3316
 </xsd:extension> 3317
 </xsd:complexContent> 3318
 </xsd:complexType> 3319
 3320
 <xsd:element name="SecurityException" type="epcisq:SecurityException"/> 3321
 <xsd:complexType name="SecurityException"> 3322
 <xsd:complexContent> 3323
 <xsd:extension base="epcisq:EPCISException"> 3324
 <xsd:sequence/> 3325
 </xsd:extension> 3326
 </xsd:complexContent> 3327
 </xsd:complexType> 3328
 3329
 <xsd:element name="ValidationException" type="epcisq:ValidationException"/> 3330
 <xsd:complexType name="ValidationException"> 3331
 <xsd:complexContent> 3332
 <xsd:extension base="epcisq:EPCISException"> 3333
 <xsd:sequence/> 3334
 </xsd:extension> 3335
 </xsd:complexContent> 3336
 </xsd:complexType> 3337
 3338
 <xsd:element name="ImplementationException" 3339
 type="epcisq:ImplementationException"/> 3340
 <xsd:complexType name="ImplementationException"> 3341
 <xsd:complexContent> 3342
 <xsd:extension base="epcisq:EPCISException"> 3343
 <xsd:sequence> 3344
 <xsd:element name="severity" 3345
 type="epcisq:ImplementationExceptionSeverity"/> 3346
 <xsd:element name="queryName" type="xsd:string" minOccurs="0"/> 3347
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 3348
 </xsd:sequence> 3349
 </xsd:extension> 3350
 </xsd:complexContent> 3351
 </xsd:complexType> 3352
 3353
 <xsd:simpleType name="ImplementationExceptionSeverity"> 3354
 <xsd:restriction base="xsd:NCName"> 3355
 <xsd:enumeration value="ERROR"/> 3356
 <xsd:enumeration value="SEVERE"/> 3357
 </xsd:restriction> 3358
 </xsd:simpleType> 3359
 3360
</xsd:schema> 3361

11.2 SOAP/HTTP Binding for the Query Control Interface 3362
The following is a Web Service Description Language (WSDL) 1.1 [WSDL1.1] 3363
specification defining the standard SOAP/HTTP binding of the EPCIS Query Control 3364
Interface. An EPCIS implementation MAY provide a SOAP/HTTP binding of the EPCIS 3365

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 119 of 144

Query Control Interface; if a SOAP/HTTP binding is provided, it SHALL conform to the 3366
following WSDL. This SOAP/HTTP binding is compliant with the WS-I Basic Profile 3367
Version 1.0 [WSI]. This binding builds upon the schema defined in Section 11.1. 3368

If an EPCIS implementation providing the SOAP binding receives an input that is 3369
syntactically invalid according to this WSDL, the implementation SHALL indicate this in 3370
one of the two following ways: the implementation MAY raise a 3371
ValidationException, or it MAY raise a more generic exception provided by the 3372
SOAP processor being used. 3373
<?xml version="1.0" encoding="UTF-8"?> 3374
 3375
 3376
<!-- EPCIS QUERY SERVICE DEFINITIONS --> 3377
<wsdl:definitions 3378
 targetNamespace="urn:epcglobal:epcis:wsdl:1" 3379
 xmlns="http://schemas.xmlsoap.org/wsdl/" 3380
 xmlns:apachesoap="http://xml.apache.org/xml-soap" 3381
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3382
 xmlns:epcisq="urn:epcglobal:epcis-query:xsd:1" 3383
 xmlns:epcglobal="urn:epcglobal:xsd:1" 3384
 xmlns:impl="urn:epcglobal:epcis:wsdl:1" 3385
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 3386
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 3387
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 3388
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 3389
 3390
 <wsdl:documentation> 3391
 <epcglobal:copyright> 3392
 Copyright (C) 2006, 2005 EPCglobal Inc., All Rights Reserved. 3393
 </epcglobal:copyright> 3394
 <epcglobal:disclaimer> 3395
 EPCglobal Inc., its members, officers, directors, employees, or agents shall not 3396
be liable for any injury, loss, damages, financial or otherwise, arising from, related 3397
to, or caused by the use of this document. The use of said document shall constitute 3398
your express consent to the foregoing exculpation. 3399
 </epcglobal:disclaimer> 3400
 <epcglobal:specification> 3401
 </epcglobal:specification> 3402
 </wsdl:documentation> 3403
 3404
 <!-- EPCISSERVICE TYPES --> 3405
 <wsdl:types> 3406
 <xsd:schema targetNamespace="urn:epcglobal:epcis:wsdl:1" 3407
 xmlns:impl="urn:epcglobal:epcis:wsdl:1" 3408
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 3409
 3410
 <xsd:import 3411
 namespace="urn:epcglobal:xsd:1" 3412
 schemaLocation="EPCglobal.xsd"/> 3413
 <xsd:import 3414
 namespace="urn:epcglobal:epcis:xsd:1" 3415
 schemaLocation="EPCglobal-epcis-1_0.xsd"/> 3416
 <xsd:import 3417
 namespace="urn:epcglobal:epcis-query:xsd:1" 3418
 schemaLocation="EPCglobal-epcis-query-1_0.xsd"/> 3419
 </xsd:schema> 3420
 </wsdl:types> 3421
 3422
 <!-- EPCIS QUERY SERVICE MESSAGES --> 3423
 3424
 <wsdl:message name="getQueryNamesRequest"> 3425
 <wsdl:part name="parms" element="epcisq:GetQueryNames"/> 3426
 </wsdl:message> 3427
 <wsdl:message name="getQueryNamesResponse"> 3428
 <wsdl:part name="getQueryNamesReturn" element="epcisq:GetQueryNamesResult"/> 3429
 </wsdl:message> 3430

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 120 of 144

 3431
 <wsdl:message name="subscribeRequest"> 3432
 <wsdl:part name="parms" element="epcisq:Subscribe"/> 3433
 </wsdl:message> 3434
 <wsdl:message name="subscribeResponse"> 3435
 <wsdl:part name="subscribeReturn" element="epcisq:SubscribeResult"/> 3436
 </wsdl:message> 3437
 3438
 <wsdl:message name="unsubscribeRequest"> 3439
 <wsdl:part name="parms" element="epcisq:Unsubscribe"/> 3440
 </wsdl:message> 3441
 <wsdl:message name="unsubscribeResponse"> 3442
 <wsdl:part name="unsubscribeReturn" element="epcisq:UnsubscribeResult"/> 3443
 </wsdl:message> 3444
 3445
 <wsdl:message name="getSubscriptionIDsRequest"> 3446
 <wsdl:part name="parms" element="epcisq:GetSubscriptionIDs"/> 3447
 </wsdl:message> 3448
 <wsdl:message name="getSubscriptionIDsResponse"> 3449
 <wsdl:part name="getSubscriptionIDsReturn" 3450
element="epcisq:GetSubscriptionIDsResult"/> 3451
 </wsdl:message> 3452
 3453
 <wsdl:message name="pollRequest"> 3454
 <wsdl:part name="parms" element="epcisq:Poll"/> 3455
 </wsdl:message> 3456
 <wsdl:message name="pollResponse"> 3457
 <wsdl:part name="pollReturn" element="epcisq:QueryResults"/> 3458
 </wsdl:message> 3459
 3460
 <wsdl:message name="getStandardVersionRequest"> 3461
 <wsdl:part name="parms" element="epcisq:GetStandardVersion"/> 3462
 </wsdl:message> 3463
 <wsdl:message name="getStandardVersionResponse"> 3464
 <wsdl:part name="getStandardVersionReturn" 3465
element="epcisq:GetStandardVersionResult"/> 3466
 </wsdl:message> 3467
 3468
 <wsdl:message name="getVendorVersionRequest"> 3469
 <wsdl:part name="parms" element="epcisq:GetVendorVersion"/> 3470
 </wsdl:message> 3471
 <wsdl:message name="getVendorVersionResponse"> 3472
 <wsdl:part name="getVendorVersionReturn" element="epcisq:GetVendorVersionResult"/> 3473
 </wsdl:message> 3474
 3475
 <!-- EPCISSERVICE FAULT EXCEPTIONS --> 3476
 <wsdl:message name="DuplicateNameExceptionResponse"> 3477
 <wsdl:part name="fault" element="epcisq:DuplicateNameException"/> 3478
 </wsdl:message> 3479
 <!-- QueryValidationException not implemented in EPCIS 1.0 3480
 <wsdl:message name="QueryValidationExceptionResponse"> 3481
 <wsdl:part name="fault" element="epcisq:QueryValidationException"/> 3482
 </wsdl:message> 3483
 --> 3484
 <wsdl:message name="InvalidURIExceptionResponse"> 3485
 <wsdl:part name="fault" element="epcisq:InvalidURIException"/> 3486
 </wsdl:message> 3487
 <wsdl:message name="NoSuchNameExceptionResponse"> 3488
 <wsdl:part name="fault" element="epcisq:NoSuchNameException"/> 3489
 </wsdl:message> 3490
 <wsdl:message name="NoSuchSubscriptionExceptionResponse"> 3491
 <wsdl:part name="fault" element="epcisq:NoSuchSubscriptionException"/> 3492
 </wsdl:message> 3493
 <wsdl:message name="DuplicateSubscriptionExceptionResponse"> 3494
 <wsdl:part name="fault" element="epcisq:DuplicateSubscriptionException"/> 3495
 </wsdl:message> 3496
 <wsdl:message name="QueryParameterExceptionResponse"> 3497
 <wsdl:part name="fault" element="epcisq:QueryParameterException"/> 3498
 </wsdl:message> 3499
 <wsdl:message name="QueryTooLargeExceptionResponse"> 3500

