

EPCIS Standard

enables disparate applications to create and share visibility event data, both within and
across enterprises.

Release 2.0, Ratified, Jun 2022

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 2 of 229

Document Summary
Document Item Current Value

Document Name EPCIS Standard

Document Date Jun 2022

Document Version 2.0

Document Issue

Document Status Ratified

Document Description enables disparate applications to create and share visibility event data, both within and across enterprises.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 3 of 229

Contributors
Name Company

Christophe Devins Adents

Roula Karam Antares Vision

Harald Sundmaeker ATB Institut für angewandte Systemtechnik Bremen GmbH

Junyu Wang Auto-ID Labs at Fudan University

Jaewook Byun Auto-ID Labs at KAIST

Sangtae Kim Auto-ID Labs at KAIST

Yalew Tolcha Auto-ID Labs at KAIST

Jeanne Duckett Avery Dennison RFID

Cyrille Bordier Axway

Marcus Chang Axway

Sven Böcklemann benelog GmbH & Co. KG

Aravinda Baliga B benelog GmbH & Co. KG

Onur Önder BLG CONTRACT LOGISTICS GmbH & Co. KG

Laura Weingarten BLG CONTRACT LOGISTICS GmbH & Co. KG

Trond Saure Bouvet Norge AS

Philip Allgaier bpcompass GmbH

Steffen Butschbacher bpcompass GmbH

Maheshwar Lingichetty Bracket Global

Bhavesh Shah Brevitaz Systems

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 4 of 229

Name Company

Shalika Singh Brevitaz Systems

Hans Peter Scheidt C & A SCS

Arnaud Kreweras Carrefour

Robert Celeste Center for Supply Chain Studies

Jochen Metschke Ceratizit

Doug Migliori ControlBEAM Digital Automation / ADC Technologies Group

Ludovic Fargeas Courbon

Martijn Veerman Customer Value

David Harper Delivr Corporation

Mario Mira Dentsu Aegis Network

Michiel Valee Dockflow

Philip Heggelund DuckScape Inc

Jim Springer EM Microelectronic

Jayson Berryhill Envisible LLC

Nicolas Becker European EPC Competence Center GmbH (EECC)

Falk Nieder European EPC Competence Center GmbH (EECC)

Sebastian Schmittner European EPC Competence Center GmbH (EECC)

Georg Schwering European EPC Competence Center GmbH (EECC)

Dominique Guinard EVRYTHNG

Joël Vogt EVRYTHNG

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 5 of 229

Name Company

Beth Davis FoodLogiQ

Julie McGill FoodLogiQ

Kevin Capatch Geisinger Health System (GHS)

Chris Roberts GlaxoSmithKline

Gianluca Fazio GS1 Argentina

Catherine Koetz GS1 Australia

Bonnie Ryan GS1 Australia

Sue Schmid GS1 Australia

Marcel Sieira GS1 Australia

Stephan Wijnker GS1 Australia

Eugen Sehorz GS1 Austria

Luiz Costa GS1 Brasil

Flavia Costa GS1 Brasil

Kevin Dean GS1 Canada

Nicole Golestani GS1 Canada

Zubair Nazir GS1 Canada

Connie Wong GS1 Canada

Yi Ding GS1 China

jia jianhua GS1 China

Yan Luo GS1 China

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 6 of 229

Name Company

Yi Wang GS1 China

zhang wm GS1 China

XinMin Wu GS1 China

Ruoyun Yan GS1 China

James Perng GS1 Chinese Taipei

James Perng GS1 Chinese Taipei

Luis Paniagua GS1 Costa Rica

Jesper Kervin Franke GS1 Denmark

Petri Leppänen GS1 Finland

Adrien Molines GS1 France

Nicolas Pauvre GS1 France

Mayra Castellanos GS1 Germany

David Hintzen GS1 Germany

Sandra Hohenecker GS1 Germany

Ralph Troeger GS1 Germany

Roman Winter GS1 Germany

Henri Barthel GS1 Global Office

Rosalie Clemens GS1 Global Office

Nadi (Scott) Gray GS1 Global Office

Eileen Harpell GS1 Global Office

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 7 of 229

Name Company

Nora Kaci GS1 Global Office

Timothy Marsh GS1 Global Office

Neil Piper GS1 Global Office

Craig Alan Repec GS1 Global Office

Greg Rowe GS1 Global Office

John Ryu GS1 Global Office

Kevin Stark GS1 Global Office

Claude Tetelin GS1 Global Office

Elena Tomanovich GS1 Global Office

Jaco Voorspuij GS1 Global Office

Grace Yang GS1 Global Office

Benedict Chan GS1 Hong Kong, China

Chris Lai GS1 Hong Kong, China

Wai Shing Lai GS1 Hong Kong, China

wayne Luk GS1 Hong Kong, China

Zsolt Bocsi GS1 Hungary

Krisztina Vatai GS1 Hungary

Mahdi Barati GS1 Iran

Tim Daly GS1 Ireland

Alec Tubridy GS1 Ireland

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 8 of 229

Name Company

Emanuela Casalini GS1 Italy

Giada Necci GS1 Italy

Linda Vezzani GS1 Italy

Koji Asano GS1 Japan

Yoshihiko Iwasaki GS1 Japan

Kazuna Kimura GS1 Japan

Noriyuki Mama GS1 Japan

Yuki Sato GS1 Japan

Rocio Rivera GS1 Mexico

Ben Ensink GS1 Netherlands

Sarina Pielaat GS1 Netherlands

Reinier Prenger GS1 Netherlands

Gabriel Sobrino GS1 Netherlands

Jan Westerkamp GS1 Netherlands

Gary Hartley GS1 New Zealand

Klaudiusz Borowiak GS1 Poland

Zbigniew Rusinek GS1 Poland

Pedro Lima GS1 Portugal

Alexey Krotkov GS1 Russia

Olga Soboleva GS1 Russia

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 9 of 229

Name Company

Alvin Goh GS1 Singapore

Ferran Domenech Fuste GS1 Spain

Mats Bjorkqvist GS1 Sweden

Fredrik Holmström GS1 Sweden

Heinz Graf GS1 Switzerland

Raphael Pfarrer GS1 Switzerland

Shawn Chen GS1 Thailand

Rami Habbal GS1 UAE

Sophie Fuller GS1 UK

Jason Hale GS1 UK

Neil Aeschliman GS1 US

Hussam El-Leithy GS1 US

James Lynch GS1 US

Gena Morgan GS1 US

Melanie Nuce GS1 US

Vivian Underwood GS1 US

Alice Nguyen GS1 Vietnam

Natham Barry IBM (US)

Gokul Kandiraju IBM (US)

Roman Vaculin IBM (US)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 10 of 229

Name Company

Sylvia Rubio Alegren ICA Sverige AB

Megan Brewster Impinj, Inc

Patrick Chanez INEXTO SA

Thomas Burke Institute of Food Technologists

Sebastian Bartkowiak Institute of Logistics and Warehousing

José Manuel Cantera Fonseca IOTA Foundation

Masatoshi Nomachi Japan Pallet Rental Corporation

Scott Pugh Jennason LLC

Rosemary Hampton Johnson & Johnson

Rajendra Kulkarni Johnson & Johnson

April Anne Sese Johnson & Johnson

Ken Traub Ken Traub Consulting LLC

Sean Lockhead Lockhead Consulting Group LLC

Ted Osinski MET Laboratories

Alexander Hille Migros-Genossenschafts-Bund

Marc Inderbitzin Migros-Genossenschafts-Bund

Mark Harrison Milecastle Media Limited

Upender Solanki Movilitas Consulting AG

Oliver Erlenkämper Movilizer GmbH

Endre Lazar Movilizer GmbH

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 11 of 229

Name Company

Mario Mira Movilizer GmbH

Danny Haak Nedap

Vera Feuerstein Nestlé

Jason Geyen Optel Group

Michael Natale Pfizer

Richard Graves Phy

Matt Glassman rfXcel Corporation

Graham Stanley rfXcel Corporation

Jürgen Engelhardt Robert Bosch GmbH

John Fredrik Reimers Robert Bosch GmbH

Nikolaos Servos Robert Bosch GmbH

Jan Reichert SAP SE

Thomas Rumbach SAP SE

Marc Damhösl Schweizerische Bundesbahnen SBB

Dominik Halbeisen Schweizerische Bundesbahnen SBB

Rémy Höhener Schweizerische Bundesbahnen SBB

Holger Strietholt Schweizerische Bundesbahnen SBB

John Walker Semaku

Vladimir Alexiev Sirma AI (Ontotext)

Vladimir Dzalbo Smartrac Technology Germany GmbH

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 12 of 229

Name Company

Shreenidhi Bharadwajj Syndigo

Tony Zhang Syndigo

Joseph Lipari Systech International

Octavio Rodriguez Systech International

Maik Bollmacher T-Systems International GmbH

Martin Herold T-Systems International GmbH

Tobias Michelchen T-Systems International GmbH

Carsten Baumhögger tabya GmbH

Tobias Müller tabya GmbH

Gergely Köves TE-FOOD International GmbH

Eric Moore Testo

Melissa Banning TraceLink

Elizabeth Waldorf TraceLink

Evan Fernando Tyson

Jay Crowley US Data Management, LLC (USDM)

Bharat Reddy Vaka Vaka Consulting Inc

Rob Magee Vantage Consulting Group

Jussi Numminen wirepas

Nathan Clevenger Zebra Technologies Corporation

Scott Olson Zebra Technologies Corporation

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 13 of 229

Log of Changes
Release Date of Change Changed By Summary of Change

1.0 Initial version

1.1 May 2014 EPCIS 1.1 is fully backward compatible with EPCIS 1.0.1.
EPCIS 1.1 includes these new or enhanced features:
Support for class-level identification is added to ObjectEvent, AggregationEvent,
and TransformationEvent through the addition of quantity lists.

A new event type, TransformationEvent, provides for the description of events in
which inputs are consumed and outputs are produced.
The “why” dimension of all event types are enhanced so that information about the sources
and destinations of business transfers may be included.
The “why” dimension of certain event types are enhanced so that item/lot master data may
be included.
The SimpleEventQuery is enhanced to encompass the above changes to event types.

The introductory material is revised to align with the GS1 System Architecture.
The XML extension mechanism is explained more fully.
The QuantityEvent is deprecated, as its functionality is fully subsumed by
ObjectEvent with the addition of quantity lists.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 14 of 229

Release Date of Change Changed By Summary of Change

1.2 Sep 2016 EPCIS 1.2 is fully backward compatible with EPCIS 1.1 and 1.0.1.
EPCIS 1.2 includes these new or enhanced features:
A mechanism is introduced to declare that a prior EPCIS event is in error, for use when it is
impossible to correct the historical trace by means of ordinary EPCIS events. This
mechanism includes the errorDeclaration structure in an EPCIS event and associated
query parameters.
An optional eventID is added to all EPCIS events. Its main intended use is to allow for an
error declaration event to (optionally) refer to one or more corrective events.
The Simple Event Query is enhanced to clarify that queries for extension or ILMD fields apply
only to top-level XML elements, and a new set of query parameters is introduced to query
for XML elements nested within top-level elements.
The role of an EPCIS document as a means to transmit events point-to-point is clarified.
The EPCIS Header in the XML schemas is enhanced to allow for optional inclusion of master
data.
The use of extension elements within <readPoint> and <bizLocation> is deprecated.

Section 13.3 regarding conformance is added.

2.0 June 2022 Major release EPCIS 2.0 in conjunction with CBV 2.0, including:
 Addition of JSON/SON-LD syntax (alongside XML)
 Addition of REST bindings (alongside SOAP/WSDL)
 Completely overhauled UML diagram
 Clarification on distinction between standard vocabulary and user vocabulary
 New AssociationEvent
 New "How" event dimension
 Overview of EPCIS event "dimensions" with cross references to relevant sections in EPCIS

& CBV
 New Persistent Disposition indicates non-transient business state of an object
 New SensorElement to accommodate sensor data
 Addition of certificationInfo to core EPCISEvent
 Updated SimpleEventQuery parameters
 Removal of support for Simple Master Data Query and EPCIS Master Data Document

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 15 of 229

Disclaimer
GS1®, under its IP Policy, seeks to avoid uncertainty regarding intellectual property claims by requiring the participants in the Work Group that developed this EPCIS Standard to
agree to grant to GS1 members a royalty-free licence or a RAND licence to Necessary Claims, as that term is defined in the GS1 IP Policy. Furthermore, attention is drawn to the
possibility that an implementation of one or more features of this Specification may be the subject of a patent or other intellectual property right that does not involve a Necessary
Claim. Any such patent or other intellectual property right is not subject to the licencing obligations of GS1. Moreover, the agreement to grant licences provided under the GS1 IP Policy
does not include IP rights and any claims of third parties who were not participants in the Work Group.

Accordingly, GS1 recommends that any organisation developing an implementation designed to be in conformance with this Specification should determine whether there are any
patents that may encompass a specific implementation that the organisation is developing in compliance with the Specification and whether a licence under a patent or other intellectual
property right is needed. Such a determination of a need for licencing should be made in view of the details of the specific system designed by the organisation in consultation with their
own patent counsel.

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR
PURPOSE, OR ANY WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability for any damages arising from use or misuse of this Standard, whether
special, indirect, consequential, or compensatory damages, and including liability for infringement of any intellectual property rights, relating to use of information in or reliance upon
this document.

GS1 retains the right to make changes to this document at any time, without notice. GS1 makes no warranty for the use of this document and assumes no responsibility for any errors
which may appear in the document, nor does it make a commitment to update the information contained herein.