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 121 of 144

 <wsdl:part name="fault" element="epcisq:QueryTooLargeException"/> 3501
 </wsdl:message> 3502
 <wsdl:message name="QueryTooComplexExceptionResponse"> 3503
 <wsdl:part name="fault" element="epcisq:QueryTooComplexException"/> 3504
 </wsdl:message> 3505
 <wsdl:message name="SubscriptionControlsExceptionResponse"> 3506
 <wsdl:part name="fault" element="epcisq:SubscriptionControlsException"/> 3507
 </wsdl:message> 3508
 <wsdl:message name="SubscribeNotPermittedExceptionResponse"> 3509
 <wsdl:part name="fault" element="epcisq:SubscribeNotPermittedException"/> 3510
 </wsdl:message> 3511
 <wsdl:message name="SecurityExceptionResponse"> 3512
 <wsdl:part name="fault" element="epcisq:SecurityException"/> 3513
 </wsdl:message> 3514
 <wsdl:message name="ValidationExceptionResponse"> 3515
 <wsdl:part name="fault" element="epcisq:ValidationException"/> 3516
 </wsdl:message> 3517
 <wsdl:message name="ImplementationExceptionResponse"> 3518
 <wsdl:part name="fault" element="epcisq:ImplementationException"/> 3519
 </wsdl:message> 3520
 3521
 <!-- EPCISSERVICE PORTTYPE --> 3522
 <wsdl:portType name="EPCISServicePortType"> 3523
 3524
 <wsdl:operation name="getQueryNames"> 3525
 <wsdl:input message="impl:getQueryNamesRequest" name="getQueryNamesRequest"/> 3526
 <wsdl:output message="impl:getQueryNamesResponse" name="getQueryNamesResponse"/> 3527
 <wsdl:fault message="impl:SecurityExceptionResponse" 3528
name="SecurityExceptionFault"/> 3529
 <wsdl:fault message="impl:ValidationExceptionResponse" 3530
name="ValidationExceptionFault"/> 3531
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3532
name="ImplementationExceptionFault"/> 3533
 </wsdl:operation> 3534
 3535
 <wsdl:operation name="subscribe"> 3536
 <wsdl:input message="impl:subscribeRequest" name="subscribeRequest"/> 3537
 <wsdl:output message="impl:subscribeResponse" name="subscribeResponse"/> 3538
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 3539
name="NoSuchNameExceptionFault"/> 3540
 <wsdl:fault message="impl:InvalidURIExceptionResponse" 3541
name="InvalidURIExceptionFault"/> 3542
 <wsdl:fault message="impl:DuplicateSubscriptionExceptionResponse" 3543
name="DuplicateSubscriptionExceptionFault"/> 3544
 <wsdl:fault message="impl:QueryParameterExceptionResponse" 3545
name="QueryParameterExceptionFault"/> 3546
 <wsdl:fault message="impl:QueryTooComplexExceptionResponse" 3547
name="QueryTooComplexExceptionFault"/> 3548
 <wsdl:fault message="impl:SubscriptionControlsExceptionResponse" 3549
name="SubscriptionControlsExceptionFault"/> 3550
 <wsdl:fault message="impl:SubscribeNotPermittedExceptionResponse" 3551
name="SubscribeNotPermittedExceptionFault"/> 3552
 <wsdl:fault message="impl:SecurityExceptionResponse" 3553
name="SecurityExceptionFault"/> 3554
 <wsdl:fault message="impl:ValidationExceptionResponse" 3555
name="ValidationExceptionFault"/> 3556
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3557
name="ImplementationExceptionFault"/> 3558
 </wsdl:operation> 3559
 3560
 <wsdl:operation name="unsubscribe"> 3561
 <wsdl:input message="impl:unsubscribeRequest" name="unsubscribeRequest"/> 3562
 <wsdl:output message="impl:unsubscribeResponse" name="unsubscribeResponse"/> 3563
 <wsdl:fault message="impl:NoSuchSubscriptionExceptionResponse" 3564
name="NoSuchSubscriptionExceptionFault"/> 3565
 <wsdl:fault message="impl:SecurityExceptionResponse" 3566
name="SecurityExceptionFault"/> 3567
 <wsdl:fault message="impl:ValidationExceptionResponse" 3568
name="ValidationExceptionFault"/> 3569