GS1 and the GS1 logo are registered trademarks of GS1 AISBL.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 16 of 229

Table of Contents
1 Introduction .. 21

2 Relationship to the GS1 System Architecture ... 22
2.1 Overview of GS1 standards .. 22
2.2 EPCIS in relation to the “Capture” and “Share” layers .. 23
2.3 EPCIS in Relation to trading partners ... 24
2.4 EPCIS in relation to other GS1 System Architecture components ... 25

3 EPCIS specification principles .. 28

4 Terminology and typographical conventions .. 29

5 EPCIS specification framework .. 30
5.1 Layers ... 30
5.2 Extensibility .. 31
5.3 Modularity .. 31

6 Abstract data model layer .. 33
6.1 Event data and master data ... 33

6.1.1 Transmission of master data in EPCIS ... 35
6.2 Standard vocabulary and user vocabulary .. 36
6.3 Extension mechanisms ... 37
6.4 Identifier representation .. 39
6.5 Hierarchical vocabularies .. 39

7 Data definition layer .. 41
7.1 General rules for specifying data definition layer modules .. 41

7.1.1 Content ... 41
7.1.2 Notation .. 42
7.1.3 Semantics .. 43

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 17 of 229

7.2 Core event types module – overview ... 44
7.2.1 UML Diagrams of EPCIS Event Types ... 45
7.2.2 Overview of EPCIS event "dimensions" (non-normative) .. 47
7.2.3 Table of vocabulary types .. 51

7.3 Core event types module – building blocks ... 52
7.3.1 Primitive types ... 52
7.3.2 Action type .. 53
7.3.3 The “What” dimension ... 53
7.3.4 The "When" dimension .. 55
7.3.5 The “Where” Dimension – read point and business location .. 56
7.3.6 The “Why” dimension .. 59
7.3.7 The “How” dimension .. 66
7.3.8 Instance/Lot master data (ILMD) .. 73

7.4 Core event types module – events .. 74
7.4.1 EPCISEvent .. 74
7.4.2 ObjectEvent (subclass of EPCISEvent) ... 78
7.4.3 AggregationEvent (subclass of EPCISEvent) ... 83
7.4.4 TransactionEvent (subclass of EPCISEvent) .. 88
7.4.5 TransformationEvent (subclass of EPCISEvent) ... 93
7.4.6 AssociationEvent (subclass of EPCISEvent) .. 96

8 Service layer .. 102
8.1 Core capture operations module .. 103

8.1.1 Authentication and authorisation .. 103
8.1.2 Capture service .. 104

8.2 Core Query operations module .. 106
8.2.1 Authentication .. 106
8.2.2 Authorisation and redaction ... 106
8.2.3 Queries for large amounts of data ... 107
8.2.4 Overly complex queries ... 107
8.2.5 Query framework (EPCIS query control interface) ... 108

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 18 of 229

8.2.6 Error conditions .. 115
8.2.7 Predefined queries for EPCIS .. 118
8.2.8 Query callback interface .. 144

9 XML bindings for data definition modules .. 145
9.1 Extensibility mechanism ... 145
9.2 Standard business document header ... 148
9.3 EPCglobal Base schema ... 149
9.4 Master data in the XML binding ... 149
9.5 Schema for core event types .. 151
9.6 Core event types – examples (Non-Normative) ... 152

10 JSON/JSON-LD bindings for data definition ... 153
10.1 Brief introduction to JSON and JSON-LD in the context of EPCIS ... 153

10.1.1 JavaScript Object Notation (JSON) .. 154
10.1.2 JSON for Linked Data (JSON-LD) .. 155
10.1.3 Features of the JSON-LD context resource ... 157
10.1.4 Compact URI Expressions (CURIEs) .. 158

10.2 Expression and validation of EPCIS data structures in JSON and JSON-LD .. 158
10.2.1 Expressing data fields expecting simple values ... 160
10.2.2 Validating data fields expecting simple values .. 161
10.2.3 Validation of fields (e.g. 'action') that expect a string value from an enumerated list ... 164
10.2.4 Expressing simple lists of values ... 165
10.2.5 Validating lists of values .. 166
10.2.6 Expressing lists of elements with inline attributes expressing type .. 167
10.2.7 Modelling and validating subclasses of EPCIS event ... 169
10.2.8 Comparison of how validation rules are expressed in XSD, JSON Schema and SHACL .. 171
10.2.9 Mapping core SBDH fields to the JSON/JSON-LD data format for EPCIS ... 173
10.2.10 Online validation tools for JSON Schema and SHACL ... 174
10.2.11 Libraries and toolkits providing JSON-LD support .. 174

10.3 Validation schema (references to normative content)... 174
10.4 Non-normative examples in JSON and JSON-LD .. 175

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 19 of 229

11 Bindings for core capture operations module .. 175
11.1 Message queue binding .. 175
11.2 HTTP binding .. 176

12 REST Bindings .. 177
12.1 Code conventions .. 177
12.2 Introduction to REST ... 177
12.3 Content negotiation, service discovery and custom headers for EPCIS ... 180
12.4 Authentication and Authorization ... 183
12.5 Pagination .. 184
12.6 Capturing EPCIS Events ... 185

12.6.1 Capture Interface ... 185
12.6.2 Capture Jobs Interface .. 187

12.7 Events interface .. 188
12.7.1 EPCIS events collections .. 188
12.7.2 EPCIS events endpoints ... 189
12.7.3 Event filtering with the EPCIS query language .. 190
12.7.4 Top-level resources ... 191

12.8 Query control interface .. 193
12.8.1 Creating and using named queries .. 195
12.8.2 Deleting named queries ... 196
12.8.3 Subscribing to named queries .. 196
12.8.4 EPCIS query language ... 203
12.8.5 EPCIS query in the URL ... 203

12.9 Backward Compatibility of REST bindings with EPCIS 1.2 ... 205
12.10 EPCIS Error Conditions and HTTP Status Code Mapping.. 205

13 Bindings for core query operations module ... 208
13.1 XML schema for core query operations module ... 208
13.2 SOAP/HTTP binding for the query control interface .. 210
13.3 AS2 Binding for the query control interface .. 210

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 20 of 229

13.3.1 GS1 AS2 guidelines (Non-Normative) .. 213
13.4 Bindings for query callback interface.. 215

13.4.1 General Considerations for all XML-based bindings .. 216
13.4.2 HTTP binding of the query callback interface .. 216
13.4.3 HTTPS binding of the query callback interface .. 217
13.4.4 AS2 Binding of the query callback interface .. 217

14 Conformance ... 218
14.1 Conformance of EPCIS XML data ... 218
14.2 Conformance of EPCIS capture interface clients .. 219
14.3 Conformance of EPCIS capture interface servers ... 219
14.4 Conformance of EPCIS query interface clients ... 219
14.5 Conformance of EPCIS query interface servers .. 219
14.6 Conformance of EPCIS query callback interface implementations .. 220
14.7 Conformance of JSON/JSON-LD bindings .. 220
14.8 Conformance of REST Interface for EPCIS 2.0 Servers ... 220

15 UML Diagrams for SBDH .. 223
15.1 UML aligned with text of SBDH specification ... 224
15.2 UML aligned with XSD of SBDH specification ... 225

16 References ... 225

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 21 of 229

1 Introduction
This document is a GS1 standard that defines Version 2.0 of EPC Information Services (EPCIS). The goal of EPCIS is to enable disparate applications to
create and share visibility event data, both within and across enterprises. Ultimately, this sharing is aimed at enabling users to gain a shared view of
physical or digital objects within a relevant business context.

“Objects” in the context of EPCIS typically refers to physical objects that are identified either at a class or instance level and which are handled in physical
handling steps of an overall business process involving one or more organisations. Examples of such physical objects include trade items (products),
logistic units, returnable assets, fixed assets, physical documents, etc. “Objects” may also refer to digital objects, also identified at either a class or
instance level, which participate in comparable business process steps. Examples of such digital objects include digital trade items (music downloads,
electronic books, etc.), digital documents (electronic coupons, etc.), and so forth. Throughout this document the word “object” is used to denote a physical
or digital object, identified at a class or instance level, that is the subject of a business process step. EPCIS data consist of “visibility events,” each of
which is the record of the completion of a specific business process step acting upon one or more objects.

The EPCIS standard was originally conceived as part of a broader effort to enhance collaboration between trading partners by sharing of detailed
information about physical or digital objects. The name EPCIS reflects the origins of this effort in the development of the Electronic Product Code (EPC). It
should be noted, however, that EPCIS does not require the use of Electronic Product Codes, nor of Radio-Frequency Identification (RFID) data carriers,
and does not even require instance-level identification (for which the Electronic Product Code was originally designed). The EPCIS standard applies to all
situations in which visibility event data is to be captured and shared, and the presence of “EPC” within the name is of historical significance only.

EPCIS provides open, standardised interfaces that allow for seamless integration of well-defined services in inter-company environments as well as within
companies. Standard interfaces are defined in the EPCIS standard to enable visibility event data to be captured and queried using a defined set of service
operations and associated data standards, all combined with appropriate security mechanisms that satisfy the needs of user companies. In many or most
cases, this will involve the use of one or more persistent databases of visibility event data, though elements of the Services approach could be used for
direct application-to-application sharing without persistent databases.

With or without persistent databases, the EPCIS specification specifies only standard data sharing interfaces between applications that capture visibility
event data and those that need access to it. It does not specify how the service operations or databases themselves should be implemented. This includes
not defining how the EPCIS services should acquire and/or compute the data they need, except to the extent the data is captured using the standard
EPCIS capture operations. The interfaces are needed for interoperability, while the implementations allow for competition among those providing the
technology and implementing the standard.

EPCIS is intended to be used in conjunction with the GS1 Core Business Vocabulary (CBV) standard [CBV2.0]. The CBV standard provides definitions of
data values that may be used to populate the data structures defined in the EPCIS standard. The use of the standardised vocabulary provided by the CBV
standard is critical to interoperability and critical to provide for querying of data by reducing the variation in how different businesses express common
intent. Therefore, applications should use the CBV standard to the greatest extent possible in constructing EPCIS data.

The companion EPCIS and CBV Implementation Guideline [EPCISGuideline] provides additional guidance for building visibility systems using EPCIS and
CBV, including detailed discussion of how to model specific business situations using EPCIS/CBV data and methods for sharing such data between trading
partners.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 22 of 229

2 Relationship to the GS1 System Architecture
This section is largely quoted from [GS1Arch], and shows the relationship of EPCIS to other GS1 standards.

2.1 Overview of GS1 standards
GS1 standards support the information needs of end users interacting with each other in supply chains, specifically the information required to support the
business processes through which supply chain participants interact. The subjects of such information are the real-world entities that are part of those
business processes. Real-world entities include things traded between companies, such as products, parts, raw materials, packaging, and so on. Other
real-world entities of relevance to trading partners include the equipment and material needed to carry out the business processes surrounding trade such
as containers, transport, machinery; entities corresponding to physical locations in which the business processes are carried out; legal entities such as
companies, divisions; service relationships; business transactions and documents; and others. Real-world entities may exist in the tangible world, or may
be digital or conceptual. Examples of physical objects include a consumer electronics product, a transport container, and a manufacturing site (location
entity). Examples of digital objects include an electronic music download, an eBook, and an electronic coupon. Examples of conceptual entities include a
trade item class, a product category, and a legal entity.

GS1 standards may be divided into the following groups according to their role in supporting information needs related to real-world entities in supply
chain business processes:

■ Standards which provide the means to identify real-world entities so that they may be the subject of electronic information that is stored and/or
communicated by end users. GS1 identification standards include standards that define unique identification codes (called GS1 identification keys).

■ Standards which provide the means to automatically capture data that is carried directly on physical objects, bridging the world of physical things and
the world of electronic information. GS1 data capture standards include definitions of barcode and radio-frequency identification (RFID) data carriers
which allow identifiers to be affixed directly to a physical object, and standards that specify consistent interfaces to readers, printers, and other
hardware and software components that connect the data carriers to business applications.

■ Standards which provide the means to Share information, both between trading partners and internally, providing the foundation for electronic
business transactions, electronic visibility of the physical or digital world, and other information applications. GS1 standards for information sharing
include this EPCIS Standard which is a standard for visibility event data. Other standards in the “Share” group are standards for master data and for
business transaction data, as well as discovery standards that help locate where relevant data resides across a supply chain and trust standards that
help establish the conditions for sharing data with adequate security.

The EPCIS standard fits into the “Share” group, providing the data standard for visibility event data and the interface standards for capturing such
information from data capture infrastructure (which employs standards from the “Capture” group) and for sharing such information with business
applications and with trading partners.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 23 of 229

2.2 EPCIS in relation to the “Capture” and “Share”
layers
The diagram to the right shows the relationship between EPCIS and
other GS1 standards in the “Capture” and “Share” groups. (The
“Identify” group of standards pervades the data at all levels of this
architecture, and so is not explicitly shown.)

As depicted in the diagram above, the EPCIS Capture Interface
exists as a bridge between the “Capture” and “Share” standards.
The EPCIS Query Interface provides visibility event data both to
internal applications and for sharing with trading partners.

At the centre of a data capture application is the data capture
workflow that supervises the business process step within which
data capture takes place. This is typically custom logic that is
specific to the application. Beneath the data capture workflow in the
diagram is the data path between the workflow and GS1 data
carriers: barcodes and RFID. The green bars in the diagram denote
GS1 standards that may be used as interfaces to the data carriers.
At the top of the diagram are the interfaces between the data
capture workflow and larger-scale enterprise applications. Many of
these interfaces are application- or enterprise-specific, though using
GS1 data as building blocks; however, the EPCIS interface is a GS1
standard. Note that the interfaces at the top of the diagram,
including EPCIS, are independent of the data carrier used at the
bottom of the diagram.