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 122 of 144

 <wsdl:fault message="impl:ImplementationExceptionResponse" 3570
name="ImplementationExceptionFault"/> 3571
 </wsdl:operation> 3572
 3573
 <wsdl:operation name="getSubscriptionIDs"> 3574
 <wsdl:input message="impl:getSubscriptionIDsRequest" 3575
name="getSubscriptionIDsRequest"/> 3576
 <wsdl:output message="impl:getSubscriptionIDsResponse" 3577
name="getSubscriptionIDsResponse"/> 3578
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 3579
name="NoSuchNameExceptionFault"/> 3580
 <wsdl:fault message="impl:SecurityExceptionResponse" 3581
name="SecurityExceptionFault"/> 3582
 <wsdl:fault message="impl:ValidationExceptionResponse" 3583
name="ValidationExceptionFault"/> 3584
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3585
name="ImplementationExceptionFault"/> 3586
 </wsdl:operation> 3587
 3588
 <wsdl:operation name="poll"> 3589
 <wsdl:input message="impl:pollRequest" name="pollRequest"/> 3590
 <wsdl:output message="impl:pollResponse" name="pollResponse"/> 3591
 <wsdl:fault message="impl:QueryParameterExceptionResponse" 3592
name="QueryParameterExceptionFault"/> 3593
 <wsdl:fault message="impl:QueryTooLargeExceptionResponse" 3594
name="QueryTooLargeExceptionFault"/> 3595
 <wsdl:fault message="impl:QueryTooComplexExceptionResponse" 3596
name="QueryTooComplexExceptionFault"/> 3597
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 3598
name="NoSuchNameExceptionFault"/> 3599
 <wsdl:fault message="impl:SecurityExceptionResponse" 3600
name="SecurityExceptionFault"/> 3601
 <wsdl:fault message="impl:ValidationExceptionResponse" 3602
name="ValidationExceptionFault"/> 3603
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3604
name="ImplementationExceptionFault"/> 3605
 </wsdl:operation> 3606
 3607
 <wsdl:operation name="getStandardVersion"> 3608
 <wsdl:input message="impl:getStandardVersionRequest" 3609
name="getStandardVersionRequest"/> 3610
 <wsdl:output message="impl:getStandardVersionResponse" 3611
name="getStandardVersionResponse"/> 3612
 <wsdl:fault message="impl:SecurityExceptionResponse" 3613
name="SecurityExceptionFault"/> 3614
 <wsdl:fault message="impl:ValidationExceptionResponse" 3615
name="ValidationExceptionFault"/> 3616
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3617
name="ImplementationExceptionFault"/> 3618
 </wsdl:operation> 3619
 3620
 <wsdl:operation name="getVendorVersion"> 3621
 <wsdl:input message="impl:getVendorVersionRequest" name="getVendorVersionRequest"/> 3622
 <wsdl:output message="impl:getVendorVersionResponse" 3623
name="getVendorVersionResponse"/> 3624
 <wsdl:fault message="impl:SecurityExceptionResponse" 3625
name="SecurityExceptionFault"/> 3626
 <wsdl:fault message="impl:ValidationExceptionResponse" 3627
name="ValidationExceptionFault"/> 3628
 <wsdl:fault message="impl:ImplementationExceptionResponse" 3629
name="ImplementationExceptionFault"/> 3630
 </wsdl:operation> 3631
 </wsdl:portType> 3632
 3633
 <!-- EPCISSERVICE BINDING --> 3634
 <wsdl:binding name="EPCISServiceBinding" type="impl:EPCISServicePortType"> 3635
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/> 3636
 3637
 <wsdl:operation name="getQueryNames"> 3638
 <wsdlsoap:operation soapAction=""/> 3639

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 123 of 144

 <wsdl:input name="getQueryNamesRequest"> 3640
 <wsdlsoap:body 3641
 use="literal"/> 3642
 </wsdl:input> 3643
 <wsdl:output name="getQueryNamesResponse"> 3644
 <wsdlsoap:body 3645
 use="literal"/> 3646
 </wsdl:output> 3647
 <wsdl:fault name="SecurityExceptionFault"> 3648
 <wsdlsoap:fault 3649
 name="SecurityExceptionFault" 3650
 use="literal"/> 3651
 </wsdl:fault> 3652
 <wsdl:fault name="ValidationExceptionFault"> 3653
 <wsdlsoap:fault 3654
 name="ValidationExceptionFault" 3655
 use="literal"/> 3656
 </wsdl:fault> 3657
 <wsdl:fault name="ImplementationExceptionFault"> 3658
 <wsdlsoap:fault 3659
 name="ImplementationExceptionFault" 3660
 use="literal"/> 3661
 </wsdl:fault> 3662
 </wsdl:operation> 3663
 3664
 <wsdl:operation name="subscribe"> 3665
 <wsdlsoap:operation soapAction=""/> 3666
 <wsdl:input name="subscribeRequest"> 3667
 <wsdlsoap:body 3668
 use="literal"/> 3669
 </wsdl:input> 3670
 <wsdl:output name="subscribeResponse"> 3671
 <wsdlsoap:body 3672
 use="literal"/> 3673
 </wsdl:output> 3674
 <wsdl:fault name="NoSuchNameExceptionFault"> 3675
 <wsdlsoap:fault 3676
 name="NoSuchNameExceptionFault" 3677
 use="literal"/> 3678
 </wsdl:fault> 3679
 <wsdl:fault name="InvalidURIExceptionFault"> 3680
 <wsdlsoap:fault 3681
 name="InvalidURIExceptionFault" 3682
 use="literal"/> 3683
 </wsdl:fault> 3684
 <wsdl:fault name="DuplicateSubscriptionExceptionFault"> 3685
 <wsdlsoap:fault 3686
 name="DuplicateSubscriptionExceptionFault" 3687
 use="literal"/> 3688
 </wsdl:fault> 3689
 <wsdl:fault name="QueryParameterExceptionFault"> 3690
 <wsdlsoap:fault 3691
 name="QueryParameterExceptionFault" 3692
 use="literal"/> 3693
 </wsdl:fault> 3694
 <wsdl:fault name="QueryTooComplexExceptionFault"> 3695
 <wsdlsoap:fault 3696
 name="QueryTooComplexExceptionFault" 3697
 use="literal"/> 3698
 </wsdl:fault> 3699
 <wsdl:fault name="SubscribeNotPermittedExceptionFault"> 3700
 <wsdlsoap:fault 3701
 name="SubscribeNotPermittedExceptionFault" 3702
 use="literal"/> 3703
 </wsdl:fault> 3704
 <wsdl:fault name="SubscriptionControlsExceptionFault"> 3705
 <wsdlsoap:fault 3706
 name="SubscriptionControlsExceptionFault" 3707
 use="literal"/> 3708
 </wsdl:fault> 3709

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 124 of 144

 <wsdl:fault name="SecurityExceptionFault"> 3710
 <wsdlsoap:fault 3711
 name="SecurityExceptionFault" 3712
 use="literal"/> 3713
 </wsdl:fault> 3714
 <wsdl:fault name="ValidationExceptionFault"> 3715
 <wsdlsoap:fault 3716
 name="ValidationExceptionFault" 3717
 use="literal"/> 3718
 </wsdl:fault> 3719
 <wsdl:fault name="ImplementationExceptionFault"> 3720
 <wsdlsoap:fault 3721
 name="ImplementationExceptionFault" 3722
 use="literal"/> 3723
 </wsdl:fault> 3724
 </wsdl:operation> 3725
 3726
 <wsdl:operation name="unsubscribe"> 3727
 <wsdlsoap:operation soapAction=""/> 3728
 <wsdl:input name="unsubscribeRequest"> 3729
 <wsdlsoap:body 3730
 use="literal"/> 3731
 </wsdl:input> 3732
 <wsdl:output name="unsubscribeResponse"> 3733
 <wsdlsoap:body 3734
 use="literal"/> 3735
 </wsdl:output> 3736
 <wsdl:fault name="NoSuchSubscriptionExceptionFault"> 3737
 <wsdlsoap:fault 3738
 name="NoSuchSubscriptionExceptionFault" 3739
 use="literal"/> 3740
 </wsdl:fault> 3741
 <wsdl:fault name="SecurityExceptionFault"> 3742
 <wsdlsoap:fault 3743
 name="SecurityExceptionFault" 3744
 use="literal"/> 3745
 </wsdl:fault> 3746
 <wsdl:fault name="ValidationExceptionFault"> 3747
 <wsdlsoap:fault 3748
 name="ValidationExceptionFault" 3749
 use="literal"/> 3750
 </wsdl:fault> 3751
 <wsdl:fault name="ImplementationExceptionFault"> 3752
 <wsdlsoap:fault 3753
 name="ImplementationExceptionFault" 3754
 use="literal"/> 3755
 </wsdl:fault> 3756
 </wsdl:operation> 3757
 3758
 <wsdl:operation name="getSubscriptionIDs"> 3759
 <wsdlsoap:operation soapAction=""/> 3760
 <wsdl:input name="getSubscriptionIDsRequest"> 3761
 <wsdlsoap:body 3762
 use="literal"/> 3763
 </wsdl:input> 3764
 <wsdl:output name="getSubscriptionIDsResponse"> 3765
 <wsdlsoap:body 3766
 use="literal"/> 3767
 </wsdl:output> 3768
 <wsdl:fault name="NoSuchNameExceptionFault"> 3769
 <wsdlsoap:fault 3770
 name="NoSuchNameExceptionFault" 3771
 use="literal"/> 3772
 </wsdl:fault> 3773
 <wsdl:fault name="SecurityExceptionFault"> 3774
 <wsdlsoap:fault 3775
 name="SecurityExceptionFault" 3776
 use="literal"/> 3777
 </wsdl:fault> 3778
 <wsdl:fault name="ValidationExceptionFault"> 3779