The purpose of the interfaces and the reason for a multi-layer data
capture architecture is to provide isolation between different levels
of abstraction. Viewed from the perspective of an enterprise
application (i.e., from the uppermost blue box in the figure), the
entire data capture application shields the enterprise application
from the details of exactly how data capture takes place. Through
the application-level interfaces (uppermost green bars), an
enterprise application interacts with the data capture workflow
through data that is data carrier independent and in which all of the
interaction between data capture components has been
consolidated into that data. At a lower level, the data capture
workflow is cognizant of whether it is interacting with barcode
scanners, RFID interrogators, human input, etc., but the transfer

Filtering &
Collection

EPCIS Accessing
Applications and other

Enterprise-level
Applications

LLRP Interface

ALE Interface

EPCIS Capture
Interface

Data Capture Workflow

Composite
Element
String

Data
Capture
Application

Various app-specific Interfaces

Human
Interfaces

RFID
Reader

RFID Air Interface

RFID Tag

Barcode Symbology

Barcode

= System

= Interface

EPCIS Query Interface

eCOM (GS1 XML / EANCOM) Interface

GDSN Interface

To/from
external
parties

Capture

Share

EPCIS
Repository

Possible
bypass for
real-time

“push”

Sensor
Data

Barcode
Scanner

http://www.prlog.org/10135910-uhf-rfid-reader.jpg

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 24 of 229

interfaces (green bars in the middle) shield the data capture workflow from low-level hardware details of exactly how the data carriers work. The lowest
level interfaces (green bars on the bottom) embody those internal data carrier details. EPCIS and the “Share” layer in general differ from elements in the
Capture layer in three key respects:

1. EPCIS deals explicitly with historical data (in addition to current data). The Capture layer, in contrast, is oriented exclusively towards real-time
processing of captured data.

2. EPCIS often deals not just with raw data captured from data carriers such as barcodes and RFID tags, but also in contexts that imbue those
observations with meaning relative to the physical or digital world and to specific steps in operational or analytical business processes. The Capture
layers are more purely observational in nature. An EPCIS event, while containing much of the same “Identify” data as a Filtering & Collection event or
a barcode scan, is at a semantically higher level because it incorporates an understanding of the business context in which the identifier data were
obtained. Moreover, there is no requirement that an EPCIS event be directly related to a specific physical data carrier observation. For example, an
EPCIS event may indicate that a perishable trade item has just crossed its expiration date; such an event may be generated purely by software.

3. EPCIS operates within enterprise IT environments at a level that is much more diverse and multi-purpose than exists at the Capture layer, where
typically systems are self-contained and exist to serve a single business purpose. In part, and most importantly, this is due to the desire to share
EPCIS data between enterprises which are likely to have different solutions deployed to perform similar tasks. In part, it is also due to the persistent
nature of EPCIS data. And lastly, it is due to EPCIS being at the highest level of the overall architecture, and hence the natural point of entry into
other enterprise systems, which vary widely from one enterprise to the next (or even within parts of the same enterprise).

2.3 EPCIS in Relation to trading partners
GS1 standards in the “Share” layer pertain to three categories of data that are shared between end users:

Data Description GS1 standards

Master data Data, shared by one trading partner to many trading partners, that provide descriptive attributes of real-world entities
identified by GS1 identification keys, including trade items, parties, and physical locations.

GDSN

Transaction data Trade transactions triggering or confirming the execution of a function within a business process as defined by an explicit
business agreement (e.g., a supply contract) or an implicit one (e.g., customs processing), from the start of the business
process (e.g., ordering the product) to the end of it (e.g., final settlement), also making use of GS1 identification keys.

GS1 XML
EANCOM

Visibility event data Details about physical or digital activity in the supply chain of products and other assets, identified by keys, detailing where
these objects are in time, and why; not just within one organisation’s four walls, but across organisations.

EPCIS

Transaction Data and Visibility Event Data have the characteristic that new documents of those types are continually created as more business is
transacted in a supply chain in steady state, even if no new real-world entities are being created. Master data, in contrast, is more static: the master data
for a given entity changes very slowly (if at all), and the quantity of master data only increases as new entities are created, not merely because existing
entities participate in business processes. For example, as a given trade item instance moves through the supply chain, new transaction data and visibility
event data are generated as that instance undergoes business transactions (such as purchase and sale) and physical handling processes (packing, picking,
stocking, etc.). But new master data is only created when a new trade item or location is added to the supply chain.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 25 of 229

The figure to the right illustrates the flow of data between
trading partners, emphasising the parts of the EPCIS
standard involved in the flow of visibility event data.

In addition to the use of the EPCIS Query Interface as
illustrated above, trading partners may by mutual agreement
use the EPCIS Document structure defined in section 9.3 as a
means to transport a collection of EPCIS events, optionally
accompanied by relevant master data, as a single electronic
document.

2.4 EPCIS in relation to other GS1 System
Architecture components
The following outlines the responsibilities of each element of
the GS1 System Architecture as illustrated in the figures in
the preceding sections. Further information may be found in
[GS1Arch].

■ RFID and Barcode Readers Make observations of RFID
tags while they are in the read zone, and observations of
barcodes when reading is triggered.

■ Low-Level [RFID] Reader Protocol (LLRP) Interface
Defines the control and delivery of raw RFID tag reads
from RFID Readers to the Filtering & Collection role.
Events at this interface say “Reader A saw EPC X at time
T.”

■ Filtering & Collection This role filters and collects raw
RFID tag reads, over time intervals delimited by events
defined by the EPCIS Capturing Application (e.g. tripping
a motion detector). No comparable role typically exists
for reading barcodes, because barcode readers typically
only read a single barcode when triggered.

■ Filtering & Collection (ALE) Interface Defines the control
and delivery of filtered and collected RFID tag read data
from the Filtering & Collection role to the Data Capture
Workflow role. Events at this interface say “At Logical
Reader L, between time T1 and T2, the following EPCs

EPCIS Accessing
Applications and
other Enterprise-
level Applications

EPCIS Capture
Interface

Data Capture Infrastructure

App-specific
Interfaces

eCOM (GS1 XML / EANCOM)

GDSN Interface
and data pools

EPCIS
Repository

EPCIS Query
Interface (Control

and Callback)

EPCIS Accessing
Applications and other

Enterprise-level
Applications

App-specific
Interfaces

EPCIS Capture
Interface

EPCIS
Repository

Data Capture Infrastructure

EPCIS Query traffic – on-demand queries
and standing queries

EPCIS Query
Interface (Control

and Callback)

Trading Partner 1 Trading Partner 2

GS1 Networked Services

Lookup services for
data discovery

GDSN Global
Registry

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 26 of 229

were observed,” where the list of EPCs has no duplicates and has been filtered by criteria defined by the EPCIS Capturing Application. In the case of
barcodes, comparable data is delivered to the Data Capture Workflow role directly from the barcode reader in the form of a GS1 Element String.

■ Data Capture Workflow Supervises the operation of the lower-level architectural elements, and provides business context by coordinating with other
sources of information involved in executing a particular step of a business process. The Data Capture Workflow may, for example, coordinate a
conveyor system with Filtering & Collection events and barcode reads, may check for exceptional conditions and take corrective action (e.g., diverting
a bad object into a rework area), may present information to a human operator, and so on. The Data Capture Workflow understands the business
process step or steps during which EPCIS event data capture takes place. This role may be complex, involving the association of multiple Filtering &
Collection events and/or barcode reads with one or more business events, as in the loading of a shipment. Or it may be straightforward, as in an
inventory business process where there may be readers deployed that generate observations about objects that enter or leave the shelf. Here, the
Filtering & Collection-level event or barcode read and the EPCIS-level event may be so similar that very little actual processing at the Data Capture
Workflow level is necessary, and the Data Capture Workflow merely configures and routes events from the Filtering & Collection interface and/or
barcode readers directly through the EPCIS Capture Interface to an EPCIS Repository or a business application. A Data Capture Workflow whose
primary output consists of EPCIS events is called an “EPCIS Capturing Application” within this standard.

■ EPCIS Interfaces The interfaces through which EPCIS data is delivered to enterprise-level roles, including EPCIS Repositories, EPCIS Accessing
Applications, and data exchange with partners. Events at these interfaces say, for example, “At location X, at time T, the following contained objects
(cases) were verified as being aggregated to the following containing object (pallet).” There are three EPCIS Interfaces, specified normatively in
this document:

□ The EPCIS Capture Interface defines the delivery of EPCIS events from EPCIS Capturing Applications to other roles that consume the data in
real time, including EPCIS Repositories, and real-time “push” to EPCIS Accessing Applications and trading partners.

□ The EPCIS Query Control Interface defines a means for EPCIS Accessing Applications and trading partners to obtain EPCIS data subsequent to
capture, typically by interacting with an EPCIS Repository. The EPCIS Query Control Interface provides two modes of interaction. In “on-demand”
or “synchronous” mode, a client makes a request through the EPCIS Query Control Interface and receives a response immediately. In “standing
request” or “asynchronous” mode, a client establishes a subscription for a periodic query.

□ Each time the periodic query is executed, the results are delivered asynchronously (or “pushed”) to a recipient via the EPCIS Query Callback
Interface. The EPCIS Query Callback Interface may also be used to deliver information immediately upon capture; this corresponds to the
“possible bypass for real-time push” arrow in the diagram.

■ EPCIS Accessing Application: Responsible for carrying out overall enterprise business processes, such as warehouse management, shipping and
receiving, historical throughput analysis, and so forth, aided by EPCIS visibility event data.

■ EPCIS Repository: Records EPCIS-level events generated by one or more EPCIS Capturing Applications and makes them available for later query by
EPCIS Accessing Applications.

■ Partner Application: Trading Partner systems that perform the same role as an EPCIS Accessing Application, though from outside the responding
party’s network. Partner Applications may be granted access to a subset of the information that is available from an EPCIS Capturing Application or
within an EPCIS Repository.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 27 of 229

The interfaces within this stack are designed to insulate the higher levels of the architecture from unnecessary details of how the lower levels are
implemented. One way to understand this is to consider what happens if certain changes are made:

■ The Low-Level [RFID] Reader Protocol (LLRP) and GS1 Element String insulate the higher layers from knowing what RF protocols or barcode
symbologies are in use, and what reader makes/models have been chosen. If a different reader is substituted, the information sent through these
interfaces remains the same.

■ In situations where RFID is used, the Filtering & Collection Interface insulates the higher layers from the physical design choices made regarding how
RFID tags are sensed and accumulated, and how the time boundaries of events are triggered. If a single four-antenna RFID reader is replaced by a
constellation of five single-antenna “smart antenna” readers, the events at the Filtering & Collection level remain the same. Likewise, if a different
triggering mechanism is used to mark the start and end of the time interval over which reads are accumulated, the Filtering & Collection event
remains the same.

■ EPCIS insulates enterprise applications from understanding the details of how individual steps in a business process are carried out at a detailed level.
For example, a typical EPCIS event is “At location X, at time T, the following cases were verified as being on the following pallet.” In a conveyor-based
business implementation, this may correspond to a single Filtering & Collection event, in which reads are accumulated during a time interval whose
start and end is triggered by the case crossing electric eyes surrounding a reader mounted on the conveyor. But another implementation could involve
three strong people who move around the cases and use hand-held readers to read the tags. At the Filtering & Collection level, this looks very
different (each triggering of the hand-held reader is likely a distinct Filtering & Collection event), and the processing done by the EPCIS Capturing
Application is quite different (perhaps involving an interactive console that the people use to verify their work). But the EPCIS event is still the same
for all these implementations.

In summary, EPCIS-level data differs from data employed at the Capture level in the GS1 System Architecture by incorporating semantic information
about the business process in which data is collected, and providing historical observations. In doing so, EPCIS insulates applications that consume this
information from knowing the low-level details of exactly how a given business process step is carried out.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 28 of 229

3 EPCIS specification principles
The considerations in the previous two sections reveal that the requirements for standards at the EPCIS layer are considerably more complex than in the
Capture layer of the GS1 System Architecture. The historical nature of EPCIS data implies that EPCIS interfaces need a richer set of access techniques
than ALE or RFID and barcode reader interfaces. The incorporation of operational or business process context into EPCIS implies that EPCIS traffics in a
richer set of data types, and moreover needs to be much more open to extension in order to accommodate the wide variety of business processes in the
world. Finally, the diverse environment in which EPCIS operates implies that the EPCIS Standard be layered carefully so that even when EPCIS is used
between external systems that differ widely in their details of operation, there is consistency and interoperability at the level of what the abstract structure
of the data is and what the data means.

In response to these requirements, EPCIS is described by a framework specification and narrower, more detailed specifications that populate that
framework. The framework is designed to be:

■ Layered: In particular, the structure and meaning of data in an abstract sense is specified separately from the concrete details of data access services
and bindings to particular interface protocols. This allows for variation in the concrete details over time and across enterprises while preserving a
common meaning of the data itself. It also permits EPCIS data specifications to be reused in approaches other than the service-oriented approach of
the present specification. For example, data definitions could be reused in an EDI framework.

■ Extensible: The core specifications provide a core set of data types and operations, but also provide several means whereby the core set may be
extended for purposes specific to a given industry or application area. Extensions not only provide for proprietary requirements to be addressed in a
way that leverages as much of the standard framework as possible, but also provides a natural path for the standards to evolve and grow over time.

■ Modular: The layering and extensibility mechanisms allow different parts of the complete EPCIS framework to be specified by different documents,
while promoting coherence across the entire framework. This allows the process of standardisation (as well as of implementation) to scale.

The remainder of this document specifies the EPCIS framework. It also populates that framework with a core set of data types and data interfaces. The
companion standard, the GS1 Core Business Vocabulary (CBV), provides additional data definitions that layer on top of what is provided by the EPCIS
standard.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 29 of 229

4 Terminology and typographical conventions
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, CAN, and CANNOT are to be interpreted as specified in section 7
("Verbal forms for expressions of provisions") of the ISO/IEC Directives, Part 2, 2018, 8th edition [ISODir2]. When used in this way, these terms will
always be shown in ALL CAPS; when these words appear in ordinary typeface they are intended to have their ordinary English meaning.

All sections of this document, are normative, except where explicitly noted as non-normative.

The following typographical conventions are used throughout the document:

■ ALL CAPS type is used for the special terms from [ISODir2] enumerated above.

■ Monospace type is used to denote programming language, UML, XML, and JSON (or JSON-LD) identifiers, as well as for the text of XML and JSON (or
JSON-LD) documents.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 30 of 229

5 EPCIS specification framework
The EPCIS specification is designed to be layered, extensible, and modular.

5.1 Layers
The EPCIS specification framework is organised into several
layers, as illustrated in the diagram to the right and described
below.

■ Abstract Data Model Layer: The Abstract Data Model Layer
specifies the generic structure of EPCIS data. This is the
only layer that is not extensible by mechanisms other
than a revision to the EPCIS specification itself. The
Abstract Data Model Layer specifies the general
requirements for creating data definitions within the Data
Definition Layer.

■ Data Definition Layer: The Data Definition Layer specifies
what data is exchanged through EPCIS, what its abstract
structure is, and what it means. One data definition
module is defined within the present specification, called
the Core Event Types Module. Data definitions in the
Data Definition Layer are specified abstractly, following
rules defined by the Abstract Data Model Layer.

■ Service Layer: The Service Layer defines service
interfaces through which EPCIS clients interact. In the
present specification, two service layer modules are
defined.

□ The Core Capture Operations Module defines one
service interface (the EPCIS Capture Interface)
through which EPCIS Capturing Applications use to
deliver Core Event Types to interested parties.

□ The Core Query Operations Module defines two
service interfaces (the EPCIS Query Control
Interface and the EPCIS Query Callback Interface)
that EPCIS Accessing Applications use to obtain data

Capture
Interface
Message
Queue

(§ 11.1)

Capture
Interface

HTTP

(§ 11.2)

Capture
Interface

REST

(§ 12.8)

Query
Control

Interface
REST

(§ 12.8)

Query
Control

Interface
AS2

(§ 13.3)

Query
Control

Interface
SOAP

(§ 13.2)

Query
Callback
Interface

HTTP

(§ 13.4.2)

Query
Callback
Interface
HTTPS

(§ 13.4.3)

Query
Callback
Interface

AS2

(§ 13.4.4)

Core Query
XSD

(§ 13.1)

Core Event
XSD

(§ 9)

Core Event
JSON

Schema

(§ 10)

Core Event
SHACL

(§ 10)

Core Event Types

(§ 7.2)

EPCIS
Abstract Data Model

(§ 6)

Core
Capture

Operations

(§ 8.1)

Capture
Interface

Core
Query

Operations

(§ 8.2)

Query
Control

Interface

Query
Callback
Interface

validates
XML

validates
JSON

validates
JSON-LD

depends on

implements

implements

depends on

depends on

Service
Layer

Data
Definition

Layer

Abstract
Data

Model
Layer

GS1 Comprehensive Business Vocabulary
Standard

Query
Callback
Interface

REST

(§ 12.8.3)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 31 of 229

previously captured. Interface definitions in the Service Layer are specified abstractly using UML.

■ Bindings: Bindings specify concrete realisations of the Data Definition Layer and the Service Layer. There may be many bindings defined for any given
Data Definition or Service module. In this specification, a number of bindings are specified for the three modules defined in the Data Definition and
Service Layers.

□ The data definitions in the Core Event Types data definition module are given bindings to XML schema, JSON schema and SHACL.

□ The EPCIS Capture Interface in the Core Capture Operations Module is given bindings for Message Queue, HTTP and REST.

□ The EPCIS Query Control Interface in the Core Query Operations Module is given a binding to SOAP over HTTP via a WSDL web services
description, a binding for AS2, and a REST binding.

□ The EPCIS Query Callback Interface in the Core Query Operations Module is given bindings to HTTP, HTTPS, and AS2; the REST binding specifies
the WebSocket to support subscriptions.

■ GS1 Core Business Vocabulary Standard: The GS1 Core Business Vocabulary standard [CBV] is a companion to the EPCIS standard. It defines specific
vocabulary elements that may be used to populate the data definitions specified in the Data Definition Layer of the EPCIS standard. While EPCIS may
be used without CBV, by employing only private or proprietary data values, it is far more beneficial for EPCIS applications to make as much use of the
CBV Standard as possible.

5.2 Extensibility
The layered technique for specification promotes extensibility, as one layer may be reused by more than one implementation in another layer. For
example, while this specification includes an XML binding of the Core Event Types data definition module, another specification may define a binding of the
same module to a different syntax, for example a CSV file.

Besides the extensibility inherent in layering, the EPCIS specification includes several specific mechanisms for extensibility:

■ Subclassing: Data definitions in the Data Definition Layer are defined using UML, which allows a new data definition to be introduced by creating a
subclass of an existing one. A subclass is a new type that includes all of the fields of an existing type, extending it with new fields. An instance of a
subclass may be used in any context in which an instance of the parent class is expected.

■ Extension Points: Data definitions and service specifications also include extension points, which vendors may use to provide extended functionality
without creating subclasses.

5.3 Modularity
The EPCIS specification framework is designed to be modular. That is, it does not consist of a single specification, but rather a collection of individual
specifications that are interrelated. This allows EPCIS to grow and evolve in a distributed fashion. The layered structure and the extension mechanisms
provide the essential ingredients to achieving modularity, as does the grouping into modules.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 32 of 229

While EPCIS specifications are modular, there is no requirement that the module boundaries of the specifications be visible or explicit within
implementations of EPCIS. For example, there may be a particular software product that provides a SOAP/HTTP-based implementation of a case-to-pallet
association service and a product catalogue service that traffics in data defined in the relevant data definition modules. This product may conform to as
many as six different modules from the EPCIS standard: the data definition module that describes product catalogue data, the data definition module that
defines case-to-pallet associations, the specifications for the respective services, and the respective SOAP/HTTP bindings. But the source code of the
product may have no trace of these boundaries, and indeed the concrete database schema used by the product may denormalise the data so that product
catalogue and case-to-pallet association data are inextricably entwined. But as long as the net result conforms to the specifications, this implementation is
permitted.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 33 of 229

6 Abstract data model layer
This section gives a normative description of the abstract data model that underlies EPCIS.

6.1 Event data and master data
Generically, EPCIS deals in two kinds of data: event data and master data. Event data arises in the course of carrying out business processes, and is
captured through the EPCIS Capture Interface and made available for query through the EPCIS Query Interfaces. Master data is additional data that
provides the necessary context for interpreting the event data. It is available for query through the EPCIS Query Control Interface, but the means by
which master data enters the system is not specified in the EPCIS standard.

The Abstract Data Model Layer does not attempt to define the meaning of the terms “event data” or “master data,” other than to provide precise
definitions of the structure of the data as used by the EPCIS specification. The modelling of real-world business information as event data and master data
is the responsibility of the Data Definition Layer, and of industry and end-user agreements that build on top of this specification.

 Non-Normative: Explanation: While for the purposes of this specification the terms “event data” and “master data” mean nothing more than “data
that fits the structure provided here,” the structures defined in the Abstract Data Model Layer are designed to provide an appropriate representation
for data commonly requiring exchange through EPCIS. Informally, these two types of data may be understood as follows. Event data grows in
quantity as more business is transacted, and refers to things that happen at specific moments in time. An example of event data is “At 1:23pm on
15 March 2004, EPC X was observed at Location L.” Master data does not generally grow merely because more business is transacted (though
master data does tend to grow as organisations grow in size), is not typically tied to specific moments in time (though master data may change
slowly over time), and provides interpretation for elements of event data. An example of master data is “Location L refers to the distribution centre
located at 123 Elm Street, Anytown, US.” All of the data in the set of use cases considered in the creation of the EPCIS standard can be modelled as
a combination of event data and master data of this kind.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 34 of 229

The structure of event data and master
data in EPCIS is illustrated to the right.
(Note that this is an illustration only: the
specific vocabulary elements and master
data attribute names in this figure are not
defined within this specification.)

The ingredients of the EPCIS Abstract
Data Model are defined below:

■ Event Data: A set of Events.

■ Event: A structure consisting of an
Event Type and one or more named
Event Fields.

■ Event Type: A namespace-qualified
name (qname) that indicates to which
of several possible Event structures
(as defined by the Data Definition
Layer) a given event conforms.

■ Event Field: A named field within an
Event. The name of the field is given
by a qname, referring either to a field
name specified by the Data Definition
Layer or a field name defined as an extension to this specification. The value of the field may be a primitive type (such as an integer or timestamp), a
Vocabulary Element, or a list of primitive types or Vocabulary Elements.

■ Master data: A set of Vocabularies, together with master data attributes associated with elements of those Vocabularies.

■ Vocabulary: A named set of identifiers. The name of a Vocabulary is a qname that may be used as a type name for an event field. The identifiers
within a Vocabulary are called Vocabulary Elements. A Vocabulary represents a set of alternative values that may appear as the values of specific
Event Fields. Vocabularies in EPCIS are used to model sets such as the set of available location names, the set of available business process step
names, and so on.

■ Vocabulary Element: An identifier that names one of the alternatives modelled by a Vocabulary. The value of an Event Field may be a Vocabulary
Element. Vocabulary Elements are represented as Uniform Resource Identifiers (URIs). Each Vocabulary Element may have associated master data
attributes.

■ Master data attributes: An unordered set of name/value pairs associated with an individual Vocabulary Element. The name part of a pair is a qname.
The value part of a pair may be a value of arbitrary type. A special attribute is a (possibly empty) list of children, each child being another vocabulary
element from the same vocabulary. See section 6.5.

ObjectEvent
 Time = 1.23pm 15th March 2020
 EPC = urn:epc:id:sgtin:9524141.100734.400
 bizStep = urn:epcglobal:cbv:bizstep:shipping
 bizLocation = urn:epc:id:sgln:9524141.12345.0

BizStep Vocabulary

urn:epcglobal:cbv:bizstep:receiving
urn:epcglobal:cbv:bizstep:shipping
...

BizLocation Vocabulary

urn:epc:id:sgln:9524141.12345.0
urn:epc:id:sgln:9524141.33245.0
urn:epc:id:sgln:9524141.33245.1
...

address = 123 Elm St
city = Anytown
postalCode = 12345

Children urn:epc:id:sgln: ...

sampleAttrName = sampleValue
...

Event Type

Event

Master Data Vocabularies Master Data Attributes

Event Data

Master Data

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 35 of 229

New EPCIS Events are generated at the edge and delivered into EPCIS infrastructure through the EPCIS Capture Interface, where they can subsequently
be delivered to interested applications through the EPCIS Query Interfaces. There is no mechanism provided in either interface by which an application can
delete or modify an EPCIS Event. The only way to “retract” or “correct” an EPCIS Event is to generate a subsequent event whose business meaning is to
rescind or amend the effect of a prior event (section 7.4.1.2.1 discusses how this may be done).

While the EPCIS Capture Interface and EPCIS Query Interfaces provide no means for an application to explicitly request the deletion of an event, EPCIS
Repositories MAY implement data retention policies that cause old EPCIS events to become inaccessible after some period of time.

Master data, in contrast, may change over time, though such changes are expected to be infrequent relative to the rate at which new event data is
generated. The current version of this specification does not specify how master data changes (nor, as noted above, does it specify how master data is
entered in the first place).

6.1.1 Transmission of master data in EPCIS
The EPCIS Capture and Query Interfaces are primarily concerned with the transmission of EPCIS Events. The means by which master data enters a system
that implements these interfaces is not specified in the EPCIS standard. However, the EPCIS standard does provide mechanisms for transmission of
master data, which an implementation may use to ensure that the recipient of EPCIS event data has access to the master data necessary to interpret that
event data. Alternatively, master data may be transmitted by means entirely outside the EPCIS standard. The EPCIS standard does not impose any
requirements on whether EPCIS event data is accompanied by master data or not, other than to require that master data accompanying event data be
consistent with any master data in ILMD sections of those events.

The EPCIS standard provides two mechanisms for transmission of master data, summarised in the table below:

Mechanism Section Description Constraint

ILMD 7.3.8 An EPCIS event that marks the
beginning of life for an
instance-level or lot-level
identifier may include
corresponding master data
directly in the event.

The master data in the event SHALL reflect the current values of master data attributes,
as known to the event creator, as of the event time. Note that because this data is
embedded directly in the event, it is permanently a part of that event and will always be
included when this event is queried for (subject to redaction as specified in section 8.2.2).

Header of XML EPCIS
document

9.5 An EPCIS document used for
point-to-point transmission of
a collection of EPCIS events
outside of the EPCIS Query
Interface may include relevant
master data in the document
header.

The master data in the document header SHALL reflect the current values of master data
attributes, as known to the document creator, as of the time the document is created.
Master data in the header of an EPCIS document SHALL NOT specify attribute values that
conflict with the ILMD section of any event contained within the EPCIS document body.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 36 of 229

6.2 Standard vocabulary and user vocabulary
Before version 2.0, EPCIS / CBV have previously used the terms 'vocabulary type' to refer to standard EPCIS event data fields whose value is expected to
be populated either using one of the enumerated values of the corresponding 'standard vocabulary' defined within CBV or with a value 'user vocabulary'
that might be defined by a single organisation, solution provider, industry sector or other consortium.