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 125 of 144

 <wsdlsoap:fault 3780
 name="ValidationExceptionFault" 3781
 use="literal"/> 3782
 </wsdl:fault> 3783
 <wsdl:fault name="ImplementationExceptionFault"> 3784
 <wsdlsoap:fault 3785
 name="ImplementationExceptionFault" 3786
 use="literal"/> 3787
 </wsdl:fault> 3788
 </wsdl:operation> 3789
 3790
 <wsdl:operation name="poll"> 3791
 <wsdlsoap:operation soapAction=""/> 3792
 <wsdl:input name="pollRequest"> 3793
 <wsdlsoap:body 3794
 use="literal"/> 3795
 </wsdl:input> 3796
 <wsdl:output name="pollResponse"> 3797
 <wsdlsoap:body 3798
 use="literal"/> 3799
 </wsdl:output> 3800
 <wsdl:fault name="QueryParameterExceptionFault"> 3801
 <wsdlsoap:fault 3802
 name="QueryParameterExceptionFault" 3803
 use="literal"/> 3804
 </wsdl:fault> 3805
 <wsdl:fault name="QueryTooComplexExceptionFault"> 3806
 <wsdlsoap:fault 3807
 name="QueryTooComplexExceptionFault" 3808
 use="literal"/> 3809
 </wsdl:fault> 3810
 <wsdl:fault name="QueryTooLargeExceptionFault"> 3811
 <wsdlsoap:fault 3812
 name="QueryTooLargeExceptionFault" 3813
 use="literal"/> 3814
 </wsdl:fault> 3815
 <wsdl:fault name="NoSuchNameExceptionFault"> 3816
 <wsdlsoap:fault 3817
 name="NoSuchNameExceptionFault" 3818
 use="literal"/> 3819
 </wsdl:fault> 3820
 <wsdl:fault name="SecurityExceptionFault"> 3821
 <wsdlsoap:fault 3822
 name="SecurityExceptionFault" 3823
 use="literal"/> 3824
 </wsdl:fault> 3825
 <wsdl:fault name="ValidationExceptionFault"> 3826
 <wsdlsoap:fault 3827
 name="ValidationExceptionFault" 3828
 use="literal"/> 3829
 </wsdl:fault> 3830
 <wsdl:fault name="ImplementationExceptionFault"> 3831
 <wsdlsoap:fault 3832
 name="ImplementationExceptionFault" 3833
 use="literal"/> 3834
 </wsdl:fault> 3835
 </wsdl:operation> 3836
 3837
 <wsdl:operation name="getStandardVersion"> 3838
 <wsdlsoap:operation soapAction=""/> 3839
 <wsdl:input name="getStandardVersionRequest"> 3840
 <wsdlsoap:body 3841
 use="literal"/> 3842
 </wsdl:input> 3843
 <wsdl:output name="getStandardVersionResponse"> 3844
 <wsdlsoap:body 3845
 use="literal"/> 3846
 </wsdl:output> 3847
 <wsdl:fault name="SecurityExceptionFault"> 3848
 <wsdlsoap:fault 3849

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 126 of 144

 name="SecurityExceptionFault" 3850
 use="literal"/> 3851
 </wsdl:fault> 3852
 <wsdl:fault name="ValidationExceptionFault"> 3853
 <wsdlsoap:fault 3854
 name="ValidationExceptionFault" 3855
 use="literal"/> 3856
 </wsdl:fault> 3857
 <wsdl:fault name="ImplementationExceptionFault"> 3858
 <wsdlsoap:fault 3859
 name="ImplementationExceptionFault" 3860
 use="literal"/> 3861
 </wsdl:fault> 3862
 </wsdl:operation> 3863
 3864
 <wsdl:operation name="getVendorVersion"> 3865
 <wsdlsoap:operation soapAction=""/> 3866
 <wsdl:input name="getVendorVersionRequest"> 3867
 <wsdlsoap:body 3868
 use="literal"/> 3869
 </wsdl:input> 3870
 <wsdl:output name="getVendorVersionResponse"> 3871
 <wsdlsoap:body 3872
 use="literal"/> 3873
 </wsdl:output> 3874
 <wsdl:fault name="SecurityExceptionFault"> 3875
 <wsdlsoap:fault 3876
 name="SecurityExceptionFault" 3877
 use="literal"/> 3878
 </wsdl:fault> 3879
 <wsdl:fault name="ValidationExceptionFault"> 3880
 <wsdlsoap:fault 3881
 name="ValidationExceptionFault" 3882
 use="literal"/> 3883
 </wsdl:fault> 3884
 <wsdl:fault name="ImplementationExceptionFault"> 3885
 <wsdlsoap:fault 3886
 name="ImplementationExceptionFault" 3887
 use="literal"/> 3888
 </wsdl:fault> 3889
 </wsdl:operation> 3890
 3891
 </wsdl:binding> 3892
 3893
 <!-- EPCISSERVICE --> 3894
 <wsdl:service name="EPCglobalEPCISService"> 3895
 <wsdl:port binding="impl:EPCISServiceBinding" name="EPCglobalEPCISServicePort"> 3896
 <!-- The address shown below is an example; an implementation MAY specify 3897
 any port it wishes 3898
 --> 3899
 <wsdlsoap:address 3900
 location="http://localhost:6060/axis/services/EPCglobalEPCISService"/> 3901
 </wsdl:port> 3902
 </wsdl:service> 3903
 3904
</wsdl:definitions> 3905
 3906

11.3 AS2 Binding for the Query Control Interface 3907
This section defines a binding of the EPCIS Query Control Interface to AS2 [RFC4130]. 3908
An EPCIS implementation MAY provide an AS2 binding of the EPCIS Query Control 3909
Interface; if an AS2 binding is provided it SHALL conform to the provisions of this 3910
section. For the purposes of this binding, a “query client” is an EPCIS Accessing 3911
Application that wishes to issue EPCIS query operations as defined in Section 8.2.5, and 3912

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 127 of 144

a “query server” is an EPCIS Repository or other system that carries out such operations 3913
on behalf of the query client. 3914

A query server SHALL provide an HTTP URL through which it receives messages from 3915
a query client in accordance with [RFC4130]. A message sent by a query client to a 3916
query server SHALL be an XML document whose root element conforms to the 3917
EPCISQueryDocument element as defined by the schema in Section 11.1. The 3918
element immediately nested within the EPCISBody element SHALL be one of the 3919
elements corresponding to a EPCIS Query Control Interface method request (i.e., one of 3920
Subscribe, Unsubscribe, Poll, etc.). The permitted elements are listed in the 3921
table below. If the message sent by the query client fails to conform to the above 3922
requirements, the query server SHALL respond with a ValidationException (that 3923
is, return an EPCISQueryDocument instance where the element immediately nested 3924
within the EPCISBody is a ValidationException). 3925

The query client SHALL provide an HTTP URL that the query server will use to deliver 3926
a response message. This URL is typically exchanged out of band, as part of setting up a 3927
bilateral trading partner agreement (see [RFC4130] Section 5.1). 3928

Both the query client and query server SHALL comply with the Requirements and 3929
SHOULD comply with the Recommendations listed in the GS1 document “EDIINT AS1 3930
and AS2 Transport Communications Guidelines” [EDICG] For reference, the relevant 3931
portions of this document are reproduced below. 3932

The query client SHALL include the Standard Business Document Header within the 3933
EPCISHeader element. The query client SHALL include within the Standard Business 3934
Document Header a unique identifier as the value of the InstanceIdentifier 3935
element. The query client MAY include other elements within the Standard Business 3936
Document Header as provided by the schema. The instance identifier provided by the 3937
query client SHOULD be unique with respect to all other messages for which the query 3938
client has not yet received a corresponding response. As described below, the instance 3939
identifier is copied into the response message, to assist the client in correlating responses 3940
with requests. 3941