Starting with version 2.0, EPCIS and CBV add support for Linked Data (in particular, a JSON-LD representation and formal Linked Data ontologies for the
data models). A Linked Data ontology is sometimes also referred to as a vocabulary. However, when specialists in ontologies, Linked Data or Semantic
Web talk about a vocabulary, they are not only referring to enumerated code lists; a Linked Data vocabulary can also define classes, properties and
identifiers in addition to code lists of enumerated values. The table below provides a mapping of the historical terminology used within EPCIS/CBV versus
the terminology used by ontologists, in which 'vocabulary' has a much broader meaning than 'enumeration'.

Example EPCIS/CBV describes as Ontological description
(A Linked Data Vocabulary or Web Vocabulary can
define anything below)

ObjectEvent Event Type Class

eventTime field A field Datatype Property
(expects a non-URI literal value)

epcList field A field Object Property
(expecting a URI)

bizStep field A 'Vocabulary Type' Object Property
(expecting a URI)

'shipping' An individual value within CBV BizStep Vocabulary Individual within a Class
(value within a code list enumeration)

['shipping', 'receiving', …] a CBV Vocabulary, 'BizStep' Class containing individuals, each individual having a
definition, the class representing a code list

Vocabularies are used extensively within EPCIS to model physical, digital, and conceptual entities that exist in the real world. Examples of vocabularies
defined in the core EPCIS Data Definition Layer are location names, object class names (an object class name is something like “Acme Deluxe Widget,” as
opposed to an EPC which names a specific instance of an Acme Deluxe Widget), and business step names. In each case, a vocabulary represents a finite
(though open-ended) set of alternatives that may appear in specific fields of events.

It is useful to distinguish two kinds of vocabularies, which follow different patterns in the way they are defined and extended over time:

■ Standard Vocabulary: A Standard Vocabulary represents a set of Vocabulary Elements whose definition and meaning must be agreed to in advance by
trading partners who will exchange events using the vocabulary. For example, the EPCIS Core Data Definition Layer defines a vocabulary called
“business step,” whose elements are identifiers denoting such things as “shipping,” “receiving,” and so on. One trading partner may generate an event
having a business step of “shipping,” and another partner receiving that event through a query can interpret it because of a prior agreement as to
what “shipping” means.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 37 of 229

Standard Vocabulary elements are defined in the CBV, as well as in more application-specific GS1 application standards, having been developed and
vetted by user-driven GS1 workgroups. The master data associated with Standard Vocabulary elements are defined by those same organisations and
tend to be distributed to users as part of a specification or by some similar means. New vocabulary elements within a given Standard Vocabulary are
introduced through a very deliberate process, such as the ratification of a new version of a standard or through a vote of a GS1 workgroup. While an
individual end user organisation acting alone may introduce a new Standard Vocabulary element, such an element would have limited use in a data
exchange setting and would probably only be used within an organisation’s four walls.

■ User Vocabulary: A User Vocabulary represents a set of Vocabulary Elements whose definition and meaning are under the control of a single
organisation or consortium. For example, the EPCIS Core Data Definition Layer defines a vocabulary called “business location,” whose elements are
identifiers denoting such things as “Acme Corp. Distribution Centre #3.” Acme Corp may generate an event having a business location of “Acme Corp.
Distribution Centre #3,” and another partner receiving that event through a query can interpret it either because it correlates it with other events
naming the same location, or by looking at master data attributes associated with the location, or both.

User Vocabulary elements are primarily defined by users or consortia. New vocabulary elements within a given User Vocabulary are introduced at the
sole discretion of these parties, and trading partners must be prepared to respond accordingly. Usually, however, the rules for constructing new User
Vocabulary Elements are established by organisations of multiple end users, and in any case must follow the rules defined in section 6.4 below.

The lines between these two kinds of vocabularies are subjective. Because the mechanisms defined in the EPCIS specification make no distinction
between the two vocabulary types, it is never necessary to identify a particular vocabulary as belonging to one type or the other. The terms “Standard
Vocabulary” and “User Vocabulary” are introduced only because they are useful as a hint as to the way a given vocabulary is expected to be defined and
extended.

The CBV provides standardised vocabulary elements for many of the vocabulary types used in EPCIS event types. In particular, the CBV defines
vocabulary elements for the following EPCIS Standard Vocabulary types: Business Step, Disposition, Persistent Disposition, Business Transaction Type,
Source/Destination Type, Error Reason, and Sensor Property Type. The CBV also defines templates for constructing vocabulary elements for the following
EPCIS User Vocabulary types: Object (EPC), Object Class (EPCClass), Location (Read Point and Business Location), Business Transaction ID,
Source/Destination ID, Transformation ID, Event ID, Chemical Substance ID, Microorganism ID, and Resource ID.

6.3 Extension mechanisms
A key feature of EPCIS is its ability to be extended by different organisations to adapt to particular business situations. In all, the Abstract Data Model
Layer provides five methods by which the data processed by EPCIS may be extended (the Service Layer, in addition, provides mechanisms for adding
additional services), enumerated here from the most invasive type of extension to the least invasive:

■ New Event Type: A new Event Type may be added in the Data Definition Layer. Adding a new Event Type requires each of the Data Definition Bindings
to be extended, and may also require extension to the Capture and Query Interfaces and their Bindings.

■ New Event Field: A new field may be added to an existing Event Type in the Data Definition Layer. The bindings, capture interface, and query
interfaces defined in this specification are designed to permit this type of extension without requiring changes to the specification itself. (The same
may not be true of other bindings or query languages defined outside this specification.)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 38 of 229

■ New Vocabulary Type: A new Vocabulary Type may be added to the repertoire of available Vocabulary Types. No change to bindings or interfaces are
required.

■ New master data attribute: A new attribute name may be defined for an existing Vocabulary. No change to bindings or interfaces are required.

■ New Instance/Lot master data (ILMD) Attribute: A new attribute name may be defined for use in Instance/Lot master data (ILMD); see section 7.3.8.
No change to bindings or interfaces are required.

■ New Vocabulary Element A new element may be added to an existing Vocabulary.

The Abstract Data Model Layer has been designed so that most extensions arising from adoption by different industries or increased understanding within
a given industry can be accommodated by the latter methods in the above list, which do not require revision to the specification itself. The more invasive
methods at the head of the list are available, however, in case a situation arises that cannot be accommodated by the latter methods.

It is expected that there will be several different ways to extend the EPCIS specification, as summarised below:

How extension is disseminated Responsible organisation Extension method

New
Event
Type

New
Event
Field

New
Vocabulary
Type

New master data
or ILMD (section
7.3.8) Attribute

New Vocabulary Element

New Version of EPCIS standard GS1 EPCIS/CBV MSWG Yes Yes Yes Occasionally Rarely

New Version of CBV standard GS1 EPCIS/CBV MSWG No No No Yes Yes (Standard Vocabulary, User
Vocabulary template)

GS1 Application Standard for a
specific industry

GS1 Application Standard
Working Group for a
specific industry

Rarely Rarely Occasionally Yes Yes (Standard Vocabulary)

GS1 Member Organisation Local
Recommendation Document for
a specific industry within a
specific geography

GS1 Member Organisation Rarely Rarely Occasionally Yes Yes (Standard Vocabulary)

Private Group Interoperability
Specification

Industry Consortium or
Private End User Group
outside GS1

Rarely Rarely Occasionally Yes Yes (Standard Vocabulary)

Updated master data via EPCIS
Query or other data sync

Individual End User Rarely Rarely Rarely Rarely Yes (User vocabulary)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 39 of 229

6.4 Identifier representation
The Abstract Data Model Layer introduces several kinds of identifiers, including Event Type names, Event Field names, Vocabulary names, Vocabulary
Elements, and master data Attribute Names. Because all of these namespaces are open to extension, this specification imposes some rules on the
construction of these names so that independent organisations may create extensions without fear of name collision.

Vocabulary Elements are subject to the following rules. In all cases, a Vocabulary Element is represented as Uniform Resource Identifier (URI) whose
general syntax is defined in [RFC3986]. The types of URIs admissible as Vocabulary Elements are those URIs for which there is an owning authority. This
includes:

■ URI representations for EPC codes [TDS]. The owning authority for a particular EPC URI is the organisation to whom the GS1 Company Prefix (or other
issuing authority, depending on the EPC scheme) was assigned.

■ Absolute Uniform Resource Locators (URLs) [RFC1738]. The owning authority for a particular URL is the organisation that owns the Internet domain
name in the authority portion of the URL.

■ Uniform Resource Names (URNs) [RFC8141] in the oid namespace that begin with a Private Enterprise Number (PEN). The owning authority for an
OID-URN is the organisation to which the PEN was issued.

■ Uniform Resource Names (URNs) [RFC8141] in the epc or epcglobal namespace, other than URIs used to represent EPCs [TDS]. The owning
authority for these URNs is GS1.

■ GS1 Digital Link URIs in the form normatively specified in the GS1 Digital Link standard [GS1DL], restricted to a highly constrained set of GS1 Digital
Link URIs that corresponds to each of the EPC Pure Identity URI schemes defined in TDS. (See section 8 of CBV for details.) The canonical form of GS1
Digital Link URIs is recommended but optional.

Event Type names and Event Field names are represented as namespace-qualified names (qnames), consisting of a namespace URI and a name. This has
a straightforward representation in XML bindings that is convenient for extension.

6.5 Hierarchical vocabularies
Some Vocabularies have a hierarchical or multi-hierarchical structure. For example, a vocabulary of location names may have an element that means
“Acme Corp. Retail Store #3” as well others that mean “Acme Corp. Retail Store #3 Backroom” and “Acme Corp. Retail Store #3 Sales Floor.” In this
example, there is a natural hierarchical relationship in which the first identifier is the parent and the latter two identifiers are children.

Hierarchical relationships between vocabulary elements are represented through master data. Specifically, a parent identifier carries, in addition to its
master data attributes, a list of its children identifiers. Each child identifier SHALL belong to the same Vocabulary as the parent. In the example above, the
element meaning “Acme Corp. Distribution Centre #3” would have a children list including the element that means “Acme Corp. Distribution Centre #3
Door #5.”

Elsewhere in this specification, the term “direct or indirect descendant” is used to refer to the set of vocabulary elements including the children of a given
vocabulary element, the children of those children, etc. In other words, the “direct or indirect descendants” of a vocabulary element include both the
vocabulary elements from the next lower hierarchical level, as well as vocabulary elements in subsequent lower hierarchical levels.

https://www.gs1.org/standards/gs1-digital-link

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 40 of 229

A given element MAY be the child of more than one parent. This allows for more than one way of grouping vocabulary elements; for example, locations
could be grouped both by geography and by function. An element SHALL NOT, however, be a child of itself, either directly or indirectly.

 Non-Normative: Explanation: In the present version of this specification, only one hierarchical relationship is provided for, namely the relationship
encoded in the special “children” list. Future versions of this specification may generalise this to allow more than one relationship, perhaps encoding
each relationship via a different master data attribute.

Hierarchical relationships are given special treatment in queries (section 8.2), and may play a role in carrying out authorisation policies (section 8.2.2),
but do not otherwise add any additional complexity or mechanism to the Abstract Data Model Layer.

The GS1 GLN Allocation Rules Standard [GLNAR3.0] provide a normative framework for identification of parties and locations.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 41 of 229

7 Data definition layer
This section includes normative specifications of modules in the Data Definition Layer.

7.1 General rules for specifying data definition layer modules
The general rules for specifying modules in the Data Definition Layer are given here. These rules are then applied in section 7.2 to define the Core Event
Types Module. These rules can also be applied by organisations wishing to layer a specification on top of this specification.

7.1.1 Content

In general, a Data Definition Module specification has these components, which populate the Abstract Data Model framework specified in section 6:

■ Value Types: Definitions of data types that are used to describe the values of Event Fields and of master data attributes. The Core Event Types Module
defines the primitive types that are available for use by all Data Definition Modules. Each Vocabulary that is defined is also implicitly a Value Type.

■ Event Types: Definitions of Event Types, each definition giving the name of the Event Type (which must be unique across all Event Types) and a list of
standard Event Fields for that type. An Event Type may be defined as a subclass of an existing Event Type, meaning that the new Event Type includes
all Event Fields of the existing Event Type plus any additional Event Fields provided as part of its specification.

■ Event Fields: Definitions of Event Fields within Event Types. Each Event Field definition specifies a name for the field (which must be unique across all
fields of the enclosing Event Type) and the data type for values in that field. Event Field definitions within a Data Definition Module may be part of new
Event Types introduced by that Module, or may extend Event Types defined in other Modules.

■ Vocabulary Types: Definitions of Vocabulary Types, each definition giving the name of the Vocabulary (which must be unique across all Vocabularies),
a list of standard master data attributes for elements of that Vocabulary, and rules for constructing new Vocabulary Elements for that Vocabulary.
(Any rules specified for constructing Vocabulary Elements in a Vocabulary Type must be consistent with the general rules given in section 6.4)

■ Master data attributes: Definitions of master data attributes for Vocabulary Types. Each master data attribute definition specifies a name for the
Attribute (which must be unique across all attributes of the enclosing Vocabulary Type) and the data type for values of that attribute. Master data
definitions within a Data Definition Module may belong to new Vocabulary Types introduced by that Module, or may extend Vocabulary Types defined
in other Modules.

■ Vocabulary Elements: Definitions of Vocabulary Elements, each definition specifying a name (which must be unique across all elements within the
Vocabulary, and conform to the general rules for Vocabulary Elements given in section 6.4 as well as any specific rules specified in the definition of the
Vocabulary Type), and optionally specifying master data (specific attribute values) for that element.

 Non-Normative: Amplification: As explained in section 6.3, Data Definition Modules defined in this specification and by companion specifications
developed by the EPCIS Working Group will tend to include definitions of Value Types, Event Types, Event Fields, and Vocabulary Types, while
modules defined by other groups will tend to include definitions of Event Fields that extend existing Event Types, master data attributes that extend

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 42 of 229

existing Vocabulary Types, and Vocabulary Elements that populate existing Vocabularies. Other groups may also occasionally define Vocabulary
Types.

The word “Vocabulary” is used informally to refer to a Vocabulary Type and the set of all Vocabulary Elements that populate it.

7.1.2 Notation

In the sections below, Event Type and Event fields are specified using a restricted form of UML class diagram notation. UML class diagrams used for this
purpose may contain classes that have attributes (fields) and associations, but not operations.

The example UML diagram to the right shows a
data definition for two Event Types,
EventType1 and EventType2. These event
types make use of four Value Types: Type1,
Type2, DataClass3, and DataClass4.
Type1 and Type2 are primitive types, while
DataClass3 and DataClass4 are complex
types whose structure is also specified in UML.

The Event Type 1 in this example has four
fields. Field1 and Field2 are of primitive
type Type1 and Type2 respectively. 1 has
another field Field3 whose type is
DataClass3. Finally, 1 has another field
Field4 that contains a list of zero or more
instances of type DataClass4 (the “0..*”
notation indicates “zero or more”).

This diagram also shows a data definition for
EventType2. The arrow with the open-triangle
arrowhead indicates that EventType2 is a subclass of EventType1. This means that EventType2 actually has five fields: four fields inherited from
EventType1 plus a fifth field5 of type Type1.

Within the UML descriptions, the notation <<extension point>> identifies a place where implementations SHALL provide for extensibility through the
addition of new data members. (When one type has an extension point, and another type is defined as a subclass of the first type and also has an
extension point, it does not mean the second type has two extension points; rather, it merely emphasises that the second type is also open to extension.)
Extensibility mechanisms SHALL provide for both proprietary extensions by vendors of EPCIS-compliant products, and for extensions defined by GS1
through future versions of this specification or through new specifications.

EventType1
field1 : Type1
field2 : Type2
<<extension
point>>

DataClass3

DataClass4

Field3

Field4

0..*

EventType2
field5 : Type1
<<extension
point>>

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 43 of 229

In the case of the standard XML bindings, the extension points are implemented within the XML schema following the methodology described in section
9.1.

All definitions of Event Types SHALL include an extension point, to provide for the extensibility defined in section 6.3 (“New Event Fields”). Value Types
MAY include an extension point.

7.1.3 Semantics

Each event (an instance of an Event Type) encodes several assertions which collectively define the semantics of the event. Some of these assertions say
what was true at the time the event was captured. Other assertions say what is expected to be true following the event, until invalidated by a subsequent
event. These are called, respectively, the retrospective semantics and the prospective semantics of the event. For example, if widget #23 enters building
#5 through door #6 at 11:23pm, then one retrospective assertion is that “widget #23 was observed at door #6 at 11:23pm,”, while a prospective
assertion is that “widget #23 is in building #5.” The key difference is that the retrospective assertion refers to a specific time in the past (“widget #23 was
observed…”), while the prospective assertion is a statement about the present condition of the object (“widget #23 is in…”). The prospective assertion
presumes that if widget #23 ever leaves building #5, another EPCIS capture event will be recorded to supersede the prior one.

In general, retrospective semantics are things that were incontrovertibly known to be true at the time of event capture, and can usually be relied upon by
EPCIS Accessing Applications as accurate statements of historical fact. Prospective semantics, since they attempt to say what is true after an event has
taken place, must be considered at best to be statements of “what ought to be” rather than of “what is.” A prospective assertion may turn out not to be
true if the capturing apparatus does not function perfectly, or if the business process or system architecture were not designed to capture EPCIS events in
all circumstances. Moreover, in order to make use of a prospective assertion implicit in an event, an EPCIS Accessing Application must be sure that it has
access to any subsequent event that might supersede the event in question.

The retrospective/prospective dichotomy plays an important role in EPCIS’s definition of location, in section 7.3.4.

In certain situations, an earlier event is subsequently discovered to be in error (the assertions its semantics makes are discovered to be incorrect), and
the error cannot be corrected by recording a new event that adds additional assertions through its own semantics. For these cases, a mechanism is
provided to record an event whose semantics assert that the assertions previously made by the erroneous event are in error. See section 7.4.1.2.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 44 of 229

7.2 Core event types module – overview
The Core Event Types data definition module specifies the Event Types that represent EPCIS data capture events. These events are typically generated by
an EPCIS Capturing Application and provided to EPCIS infrastructure using the data capture operations defined in section 8.1. These events are also
returned in response to query operations that retrieve events according to query criteria.

The components of this module, following the outline given in section 7.1.1, are as follows:

■ Value Types: Primitive types defined in section 7.3.1 and 7.3.2.

■ Event Types: Event types as shown in the UML diagram in section 7.2.1, and defined in section 7.4.

■ Event Fields: Included as part of the Event Types defined in section 7.4.

■ Vocabulary Types: Types defined in section 7.3.3 through 7.3.8, and summarised in section 7.1.1.

■ Master data attributes: Included as part of Vocabulary Types definitions. It is expected that industry vertical working groups will define additional
master data attributes for the vocabularies defined here.

■ Vocabulary Elements: None provided as part of this specification. It is expected that industry vertical working groups will define vocabulary elements
for the BusinessStep vocabulary (section 7.3.6), the Disposition vocabulary (section 7.3.6.2), and the BusinessTransactionType vocabulary
(section 7.3.6.3.1).

This module defines six event types, one very generic event and five subclasses that can represent events arising from supply chain activity across a wide
variety of industries:

■ EPCISEvent (section 7.4.1) is a generic base class for all event types in this module as well as others.

■ ObjectEvent (section7.4.2) represents an event that happened to one or more physical or digital objects.

■ AggregationEvent (section 7.4.3) represents an event that happened to one or more objects that are physically aggregated together (physically
constrained to be in the same place at the same time, as when cases are aggregated to a pallet).

■ TransactionEvent (section 7.4.4) represents an event in which one or more objects become associated or disassociated with one or more identified
business transactions.

■ TransformationEvent (section 7.4.5) represents an event in which input objects are fully or partially consumed and output objects are produced,
such that any of the input objects may have contributed to all of the output objects.

■ AssociationEvent (section 7.4.6) is similar to an AggregationEvent, but allows for associations of objects with physical locations, and is especially
suited to capture parent-child relationships that persist even after more temporarily linked children are disassociated from the parent.

A UML diagram showing these Event Types is depicted in the following section.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 45 of 229

7.2.1 UML Diagrams of EPCIS Event Types

7.2.1.1 UML with Ontology focus

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 46 of 229

7.2.1.2 UML with Syntax focus

Figure 7-1

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 47 of 229

7.2.1.3 UML for SBDH

 Note: The UML class diagrams for SBDH, which are not central to the EPCIS event data model, are included in section 13.3.

7.2.2 Overview of EPCIS event "dimensions" (non-normative)
Each of the core event types (not counting the generic EPCISEvent) has fields that represent five key dimensions of any EPCIS event. These five
dimensions are: (1) the object(s) or other entities that are the subject of the event; (2) the date and time; (3) the location at which the event occurred
and/or the whereabouts of the objects subsequent to the event; (4) the business context; (5) the condition of the objects that are the subject of the
event. These five dimensions may be conveniently remembered as “what, when, where, why and how” (respectively). The “what” dimension varies
depending on the event type (e.g., for an ObjectEvent the “what” dimension is one or more EPCs; for an AggregationEvent the “what” dimension is a
parent ID and list of child EPCs). The “where” and “why” dimensions have both a retrospective aspect and a prospective aspect (see section 7.1.3),
represented by different fields. The "how" dimension is populated on the basis of captured sensor data.

The following table summarises the fields of the event types that pertain to the five key dimensions;

in addition to the fields belonging to the five key dimensions, events may carry additional descriptive information in other fields, also indicated in the table
below.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 48 of 229

Dimension in
EPCIS/CBV
1.x

Categorisation in

EPCIS/CBV 2.0
Field EPCIS section

in which the field is defined

CBV section
in which its value range is
specified

WHAT Objects
in Focus
 (WHAT)

I
n
s
t
a
n
c
e
 epcList 7.4.2 ObjectEvent

7.4.4 TransactionEvent

EPC Tag Data Standard
(TDS) section 6,"EPC
URI"

8.2 Physical or Digital
Objects (Instance)

parentID 7.4.3 AggregationEvent

7.4.4 TransactionEvent

7.4.6 AssociationEvent

childEPCs 7.4.3 AggregationEvent

7.4.6 AssociationEvent

inputEPCList 7.4.5 TransformationEvent

outputEPCList
C
l
a
s
s
 quantityList 7.4.2 ObjectEvent

7.4.4 TransactionEvent

EPC Tag Data Standard
(TDS) section 8,"URIs
for EPC Pure Identity
Patterns"

8.3 Physical or Digital
Objects (Class)

childQuantityList 7.4.3 AggregationEvent

7.4.6 AssociationEvent

inputQuantityList 7.4.5 TransformationEvent

outputQuantityList

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 49 of 229

Dimension in
EPCIS/CBV
1.x

Categorisation in

EPCIS/CBV 2.0
Field EPCIS section

in which the field is defined

CBV section
in which its value range is
specified

WHEN

Chronology
(WHEN)

 eventTime

7.4.1 EPCISEvent

 eventTimeZoneOffset

 recordTime 7.4.1 EPCISEvent

WHERE

Whereabouts
(WHERE)

 readPoint

7.4.2 ObjectEvent

7.4.3 AggregationEvent

7.4.4 TransactionEvent

7.4.5 TransformationEvent

7.4.6 AssociationEvent

8.4 Locations

 bizLocation

n/a Condition
(HOW)

 sensorElementList

7.4.2 ObjectEvent

7.4.3 AggregationEvent

7.4.4 TransactionEvent

7.4.5 TransformationEvent

7.4.6 AssociationEvent

7.6 Sensor Measurement
Types
8.9 Chemical substance
identifiers

8.10 Microorganism
identifiers

WHY Business
Context
(WHY)

bizStep 7.4.2 ObjectEvent

7.4.3 AggregationEvent

7.4.4 TransactionEvent

7.1 Business Steps

bizTransactionList 8.5 Business
Transactions

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 50 of 229

Dimension in
EPCIS/CBV
1.x

Categorisation in

EPCIS/CBV 2.0
Field EPCIS section

in which the field is defined

CBV section
in which its value range is
specified

disposition 7.4.5 TransformationEvent

7.4.6 AssociationEvent

7.1 Dispositions

persistentDispositi
on

7.1 Dispositions

sourceList 8.6 Source/Destination
Identifiers

destinationList

Other fields ilmd 7.3.7 Instance/lot master
data (ILMD)

9 Trade Item Master
Data

(core field) action
7.3.2 Action type

(transformationI
D)

transformationID

7.4.5 TransformationEvent

8.7 Transformation
Identifiers

(core field) eventID
7.4.1 EPCISEvent

8.8 Event Identifiers

(core field) errorDeclaration
7.4.1 EPCISEvent

7.5 Error Reason
Identifiers

8.8 Event Identifiers

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 51 of 229

It is expected that the majority of additional descriptive information fields will be defined by industry-specific specifications layered on top of the core
EPCIS and CBV standards.

7.2.3 Table of vocabulary types
The following table summarises the vocabulary types defined in this module. The URI column gives the formal name for the vocabulary used when the
vocabulary must be referred to by name across the EPCIS interface.

Vocabulary type Section User or
standard
vocabulary

URI

ReadPointID 7.3.5 User urn:epcglobal:epcis:vtype:ReadPoint

BusinessLocationID 7.3.5 User urn:epcglobal:epcis:vtype:BusinessLocation

BusinessStepID 7.3.6.1 Standard urn:epcglobal:epcis:vtype:BusinessStep

DispositionID 7.3.6.2 Standard urn:epcglobal:epcis:vtype:Disposition

BusinessTransaction 7.3.6.3 User urn:epcglobal:epcis:vtype:BusinessTransaction

BusinessTrasactionTypeID 7.3.6.3.1 Standard urn:epcglobal:epcis:vtype:BusinessTransactionType

EPCClass 7.3.3.1.2 User urn:epcglobal:epcis:vtype:EPCClass

SourceDestTypeID 7.3.6.4.1 Standard urn:epcglobal:epcis:vtype:SourceDestType

SourceDestID 7.3.6.4.2 User urn:epcglobal:epcis:vtype:SourceDest

LocationID 7.3.5 User urn:epcglobal:epcis:vtype:Location

PartyID 7.3.6.4.2 User urn:epcglobal:epcis:vtype:Party

ErrorReasonID 7.4.1.2 Standard urn:epcglobal:epcis:vtype:ErrorReason

SensorPropertyTypeID 7.3.7.1.4 Standard urn:epcglobal:epcis:vtype:SensorPropertyType

MicroorganismID 7.3.7.1.6 User urn:epcglobal:epcis:vtype:Microorganism

ChemicalSubstanceID 7.3.7.1.7 User urn:epcglobal:epcis:vtype:ChemicalSubstance

ResourceID 7.3.7.1.8 User urn:epcglobal:epcis:vtype:Resource

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 52 of 229

7.3 Core event types module – building blocks
This section specifies the building blocks for the event types defined in section 7.4.

7.3.1 Primitive types

The following primitive types are used within the Core Event Types Module.