A query server SHALL respond to each message sent by a query client by delivering a 3942
response message to the URL provided by the query client, in accordance with 3943
[RFC4130]. A response message sent by a query server SHALL be an XML document 3944
whose root element conforms to the EPCISQueryDocument element as defined by the 3945
schema in Section 11.1. The element immediately nested within the EPCISBody 3946
element SHALL be one of the elements shown in the following table, according to the 3947
element that was provided in the corresponding request: 3948

Request Element Permitted Return Elements
GetQueryNames GetQueryNamesResult

SecurityException
ValidationException
ImplementationException

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 128 of 144

Request Element Permitted Return Elements
Subscribe SubscribeResult

NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

Unsubscribe UnsubscribeResult
NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

GetSubscriptionIDs GetSubscriptionIDsResult
NoSuchNameException
SecurityException
ValidationException
ImplementationException

Poll QueryResults
QueryParameterException
QueryTooLargeException
QueryTooComplexException
NoSuchNameException
SecurityException
ValidationException
ImplementationException

GetStandardVersion GetStandardVersionResult
SecurityException
ValidationException
ImplementationException

GetVendorVersion GetVendorVersionResult
SecurityException
ValidationException
ImplementationException

 3949

The query server SHALL include the Standard Business Document Header within the 3950
EPCISHeader element. The query server SHALL include within the Standard Business 3951
Document Header the BusinessScope element containing a Scope element 3952
containing a CorrelationInformation element containing a 3953

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 129 of 144

RequestingDocumentInstanceIdentifier element; the value of the latter 3954
element SHALL be the value of the InstanceIdentifier element from the 3955
Standard Business Document Header of the corresponding request. Within the Scope 3956
element, the Type subelement SHALL be set to EPCISQuery, and the 3957
InstanceIdentifier element SHALL be set to EPCIS. The query server MAY 3958
include other elements within the Standard Business Document Header as provided by 3959
the schema. 3960

Details (non-normative): As stated above, the query client and query server SHALL 3961
comply with the Requirements and SHOULD comply with the Recommendations listed in 3962
the GS1 document “EDIINT AS1 and AS2 Transport Communications Guidelines” 3963
[EDICG] For reference, the relevant portions of this document are reproduced below. 3964
This extract is marked non-normative; in the case of conflict between [EDICG] and what 3965
is written below, [EDICG] shall prevail. 3966

Digital Certificate Requirements 3967

Requirement 1 3968

Payload data SHALL be encrypted and digitally signed using the S/MIME specification 3969
(see RFC 3851). 3970

Requirement 2 3971

The length of the one-time session (symmetric) key SHALL be 128 bits or greater. 3972

Requirement 3 3973

The length of the Public/Private Encryption key SHALL be 1024 bits or greater. 3974

Requirement 4 3975

The length of the Public/Private Signature key SHALL be 1024 bits or greater. 3976

Requirement 5 3977

The Signature Hash algorithm used SHALL be SHA1. 3978

Configuration Requirement 3979

Requirement 6 3980

Digitally signed receipts (Signed Message Disposition Notifications (MDNs)) SHALL be 3981
requested by the Sender of Message. 3982

Recommendations 3983

Recommendation 1 – MDN Request Option 3984

Either Asynchronous or Synchronous MDNs MAY be used with EDIINT AS2. There are 3985
potential issues with both synchronous and asynchronous MDNs, and Trading Partners 3986
need to jointly determine which option is best based on their operational environments 3987
and message characteristics. 3988

Recommendation 2 – MDN Delivery 3989

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 130 of 144

Recipients SHOULD transmit the MDN as soon as technically possible to ensure that the 3990
message sender recognizes that the message has been received and processed by the 3991
receiving EDIINT software in a timely fashion. This applies equally to AS1 and AS2 as 3992
well as Asynchronous and Synchronous MDN requests. 3993

Recommendation 3 – Delivery Retry with Asynchronous MDNs Requested 3994

When a message has been successfully sent, but an asynchronous MDN has not been 3995
received in a timely manner, the Sender of Message SHOULD wait a configurable 3996
amount of time and then automatically resend the original message with the same content 3997
and the same Message-ID value as the initial message. The period of time to wait for a 3998
MDN and then automatically resend the original message is based on business and 3999
technical needs, but generally SHOULD be not be less than one hour. There SHOULD 4000
be no more than two automatic resends of a message before personally contacting a 4001
technical support contact at the Receiver of Message site. 4002

Recommendation 4 – Delivery Retry for AS2 4003

Delivery retry SHOULD take place when any HTTP response other than “200 OK” is 4004
received (for example, 401, 500, 502, 503, timeout, etc). This occurrence indicates that 4005
the actual transfer of data was not successful. A delivery retry of a message SHALL have 4006
the same content and the same Message-ID value as the initial message. Retries 4007
SHOULD occur on a configurable schedule. Retrying SHALL cease when a message is 4008
successfully sent (which is indicated by receiving a HTTP 200 range status code), or 4009
SHOULD cease when a retry limit is exceeded. 4010

Recommendation 5 – Message Resubmission 4011

If neither automated Delivery Retry nor automated Delivery Resend are successful, the 4012
Sender of Message MAY elect to resubmit the payload data in a new message at a later 4013
time. The Receiver of Message MAY also request message resubmission if a message was 4014
lost subsequent to a successful receive. If the message is resubmitted a new Message-ID 4015
MUST be used. Resubmission is normally a manual compensation. 4016

Recommendation 6 – HTTP vs. HTTP/S (SSL) 4017

For EDIINT AS2, the transport protocol HTTP SHOULD be used. However, if there is a 4018
need to secure the AS2-To and the AS2-From addresses and other AS2 header 4019
information, HTTPS MAY be used in addition to the payload encryption provided by AS2. 4020
The encryption provided by HTTPS secures only the point to point communications 4021
channel directly between the client and the server. 4022

Recommendation 7 – AS2 Header 4023

For EDIINT AS2, the values used in the AS2-From and AS2-To fields in the header 4024
SHOULD be GS1 Global Location Numbers (GLNs). 4025

Recommendation 8 - SMTP 4026

[not applicable] 4027

Recommendation 9 - Compression 4028

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 131 of 144

EDIINT compression MAY be used as an option, especially if message sizes are larger 4029
than 1MB. Although current versions of EDIINT software handle compression 4030
automatically, this SHOULD be bilaterally agreed between the sender and the receiver. 4031

Recommendation 10 – Digital Certificate Characteristics 4032

Digital certificates MAY either be from a trusted third party or self signed if bilaterally 4033
agreed between trading partners. If certificates from a third party are used, the trust level 4034
SHOULD be at a minimum what is termed ‘Class 2’ which ensures that validation of the 4035
individual and the organization has been done. 4036

Recommendation 11 – Common Digital Certificate for Encryption & Signature 4037

A single digital certificate MAY be used for both encryption and signatures, however if 4038
business processes dictate, two separate certificates MAY be used. Although current 4039
versions of EDIINT software handle two certificates automatically, this SHOULD be 4040
bilaterally agreed between the sender and the receiver. 4041

Recommendation 12 – Digital Certificate Validity Period 4042

The minimum validity period for a certificate SHOULD be 1 year. The maximum validity 4043
period SHOULD be 5 years. 4044

Recommendation 13 – Digital Certificate – Automated Exchange 4045

The method for certificate exchange SHALL be bilaterally agreed upon. When the 4046
“Certificate Exchange Messaging for EDIINT” specification is widely implemented by 4047
software vendors, its use will be strongly recommended. This IETF specification will 4048
enable automated certificate exchange once the initial trust relationship is established, 4049
and will significantly reduce the operational burden of manually exchanging certificates 4050
prior to their expiration. 4051