Type Description

xsd:int An integer. Range restrictions are noted where applicable.

xsd:dateTimeStamp A timestamp, giving the date and time in a time zone-independent manner. For bindings in which fields of this type are represented
textually, an ISO-8601 compliant representation SHOULD be used.

EPC An Electronic Product Code Pure Identity URI, as defined in [TDS], or a GS1 Digital Link URI, as provided for in CBV section 8.

xsd:float Patterned after the IEEE single-precision 32-bit floating point datatype; often used to approximate arbitrary real numbers. The ·value
space· of float contains the non-zero numbers m × 2e , where m is an integer whose absolute value is less than 224, and e is an integer
between −149 and 104, inclusive.

xsd:double The double-precision floating point datatype is patterned after the IEEE double-precision 64-bit floating point datatype [IEEE 754-
2008]. Each double-precision floating point datatype has a value space that is a subset of the rational numbers. Floating point numbers are
often used to approximate arbitrary real numbers.

xsd:boolean Represents the values of two-valued logic; has the ·value space· of two-valued logic: {true, false}.

xsd:hexBinary Represents arbitrary hex-encoded binary data; the ·value space· of hexBinary is the set of finite-length sequences of zero or more binary
octets.

xsd:anyURI Represents an Internationalized Resource Identifier Reference (IRI); an anyURI value can be absolute or relative.

xsd:decimal Represents a subset of the real numbers, which can be represented by decimal numerals. The ·value space· of decimal is the set of
numbers that can be obtained by dividing an integer by a non-negative power of ten, i.e., expressible as i / 10n where i and n are integers
and n ≥ 0. Precision is not reflected in this value space; the number 2.0 is not distinct from the number 2.00.

xsd:string Represents character strings.

The EPC type is defined as a primitive type for use in events when referring to EPCs that are not part of a Vocabulary Type. For example, an SGTIN EPC
used to denote an instance of a trade item in the epcList field of an ObjectEvent is an instance of the EPC primitive type. But an SGLN EPC used as a
read point identifier (section 7.3.4) in the ReadPoint field of an ObjectEvent is a Vocabulary Element, not an instance of the EPC primitive type.

 Non-Normative: Explanation: This reflects a design decision not to consider individual trade item instances as Vocabulary Elements having master
data, because trade item instances are constantly being created and hence new EPCs representing trade items are constantly being commissioned.

https://www.w3.org/TR/xmlschema11-2/#dt-value-space
https://www.w3.org/TR/xmlschema11-2/#dt-value-space
https://www.w3.org/TR/xmlschema11-2/#dt-value-space
https://www.w3.org/TR/xmlschema11-2/#dt-value-space

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 53 of 229

In part, this design decision reflects consistent treatment of master data as excluding data that grows as more business is transacted (see comment
in section 6.1), and in part reflects the pragmatic reality that data about trade item instances is likely to be managed more like event data than
master data when it comes to aging, database design, etc.

7.3.2 Action type
The Action type says how an event relates to the lifecycle of the entity being described. For example, AggregationEvent (section 7.4.3) is used to
capture events related to aggregations of objects, such as cases aggregated to a pallet. Throughout its life, the pallet load participates in many business
process steps, each of which may generate an EPCIS event. The action field of each event says how the aggregation itself has changed during the
event: have objects been added to the aggregation, have objects been removed from the aggregation, or has the aggregation simply been observed
without change to its membership? The action is independent of the bizStep (of type BusinessStepID) which identifies the specific business process
step in which the action took place.

The Action type is an enumerated type having three possible values:

Action
value

Meaning

ADD The entity in question has been created or added to.

OBSERVE The entity in question has not been changed: it has neither been created, added to, destroyed, or removed from.

DELETE The entity in question has been removed from or destroyed altogether.

The description below for each event type that includes an Action value says more precisely what Action means in the context of that event.

Note that the values above are the only values possible for Action. Unlike other types defined below, Action is not a vocabulary type, and SHALL NOT
be extended by industry groups.

7.3.3 The “What” dimension
Section 8.2 and section 8.3 of the CBV defines the data fields and the expected value types and data types used in the “What” dimension of EPCIS events,
including discussion of class-level vs instance-level identification.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 54 of 229

7.3.3.1 QuantityElement

A QuantityElement is a structure that identifies objects identified by a specific class-level identifier, either a specific quantity or an unspecified quantity.
It has the following structure:

Field Type Description

epcClass EPCClass A class-level identifier for the class to which the specified quantity of objects belongs.

quantity xsd:double (Optional) A number that specifies how many or how much of the specified EPCClass is denoted by this QuantityElement.

The quantity may be omitted to indicate that the quantity is unknown or not specified. If quantity is omitted, then uom SHALL be
omitted as well.
Otherwise, if quantity is specified:

If the QuantityElement lacks a uom field (below), then the quantity SHALL have a positive integer value, and denotes a count of the
number of instances of the specified EPCClass that are denoted by this QuantityElement.

If the QuantityElement includes a uom, then the quantity SHALL have a positive value (but not necessarily an integer value), and
denotes the magnitude of the physical measure that specifies how much of the specified EPCClass is denoted by this
QuantityElement

uom UOM (Optional) If present, specifies a unit of measure by which the specified quantity is to be interpreted as a physical measure, specifying how
much of the specified EPCClass is denoted by this QuantityElement. The uom SHALL be omitted if quantity is omitted.

EPCClass is a Vocabulary whose elements denote classes of objects. EPCClass is a User Vocabulary as defined in section 6.2. Any EPC whose structure
incorporates the concept of object class can be referenced as an EPCClass.

An EPCClass may refer to a class having fixed measure or variable measure. A fixed measure class has instances that may be counted; for example, a
GTIN that refers to fixed-size cartons of a product. A variable measure class has instances that cannot be counted and so the quantity is specified as a
physical measure; for example, a GTIN that refers to copper wire that is sold by length, carpeting that is sold by area, bulk oil that is sold by volume, or
fresh produce that is sold by weight. The following table summarises how the quantity and uom fields are used in each case:

EPCClass quantity field uom field Meaning

Fixed measure Positive integer Omitted The quantity field specifies the count of the specified class.

Variable measure Positive number, not
necessarily an integer

Present The quantity field specifies the magnitude, and the uom field the physical unit, of a
physical measure describing the amount of the specified class.

Fixed or Variable Measure Omitted Omitted The quantity is unknown or not specified.

Master data attributes for the EPCClass vocabulary contain whatever master data is defined for the referenced objects independent of EPCIS (for
example, product catalogue data); definitions of these are outside the scope of this specification.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 55 of 229

7.3.3.1.1 UOM

As specified above, the uom field of a QuantityElement is present when the QuantityElement uses a physical measure to specify the quantity of the
specified EPCClass. When a uom field is present, its value SHALL be the 2- or 3-character code for a physical unit specified in the “Common Code”
column of UN/CEFACT Recommendation 20 [CEFACT20]. Moreover, the code SHALL be a code contained in a row of [CEFACT20] meeting all of the
following criteria:

■ The “Quantity” column contains one of the following quantities: length, area, volume, or mass.

■ The “Status” column does not contain “X” (deleted) or “D” (deprecated).

For purposes of the first criterion, the quantity must appear as a complete phrase. Example: “metre” (MTR) is allowed, because the quantity includes
length (among other quantities such as breadth, height, etc.). But “pound-force per foot” (F17) is not allowed, because the quantity is force divided by
length, not just length.

7.3.3.1.2 Class-level identifiers

Class-level identifiers are specified -- as EPC URNs and GS1 Digital Link URIs -- in section 8.3 of CBV.

Implementations SHALL understand queries expressed in both EPC URN and GS1 Digital Link URI syntaxes, and MAY return query
responses corresponding to either syntax, at the discretion of the responding implementation. The requesting client might need to translate the
identifiers within the query response into its preferred syntax.

7.3.3.2 Identifier types (Non-Normative)

The normative specifications of identifiers are in the EPC Tag Data Standard [TDS], the EPC Core Business Vocabulary [CBV] and the GS1 Digital Link
Standard [DL].

7.3.4 The "When" dimension
The "When" dimension of EPCIS includes data fields that provide a chronological context to visibility events.

7.3.4.1 The "When" dimension in the EPCISEvent common base type

The EPCISEvent common base type includes the eventTime, recordTime and eventTimeZoneOffset fields, as specified in section 7.4.1.

7.3.4.2 The "When" dimension in the Error Declaration

The EPCIS Error Declaration element, specified in section 7.4.1.2.1 , includes -- beyond the reiterated fields of the original, erroneous event -- the
declarationTime field.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 56 of 229

7.3.4.3 The "When" dimension in Sensor Metadata

EPCIS Sensor Metadata, specified in section 7.3.7.1.1, includes the time, startTime, and endTime fields, which relate to the time of sensor data capture
(i.e., rather than the time of the EPCIS event capture).

7.3.5 The “Where” Dimension – read point and business location
This section addresses the notion of location information as used in EPCIS.

EPCIS location types are defined as EPCIS Vocabulary Types, as follows:

Type Description

ReadPointID A Read Point is a discretely recorded location that is meant to identify the most specific place at which an EPCIS event took place. Read
Points are determined by the EPCIS Capturing Application, perhaps inferred as a function of logical reader if stationary readers are used,
perhaps determined overtly by reading a location tag if the reader is mobile, or in general determined by any other means the EPCIS
Capturing Application chooses to use. Conceptually, the Read Point is designed to identify “where objects were at the time of the EPCIS
event.”

BusinessLocationID A Business Location is a uniquely identified and discretely recorded location that is meant to designate the specific place where an object is
assumed to be following an EPCIS event until it is reported to be at a different Business Location by a subsequent EPCIS event. As with the
Read Point, the EPCIS Capturing Application determines the Business Location based on whatever means it chooses. Conceptually, the
Business Location is designed to identify “where objects are following the EPCIS event.”

ReadPointID and BusinessLocationID are User Vocabularies as defined in section 6.2. Some industries may wish to use EPCs as vocabulary
elements, in which case pure identity URIs as defined in [TDS] SHALL be used.

Note:

The LocationID type is a supertype of ReadPointID, BusinessLocationID, and SourceDestID. In an EPCIS master data document (or master data
header within an EPCIS document or EPCIS query document), the urn:epcglobal:epcis:vtype:Location URI may be used to specify a single
vocabulary containing identifiers that may appear in the read point, business step, source, or destination field of associated EPCIS events.

 Non-Normative: Illustration: For example, in industries governed by GS1 General Specifications, readPointID, and businessLocationID may
be SGLN-URIs.

Location vocabulary elements are not required to be EPCs.

 Non-Normative: Explanation: Allowing non-EPC URIs for locations gives organisations greater freedom to reuse existing ways of naming locations.

For all of the EPCIS Event Types defined in this section, capture events include separate fields for Read Point and Business Location. In most cases, both
are optional, so that it is still possible for an EPCIS Capturing Application to include partial information if both are not known.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 57 of 229

 Non-Normative: Explanation: Logical Reader and Physical Reader are omitted from the definitions of EPCIS events in this specification. Physical
Reader is generally not useful information for exchange between partners. For example, if a reader malfunctions and is replaced by another reader
of identical make and model, the Physical Reader ID has changed. This information is of little interest to trading partners. Likewise, the Logical
Reader ID may change if the capturing organisation makes a change in the way a particular business process is executed; again, not often of
interest to a partner.

The distinction between Read Point and Business Location is very much related to the dichotomy between retrospective semantics and prospective
semantics discussed above. In general, Read Points play a role in retrospective semantics, while Business Locations are involved in prospective
statements. This is made explicit in the way each type of location enters the semantic descriptions given at the end of each section below that defines an
EPCIS capture event.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 58 of 229

7.3.5.1 Example of the distinction between a read point and a business location (Non-Normative)

Tag Time Read Point Business Location Comment

#123 07:00 “RP-DC#88-A” DC#88.Receive & Store Product entered DC via DockDoor#R1

#123 09:00 “RP-DC#88-K” DC#88.Shipping Product placed on conveyor for shipping

#123 09:30 “RP-DC#88-N” [omitted] Product shipped via dock door#S2

The figure above shows a typical use case consisting of rooms with fixed doorways at the boundaries of the rooms. In such a case, Read Points correspond
to the doorways (with RFID instrumentation) and Business Locations correspond to the rooms. Note that the Read Points and Business Locations are not in

Receive & Store Shipping

DC#88
Physical View:

Graph View:

ShippingReceive
& Store

RP:K
RP:C

RP:B

RP:A

RP:O

RP:N

RP:M

DC#88

Recv Dock#R3

Recv Dock#R2

Recv Dock#R1

Shipping Dock#S3

Shipping Dock#S2

Shipping Dock#S1

RP : A

RP : B

RP : C

RP : M

RP : O

RP : K RP : N2 3

1

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 59 of 229

one-to-one correspondence; the only situation where Read Points and Business Locations could have a 1:1 relationship is the unusual case of a room with
a single door, such a small storeroom.

Still considering the rooms-and-doors example, the Business Location is usually the location type of most interest to a business application, as it says
which room an object is in. Thus, it is meaningful to ask the inventory of a Business Location such as the backroom. In contrast, the Read Point indicates
the doorway through which the object entered the room. It is not meaningful to ask the inventory of a doorway. While sometimes not as relevant to a
business application, the Read Point is nevertheless of significant interest to higher level software to understand the business process and the final status
of the object, particularly in the presence of less than 100% read rates. Note that correct designation of the business location requires both that the
tagged object be observed at the Read Point and that the direction of movement be correctly determined – again reporting the Read Point in the event will
be very valuable for higher level software.