Recommendation 14 – HTTP and HTTP/S Port Numbers for AS2 4052

Receiving AS2 messages on a single port (for each protocol) significantly minimizes 4053
operational complexities such as firewall set-up for both the sending and receiving 4054
partner. Ideally, all AS2 partners would receive messages using the same port number. 4055
However some AS2 partners have previously standardized to use a different port number 4056
than others and changing to a new port number would add costs without commensurate 4057
benefits. 4058

Therefore AS2 partners MAY standardize on the use of port 4080 to receive HTTP 4059
messages and the use of port 5443 to receive HTTP/S (SSL) messages. 4060

Recommendation 15 – Duplicate AS2 Messages 4061

AS2 software implementations SHOULD use the ‘AS2 Message-ID’ value to detect 4062
duplicate messages and avoid sending the payload from the duplicate message to internal 4063
business applications. The Receiver of Message SHALL return an appropriate MDN even 4064
when a message is detected as a duplicate. Note: The Internet Engineering Task Force 4065
(IETF) is developing an “Operational Reliability for EDIINT AS2” specification which 4066
defines procedures to avoid duplicates and ensure reliability. 4067

Recommendation 15 – Technical Support 4068

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 132 of 144

There SHOULD be a technical support contact for each Sender of Message and Receiver 4069
of Message. The contact information SHOULD include name, email address and phone 4070
number. For 24x7x365 operation, a pager or help desk information SHOULD be also 4071
provided. 4072

11.4 Bindings for Query Callback Interface 4073
This section specifies bindings for the Query Callback Interface. Each binding includes a 4074
specification for a URI that may be used as the dest parameter to the subscribe 4075
method of Section 8.2.5. Each subsection below specifies the conformance requirement 4076
(MAY, SHOULD, SHALL) for each binding. 4077

Implementations MAY support additional bindings of the Query Callback Inteface. Any 4078
additional binding SHALL NOT use a URI scheme already used by one of the bindings 4079
specified herein. 4080

All destination URIs, whether standardized as a part of this specification or not, SHALL 4081
conform to the general syntax for URIs as defined in [RFC2396]. Each binding of the 4082
Query Callback Interface may impose additional constraints upon syntax of URIs for use 4083
with that binding. 4084

11.4.1 General Considerations for all XML-based Bindings 4085
The following applies to all XML-based bindings of the Query Callback Interface, 4086
including the bindings specified in Sections 11.4.2, 11.4.3, and 11.4.4. 4087

The payload delivered to the recipient SHALL be an XML document conforming to the 4088
schema specified in Section 11.1. Specifically, the payload SHALL be an 4089
EPCISQueryDocument instance whose EPCISBody element contains one of the 4090
three elements shown in the table below, according to the method of the Query Callback 4091
Interface being invoked: 4092

Query Callback Interface Method Payload Body Contents
callbackResults QueryResults

callbackQueryTooLargeException QueryTooLargeException

callbackImplementationException ImplementationException

 4093

In all cases, the queryName and subscriptionID fields of the payload body 4094
element SHALL contain the queryName and subscriptionID values, respectively, 4095
that were supplied in the call to subscribe that created the standing query. 4096

11.4.2 HTTP Binding of the Query Callback Interface 4097
The HTTP binding provides for delivery of standing query results in XML via the HTTP 4098
protocol using the POST operation. Implementations MAY provide support for this 4099
binding. 4100

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 133 of 144

The syntax for HTTP destination URIs as used by EPCIS SHALL be as defined in 4101
[RFC2616], Section 3.2.2. Informally, an HTTP URI has one of the two following 4102
forms: 4103
http://host:port/remainder-of-URL 4104
http://host/remainder-of-URL 4105

where 4106

• host is the DNS name or IP address of the host where the receiver is listening for 4107
incoming HTTP connections. 4108

• port is the TCP port on which the receiver is listening for incoming HTTP 4109
connections. The port and the preceding colon character may be omitted, in which 4110
case the port SHALL default to 80. 4111

• remainder-of-URL is the URL to which an HTTP POST operation will be 4112
directed. 4113

The EPCIS implementation SHALL deliver query results by sending an HTTP POST 4114
request to receiver designated in the URI, where remainder-of-URL is included in 4115
the HTTP request-line (as defined in [RFC2616]), and where the payload is an 4116
XML document as specified in Section 11.4.1. 4117

The interpretation by the EPCIS implementation of the response code returned by the 4118
receiver is outside the scope of this specification; however, all implementations SHALL 4119
interpret a response code 2xx (that is, any response code between 200 and 299, inclusive) 4120
as a normal response, not indicative of any error. 4121

11.4.3 HTTPS Binding of the Query Callback Interface 4122
The HTTPS binding provides for delivery of standing query results in XML via the 4123
HTTP protocol using the POST operation, secured via TLS. Implementations MAY 4124
provide support for this binding. 4125

The syntax for HTTPS destination URIs as used by EPCIS SHALL be as defined in 4126
[RFC2818], Section 2.4, which in turn is identical to the syntax defined in [RFC2616], 4127
Section 3.2.2, with the substitution of https for http. Informally, an HTTPS URI has 4128
one of the two following forms: 4129
https://host:port/remainder-of-URL 4130
https://host/remainder-of-URL 4131

where 4132

• host is the DNS name or IP address of the host where the receiver is listening for 4133
incoming HTTP connections. 4134

• port is the TCP port on which the receiver is listening for incoming HTTP 4135
connections. The port and the preceding colon character may be omitted, in which 4136
case the port defaults to 443. 4137

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 134 of 144

• remainder-of-URL is the URL to which an HTTP POST operation will be 4138
directed. 4139

The EPCIS implementation SHALL deliver query results by sending an HTTP POST 4140
request to receiver designated in the URI, where remainder-of-URL is included in 4141
the HTTP request-line (as defined in [RFC2616]), and where the payload is an 4142
XML document as specified in Section 11.4.1. 4143

For the HTTPS binding, HTTP SHALL be used over TLS as defined in [RFC2818]. TLS 4144
for this purpose SHALL be implemented as defined in [RFC2246] except that the 4145
mandatory cipher suite is TLS_RSA_WITH_AES_128_CBC_SHA, as defined in 4146
[RFC3268] with CompressionMethod.null. Implementations MAY support additional 4147
cipher suites and compression algorithms as desired 4148

The interpretation by the EPCIS implementation of the response code returned by the 4149
receiver is outside the scope of this specification; however, all implementations SHALL 4150
interpret a response code 2xx (that is, any response code between 200 and 299, inclusive) 4151
as a normal response, not indicative of any error. 4152

11.4.4 AS2 Binding of the Query Callback Interface 4153
The AS2 binding provides for delivery of standing query results in XML via AS2 4154
[RFC4130]. Implementations MAY provide support for this binding. 4155

The syntax for AS2 destination URIs as used by EPCIS SHALL be as follows: 4156
as2:remainder-of-URI 4157

where 4158

• remainder-of-URI identifies a specific AS2 communication profile to be used 4159
by the EPCIS Service to deliver information to the subscriber. The syntax of 4160
remainder-of-URI is specific to the particular EPCIS Service to which the 4161
subscription is made, subject to the constraint that the complete URI SHALL conform 4162
to URI syntax as defined by [RFC2396]. 4163

Typically, the value of remainder-of-URI is a string naming a particular AS2 4164
communication profile, where the profile implies such things as the HTTP URL to which 4165
AS2 messages are to be delivered, the security certificates to use, etc. A client of the 4166
EPCIS Query Interface wishing to use AS2 for delivery of standing query results must 4167
pre-arrange with the provider of the EPCIS Service the specific value of remainder-4168
of-URI to use. 4169

Explanation (non-normative): Use of AS2 typically requires pre-arrangement between 4170
communicating parties, for purposes of certificate exchange and other out-of-band 4171
negotiation as part of a bilateral trading partner agreement (see [RFC4130] Section 4172
5.1). The remainder-of-URI part of the AS2 URI essentially is a name referring to 4173
the outcome of a particular pre-arrangement of this kind. 4174

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 135 of 144

The EPCIS implementation SHALL deliver query results by sending an AS2 message in 4175
accodance with [RFC4130]. The AS2 message payload SHALL be an XML document as 4176
specified in Section 11.4.1. 4177

Both the EPCIS Service and the receipient of standing query results SHALL comply with 4178
the Requirements and SHOULD comply with the Recommendations listed in the GS1 4179
document “EDIINT AS1 and AS2 Transport Communications Guidelines” [EDICG] For 4180
reference, the relevant portions of this document are reproduced in Section 11.3. 4181

12 References 4182
Normative references: 4183

[ALE1.0] EPCglobal, “The Application Level Events (ALE) Specification, Version 4184
1.0,” EPCglobal Standard Specification, September 2005, 4185
http://www.epcglobalinc.org/standards_technology/EPCglobal_ApplicationALE_Specifi4186
cation_v112-2005.pdf. 4187

[EDICG] GS1, “EDIINT AS1 and AS2 Transport Communications Guidelines,” GS1 4188
Technical Document, February 2006, http://www.ean-4189
ucc.org/global_smp/documents/zip/EDIINT%20AS2/EDIINT_AS1-4190
AS2_Transport_Comm_Guidelines_2006.pdf. 4191

[ISODir2] ISO, “Rules for the structure and drafting of International Standards 4192
(ISO/IEC Directives, Part 2, 2001, 4th edition),” July 2002. 4193

[RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, “Uniform Resource Locators 4194
(URL),” RFC 1738, December 1994, http://www.ietf.org/rfc/rfc1738. 4195

[RFC2141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for 4196
Comments RFC-2141, May 1997, http://www.ietf.org/rfc/rfc2141.txt. 4197

[RFC2246] T. Dierks, C. Allen, “The TLS Protocol, Version 1.0,” RFC2246, January 4198
1999, http://www.ietf.org/rfc/rfc2246. 4199

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers 4200
(URI): Generic Syntax,” RFC2396, August 1998, http://www.ietf.org/rfc/rfc2396. 4201

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. 4202
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC2616, June 1999, 4203
http://www.ietf.org/rfc/rfc2616. 4204

[RFC2818] E. Escorla, “HTTP Over TLS,” RFC2818, May 2000, 4205
http://www.ietf.org/rfc/rfc2818. 4206

[RFC3268] P. Chown, “Advanced Encryption Standard (AES) Cipersuites for 4207
Transport Layer Security (TLS),” RFC3268, June 2002, http://www.ietf.org/rfc/rfc3268. 4208

[RFC4130] D. Moberg and R. Drummond, “MIME-Based Secure Peer-to-Peer 4209
Business Data Interchange Using HTTP, Applicability Statement 2 (AS2),” RFC4130, 4210
July 2005, http://www.ietf.org/rfc/rfc4130. 4211

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 136 of 144

[SBDH] United Nations Centre for Trade Facilitation and Electronic Business 4212
(UN/CEFACT), “Standard Business Document Header Technical Specification, Version 4213
1.3,” June 2004, http://www.disa.org/cefact-groups/atg/downloads/. 4214

[TDS1.3] EPCglobal, “EPCglobal Tag Data Standards Version 1.3,” EPCglobal 4215
Standard Specification, March 2006, 4216
http://www.epcglobalinc.org/standards_technology/Ratified%20Spec%20March%208%24217
02006.pdf. 4218

[WSDL1.1] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services 4219
Description Language (WSDL) 1.1,” W3C Note, March 2001, 4220
http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 4221

[WSI] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, “Basic 4222
Profile Version 1.0,” WS-i Final Material, April 2004, http://www.ws-4223
i.org/Profiles/BasicProfile-1.0-2004-04-16.html. 4224

[XML1.0] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, 4225
“Extensible Markup Language (XML) 1.0 (Third Edition),” W3C Recommendation, 4226
February 2004, http://www.w3.org/TR/2004/REC-xml-20040204/. 4227

[XMLDR] “XML Design Rules for EAN.UCC, Version 2.0,” February 2004. 4228

[XMLVersioning] D. Orchard, “Versioning XML Vocabularies,” December 2003, 4229
http://www.xml.com/pub/a/2003/12/03/versioning.html. 4230

[XSD1] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1: 4231
Structures,” W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/. 4232

[XSD2] P. Biron, A. Malhotra, “XML Schema Part 2: Datatypes,” W3C 4233
Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/. 4234

Non-normative references: 4235

[EPCAF] K. R. Traub et al, “EPCglobal Architecture Framework,” EPCglobal 4236
technical document, July 2005, http://www.epcglobalinc.org/standards_technology/Final-4237
epcglobal-arch-20050701.pdf. 4238

[EPCIS-User] K. Traub, S. Rehling, R. Swan, G. Gilbert, J. Chiang, J. Navas, M. 4239
Mealling, S. Ramachandran, “EPC Information Services (EPCIS) User Definition,” 4240
EPCglobal Working Draft, October 2004. 4241

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 137 of 144

 4242

13 Acknowledgement of Contributors and Companies 4243

Opt’d-in during the Creation of this Standard 4244
(Informative) 4245

 4246

Disclaimer 4247

Whilst every effort has been made to ensure that this document and the 4248
information contained herein are correct, EPCglobal and any other party involved 4249

in the creation of the document hereby state that the document is provided on an 4250

“as is” basis without warranty, either expressed or implied, including but not 4251

limited to any warranty that the use of the information herein with not infringe any 4252

rights, of accuracy or fitness for purpose, and hereby disclaim any liability, direct 4253

or indirect, for damages or loss relating to the use of the document. 4254

 4255

 4256

Below is a list of more active participants and contributors in the development of 4257

EPCIS v1.0. This list does not acknowledge those who only monitored the 4258
process or those who chose not to have their name listed here. The participants 4259
listed below generated emails, attended face-to-face meetings and conference 4260
calls that were associated with the development of this Standard. 4261

 4262
 4263
First Name Last Name Company

Craig Asher IBM Co-Chair

Greg Gibert Verisign Co-Chair

Richard Swan T3Ci Co-Chair

Ken Traub BEA Systems; ConnecTerra Specification Editor

Gena Morgan EPCglobal, Inc. WorkGroup
Facilitator

Chi-Hyeong Ahn Ceyon Technology Co., Ltd

Umair Akeel IBM

John Anderla Kimberly-Clark Corp

Richard Bach Globe Ranger

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 138 of 144

First Name Last Name Company

Scott Barvick Reva Systems

Sylvanus Bent Bent Systems, Inc.

Hersh Bhargava Rafcor

Chet Birger ConnecTerra

Bud Biswas Polaris Networks

Prabhudda Biswas Oracle Corporation

Havard Bjastad Tracetracker

Joe Bohning Nestle Purina

Al Bottner UNITED PARCEL SERVICE (UPS)

Joe Bradley Sun Microsystems

Leo Burstein Gillette; Procter & Gamble

Anit Chakraborty Oracle Corporation

Chia Chang Sun Microsystems

Ying-Hung Chang Acer Cybercenter Service Inc.

Martin Chen SAP

Nagesh Chigurupati VeriSign

Christian Clauss IBM

John Cooper Kimberly-Clark Corp

Valir-Alin Crisan IBM

Mustafa Dohadwala Shipcom Wireless, Inc.

John Duker Procter & Gamble

Igor Elbert Sensitech

Ronny Fehling Oracle Corporation

Akira Fujinami Internet Initiative Japan, Inc.

Tony Gallo Real Time Systems

Manish Gambhir

Cesar Gemayel Sensitech

Eric Gieseke BEA Systems

Greg Gilbert Manhattan Associates

Graham Gillen Verisign

John Gravitis Allumis

Yuichiro Hanawa Mitsui

Mark Harrison Auto-ID Labs - Cambridge

Jeremy Helm ACSIS

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 139 of 144

First Name Last Name Company

Barba Hickman Intermec

Manju James BEA Systems

Paul Jatkowski

Jennifer Kahn IBM

Howard Kapustein Manhattan Associates

Sean Lockhead GS1 US

Paul Lovvik Sun Microsystems

Midori Lowe Nippon Telegraph & Telephone Corp
(NTT)

Dave Marzouck SAP

Andrew McGrath Manhattan Associates

MIchael Mealling Verisign; Refactored Networks

Stephen Miles Auto-ID Labs - MIT

Tim Milne Target

Dale Moberg AXWAY/formerly Cyclone

Stephen Morris Printronix

Ron Moser Wal-Mart

Don Mowery Nestle

Doug Naal Altria Group, Inc./Kraft Foods

David Nesbitt Vue Technology

Shigeki Ohtsu Internet Initiative Japan, Inc.

Ted Osinski MET Labs

Jong Park Tibco

Ju-Hyun Park Samsung SDS

Sung Gong Park Metarights

Eliot Polk Reva Systems

Mike Profit Verisign

Sridhar Ramachandran OAT Systems

Ajay Ramachandron

Karen Randall Johnson & Johnson

Steve Rehling Procter & Gamble

Nagendra Revanur T3Ci Incorporated

Thomas Rumbach SAP

Uday Sadhukhan Polaris Networks

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 140 of 144

First Name Last Name Company

Hares Sangani Hubspan, Inc.

Puneet Sawhney CHEP

Rick Schendel Target

Chris Shabsin BEA Systems

Bhavesh Shah Abbott Laboratories

Harshal Shah Oracle Corporation

Dong Cheul Shin Metarights

Sung-hak Song Samsung SDS

Ashley Stephenson Reva Systems

Nikola Stojanovic GS1 US

Jim Sykes Savi Technology

Hiroki Tagato NEC Corporation

Diane Taillard GS1 France

Neil Tan UPS

Zach Thom Unilever

Frank Thompson Afilias Canada Corp

Frank Tittel Gedas Deutschland GmbH

Bryan Tracey Globe Ranger

Hsi-Lin Tsai Acer Cybercenter Service Inc.

Richard Ulrich Walmart

David Unge

Steve Vazzano 1Sync

Vasanth Velusamy Supply Insight, Inc.

Dan Wallace

Jie Wang True Demand Software (fka-Truth
Software)

John Williams Auto-ID Labs - MIT

Michael Williams Hewlett-Packard Co. (HP)

Steve Winkler SAP

Katsuyuki Yamashita Nippon Telegraph & Telephone Corp
(NTT)

Patrick Yee Hubspan, Inc.

Angela Zilmer Kimberly-Clark Corp

 4264

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 141 of 144

The following list in corporate alphabetical order contains all companies that were 4265
opt’d-in to the EPCIS Phase 2 Working Group and have signed the EPCglobal IP 4266
Policy. 4267
 4268

Company
1Sync
7iD (formerly EOSS GmbH)
Abbott Laboratories
Accenture
Acer Cybercenter Service Inc.
ACSIS
Adtio Group Limited
Afilias Canada Corp
Allixon
Allumis
Altria Group, Inc./Kraft Foods
Alvin Systems
AMCO TEC International Inc.
Applied Wireless (AWID)
Ark Tech Ltd
Auto-ID Labs - ADE
Auto-ID Labs - Cambridge
Auto-ID Labs - Fudan University
Auto-ID Labs - ICU
Auto-ID Labs - Japan
Auto-ID Labs - MIT
Auto-ID Labs - Univerisity of St Gallen
Avicon
AXWAY/formerly Cyclone
BEA Systems
Beijing Futianda Technology Co. Ltd.
Benedicta
Bent Systems, Inc.
Best Buy
Bristol Myers Squibb
British Telecom
Cactus Commerce
Campbell Soup Company
Cap Gemini Ernst & Young
Cardinal Health
Ceyon Technology Co., Ltd
CHEP
Cisco
City Univ of Hong Kong
Code Plus, Inc.
Cognizant Technology Solutions
Collaborative Exchange/Techno Solutions

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 142 of 144

Company
Commercial Development Fund
Computer Network Info Cntr.
Convergence Sys Ltd
Dai Nippon Printing
DEERE & COMPANY (John Deere)
Denso Wave Inc
Dongguk University
ecash corporation
ECO, Inc.
Electronics and Telecommunication Research Institute
(ETRI)
EPCglobal, Inc.
EPCglobal US
Frameworx, Inc.
France Telecom
Fujitsu Ltd
Gedas Deutschland GmbH
Glaxo Smith Kline
Globe Ranger
Goliath Solutions
GS1 Australia EAN
GS1 Brazil
GS1 China
GS1 China
GS1 Colombia
GS1 France
GS1 Germany (CCG)
GS1 Hong Kong
GS1 Japan
GS1 Netherlands (EAN.nl)
GS1 Poland Inst of Lgstcs & Wrhsng
GS1 Singapore (Singapore Council)
GS1 South Korea
GS1 Sweden AB (EAN)
GS1 Switzerland
GS1 Taiwan (EAN)
GS1 Thailand (EAN)
GS1 UK
GS1 US
Hewlett-Packard Co. (HP)
Hubspan, Inc.
IBM
Icare Research Institute
iControl, Inc.
Impinj
Indicus Software Pvt Ltd
Indyon GmbH

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 143 of 144

Company
Infratab
Institute for Information Industry
Insync Software, Inc.
Intelleflex
Intermec
Internet Initiative Japan, Inc.
Johnson & Johnson
Kimberly-Clark Corp
KL-NET
Korea Computer Servs, Ltd
KTNET - KOREA TRADE NETWORK
LIT (Research Ctr for Logistics Info Tech)
Loftware, Inc.
Manhattan Associates
McKesson
MET Labs
Metarights
Metro
Microelectronics Technology, Inc.
Mindsheet Ltd
Mitsui
Mstar Semiconductor
MUL Services
NCR
NEC Corporation
Nestle
Nestle Purina
Nippon Telegraph & Telephone Corp (NTT)
NOL Group (APL Ltd.) (Neptune Orient Lines)
Nomura Research Institute
NORSK Lastbaerer Pool AS
NORTURA BA
NXP Semiconductors
Omnitrol Networks, Inc.
Oracle Corporation
Panda Logistics Co.Ltd
Pango Networks, Inc.
Patni Computer Systems
PepsiCo
Polaris Networks
Pretide Technology, Inc.
Printronix
Procter & Gamble
Provectus Technologia Ind Com Ltd
Psion Teklogix Inc.
Q.E.D. Systems
Rafcore Systems Inc.

 Copyright © 2004-2007 EPCglobal®, All Rights Reserved.Page 144 of 144

Company
RetailTech
Reva Systems
RFIT Solutions GmbH
RFXCEL Corp
Rush Tracking Systems
Samsung Electronics
Sanion Co Ltd
SAP
Savi Technology
Schering-Plough
Schneider National
Sedna Systems, Ltd.
Sensitech
Shipcom Wireless, Inc.
Skandsoft Technologies Pvt.Ltd.
SMART LABEL SOLUTIONS, LLC.
Sterling Commerce
Sun Microsystems
Supply Insight, Inc.
SupplyScape
T3C Incorporated
Target
Tesco
The Boeing Company
ThingMagic, LLC
Tibco
Toppan Printing Co
Toray International, Inc.
Tracetracker
True Demand Software (fka-Truth Software)
TTA Telecommunications Technology Association
Tyco / ADT
Unilever
Unisys
Unitech Electronics Co., Ltd.
UNITED PARCEL SERVICE (UPS)
Ussen Limited Company
VeriSign
Vue Technology
Wal-Mart
Wish Unity (formerly Track-IT RFID)
Yuen Foong Yu Paper

 4269

 4270