A supply chain like the rooms-and-doors example may be represented by a graph in which each node in the graph represents a room in which objects may
be found, and each arc represents a doorway that connects two rooms. Business Locations, therefore, correspond to nodes of this graph, and Read Points
correspond to the arcs. If the graph were a straight, unidirectional chain, the arcs traversed by a given object could be reconstructed from knowing the
nodes; that is, Read Point information would be redundant given the Business Location information. In more real-world situations, however, objects can
take multiple paths and move “backwards” in the supply chain. In these real-world situations, providing Read Point information in addition to Business
Location information is valuable for higher level software.

The key to balancing seemingly conflicting requirements is to define and relate various location types, and then to rely on the EPCIS Capturing Application
to properly record them for a given capture event. This is why EPCIS events contain both a ReadPointID and a BusinessLocationID (the two primitive
location types).

7.3.6 The “Why” dimension

This section defines the data fields and the expected value types and data types used in the “Why” dimension of the event types specified in section
7.3.6.4.

7.3.6.1 Business step

BusinessStepID is a vocabulary whose elements denote steps in business processes. An example is an identifier that denotes “shipping.” The business
step field of an event specifies the business context of an event: what business process step was taking place that caused the event to be captured?
BusinessStepID is an example of a Standard Vocabulary as defined in section 6.2.

 Non-Normative: Explanation: Using an extensible vocabulary for business step identifiers allows GS1 standards (including and especially the GS1
Core Business Vocabulary) to define some common terms such as “shipping” or “receiving,” while allowing for industry groups and individual end-
users to define their own terms. Master data provides additional information.

This specification defines no master data attributes for business step identifiers.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 60 of 229

7.3.6.2 Disposition and Persistent Disposition

DispositionID is a vocabulary whose elements denote a business state of an object. An example is an identifier that denotes “recalled.”

7.3.6.2.1 Disposition

The disposition field of an event specifies the business condition of the event’s objects, subsequent to the event. The disposition is assumed to hold true
until another event indicates a change of disposition. Intervening events that do not specify a disposition field have no effect on the presumed disposition
of the object. DispositionID is an example of a Standard Vocabulary as defined in section 6.2.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 61 of 229

Applicability of Disposition by event type

event type Action value Disposition applies to

ObjectEvent ADD

OBSERVE

DELETE

epcList

quantityList

AggregationEvent ADD

OBSERVE

parentID

childEPCs

childQuantityList

DELETE childEPCs

childQuantityList

TransactionEvent ADD

OBSERVE

DELETE

parentID

epcList

quantityList

TransformationEvent n/a outputEPCList

outputQuantityList

AssociationEvent ADD

OBSERVE

parentID

childEPCs

childQuantityList

DELETE childEPCs

childQuantityList

7.3.6.2.2 Persistent Disposition

The persistentDisposition field of an event specifies one or more business conditions of the event’s objects, subsequent to the event. One or more
persistentDisposition values can be set or unset, independently of each other. Values that are set are considered to remain valid until explicitly
unset. Like disposition, persistentDisposition leverages the DispositionID Standard Vocabulary.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 62 of 229

NOTE: persistentDisposition SHOULD only be used in conjunction with ObjectEvents with Action type OBSERVE, in order to avoid the potential for
ambiguity with regard to inheritance of persistentDisposition by child/input/output objects.

 Non-Normative: Explanation: Using an extensible vocabulary for disposition identifiers allows GS1 standards (including and especially the GS1
Core Business Vocabulary) to define some common terms such as “recalled” or “in transit,” while allowing for industry groups and individual end-
users to define their own terms. Master data may provide additional information.

This specification defines no master data attributes for disposition identifiers.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 63 of 229

Applicability of persistentDisposition by event type

event type Action value set or unset of persistentDisposition applies to

ObjectEvent ADD

OBSERVE

DELETE

epcList

quantityList

AggregationEvent ADD

OBSERVE

DELETE

n/a

TransactionEvent ADD

OBSERVE

DELETE

n/a

TransformationEvent n/a outputEPCList

outputQuantityList

AssociationEvent ADD

OBSERVE

DELETE

n/a

7.3.6.3 Business transaction

A BusinessTransaction identifies a particular business transaction. An example of a business transaction is a specific purchase order. Business
Transaction information may be included in EPCIS events to record an event’s participation in particular business transactions.

A business transaction is described in EPCIS by a structured type consisting of a pair of identifiers, as follows.

Field Type Description

type BusinessTransactionTypeID (Optional) An identifier that indicates what kind of business transaction this
BusinessTransaction denotes. If omitted, no information is available about the type of
business transaction apart from what is implied by the value of the bizTransaction field itself.

bizTransaction BusinessTransactionID An identifier that denotes a specific business transaction.

The two vocabulary types BusinessTransactionTypeID and BusinessTransactionID are defined in the sections below.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 64 of 229

7.3.6.3.1 Business transaction type

BusinessTransactionTypeID is a vocabulary whose elements denote a specific type of business transaction. An example is an identifier that denotes
“purchase order.” BusinessTransactionTypeID is an example of a Standard Vocabulary as defined in section 6.2.

 Non-Normative: Explanation: Using an extensible vocabulary for business transaction type identifiers allows GS1 standards to define some
common terms such as “purchase order” while allowing for industry groups and individual end-users to define their own terms. Master data may
provide additional information.

This specification defines no master data attributes for business transaction type identifiers.

7.3.6.3.2 Business transaction ID

BusinessTransactionID is a vocabulary whose elements denote specific business transactions. An example is an identifier that denotes “Acme Corp
purchase order number 12345678.” BusinessTransactionID is a User Vocabulary as defined in section 6.2.

 Non-Normative: Explanation: URIs are used to provide extensibility and a convenient way for organisations to distinguish one kind of transaction
identifier from another. For example, if Acme Corporation has purchase orders (one kind of business transaction) identified with an 8-digit number
as well as shipments (another kind of business transaction) identified by a 6-character string, the following business transaction IDs might be
associated with a particular EPC over time:

https://transaction.acme.com/po/12345678
https://transaction.acme.com/shipment/34ABC8

An EPCIS Accessing Application might query EPCIS and discover both of the transaction IDs; using URIs gives the application a way to understand
which ID is of interest to it.

7.3.6.4 Source and destination

A Source or Destination is used to provide additional business context when an EPCIS event is part of a business transfer; that is, a process in which
there is a transfer of ownership, responsibility, and/or custody of physical or digital objects.

In many cases, a business transfer requires several individual business steps (and therefore several EPCIS events) to execute; for example, shipping
followed by receiving, or a more complex sequence such as loading  departing  transporting  arriving  unloading  accepting. The ReadPoint and
BusinessLocation in the “where” dimension of these EPCIS events indicate the known physical location at each step of the process. Source and
Destination, in contrast, may be used to indicate the parties and/or location that are the intended endpoints of the business transfer. In a multi-step
business transfer, some or all of the EPCIS events may carry Source and Destination, and the information would be the same for all events in a given
transfer.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 65 of 229

Source and Destination provide a standardised way to indicate the parties and/or physical locations involved in the transfer, complementing the
business transaction information (e.g., purchase orders, invoices, etc.) that may be referred to by BusinessTransaction elements.

A source or destination is described in EPCIS by a structured type consisting of a pair of identifiers, as follows.

Field Type Description

type SourceDestTypeID (Optional in BizTransaction, required in SourceOrDestination, and optional in SensorReport). Indicates the kind of
BizTransaction document (e.g., po), role of SourceOrDestination (e.g., owning_party), or kind of measurement in
SensorReport (e.g., Mass).

source
or
destination

SourceDestID An identifier that denotes a specific source or destination.

The two vocabulary types SourceDestTypeID, and SourceDestID are defined in the sections below.

7.3.6.4.1 Source/Destination type

SourceDestTypeID is a vocabulary whose elements denote a specific type of business transfer source or destination. An example is an identifier that
denotes “owning party.” SourceDestTypeID is an example of a Standard Vocabulary as defined in section 6.2.

 Non-Normative: Explanation: Using an extensible vocabulary for source/destination type identifiers allows GS1 standards to define some common
terms such as “owning party” while allowing for industry groups and individual end-users to define their own terms. Master data may provide
additional information.

This specification defines no master data attributes for source/destination type identifiers.

7.3.6.4.2 Source/Destination ID

SourceDestID is a vocabulary whose elements denote specific sources and destinations. An example is an identifier that denotes “Acme Corporation (an
owning party).” SourceDestID is a User Vocabulary as defined in section 6.2.

Note:

The PartyID type is a supertype of SourceDestID. The urn:epcglobal:epcis:vtype:Location URI may be used to specify a single vocabulary
containing identifiers that may populate the source or destination field(s) of associated EPCIS events.

 Non-Normative: Explanation: URIs are used to provide extensibility and a convenient way for organisations to distinguish one kind of source or
destination identifier from another.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 66 of 229

7.3.7 The “How” dimension
This section defines the data fields and the expected value types and data types used in the “How” dimension.

7.3.7.1 SensorElement

A SensorElement is a structure that contains an optional sensorMetadata element and one or several sensorReport elements, described as follows:

Field Type Description

sensorMetadata SensorMetadata

(Optional) An element containing one or several metadata attributes, which are applicable to all sensorReport
elements that are part of the same sensorElement.

sensorReport SensorReport An element containing one or several attributes that pertain to a specific sensor observation.

For the sake of compactness, all elements contained in either the sensorMetadata or sensorReport element are inline attributes.

The following rules apply:

1. A sensorElement parent element MAY contain exactly one sensorMetadata element and SHALL contain one or more sensorReport elements.

2. The values of any inline attributes specified within the sensorMetadata element are assumed to apply for all sensorReport elements contained
within that same sensorElement.

3. The following inline attributes are permitted to appear both in a sensorMetadata as well as in a sensorReport element:
dataProcessingMethod, deviceID, deviceMetadata, rawData, and time (which are specified in section 7.3.7.1.1). If they are present in a
sensorElement container, they SHALL either be specified in the sensorMetadata element or in the sensorReport element(s) and SHALL NOT
appear in both.

Non-normative: Explanation: Even though it would technically be feasible, EPCIS SHOULD NOT be used to accommodate raw sensor data unless there is
a strong reason to do so. The added value of the sensorElement in EPCIS consists in the abstraction from raw sensor data and provisioning of
aggregated, business-oriented data to accessing applications. For instance, instead of capturing thousands of time-stamped datasets, it is often far more
appropriate and efficient to only indicate the range of values of a given sensor property within a given period of time. For that purpose, an EPCIS
capturing application would only need to populate four fields: minValue, maxValue, startTime, and endTime. Even if there is a business need to have
the ability to access the underlying raw sensor data, it is neither required nor advisable to include raw data in the EPCIS event. Instead, it is advisable to
include a Web URI in the rawData element, pointing to a resource through which clients can access the underlying raw sensor data.

7.3.7.1.1 SensorMetadata

A SensorMetadata element contains a number of inline attributes, defined as follows.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 67 of 229

Field Type Description

time xsd:dateTimeStamp (Optional) The actual point in time of an observation as transmitted by a sensor device.
If present, the time value SHALL be less (earlier) than or equal to the eventTime value.

It SHALL also contain a time zone offset value.
The coordination and integrity of distributed computing requires time synchronisation of EPCIS events
conveying sensor data. Therefore, when populating the time, startTime, and endTime field, EPCIS
capture applications SHOULD apply established time synchronisation protocols such as IEEE 1588-2008,
which provides a standard method to synchronise device clocks in a network.
Note: The eventTime applies to the completion of a business step, not a sensor observation. For
instance, for a receiving event accommodating a sensor element, the eventTime indicates when goods
were received – it gives no information when certain conditions (e.g. a specific temperature value) held
true. In some circumstances, event and sensor observation times may correspond though (e.g. if a quality
inspector checks certain properties of goods). In such cases, indicating the eventTime may be sufficient.

startTime xsd:dateTimeStamp (Optional) The lowest (earliest) value of a given observation period as transmitted by a sensor device.
If present, the startTime SHALL be less (earlier) than the eventTime value and the endTime value.

endTime xsd:dateTimeStamp (Optional) The highest (most recent) value of a given observation period, as transmitted by a sensor
device.
If present, the endTime SHALL be less (earlier) than or equal to the eventTime value.

deviceID EPC (Optional) Device from which the sensor data originates.

deviceMetadata ResourceID (Optional) Storage location of an electronic document accommodating metadata of the device from which
the sensor data originates.

rawData ResourceID (Optional) Storage/service location of the raw sensor data on which the aggregated/business-oriented data
contained in the sensorElement is based.

dataProcessingMethod ResourceID (Optional) Storage location of an electronic document accommodating the data processing method of the
contained sensor data, if applicable.
For instance, before sensor data is captured in an EPCIS event, the latter might be redacted or refined by
means of specific algorithms.

bizRules ResourceID (Optional) Storage location of an electronic document accommodating product- or application-specific
business rules on which basis the EPCIS event was triggered.
For instance, an EPCIS capturing application might only trigger an event if the ‘what’ dimension contains a
certain product class (e.g. GTIN of a cold-storage pharmaceutical product) AND a certain temperature
threshold was exceeded.
Note: In contrast to a business transaction, a business rules file is not a standard-defined, interoperably
communicated business document such as an invoice. In addition, the set of rules typically will only
change in an infrequent manner.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 68 of 229

7.3.7.1.2 SensorReport

A sensorReport element contains a number of inline attributes, defined as follows.

Field Type Description

type SensorPropertyTypeID An identifier that indicates what kind of property the SensorReport element pertains to.

Expected values for type can be MeasurementType or a custom URI.

Sensor measurement types SHALL be expressed using either URIs or Compact URI
Expressions (CURIEs), as follows:

• https://gs1.org/voc/X

• gs1: X

where the X part is a string as specified in CBV section 7.6.3

exception gs1:SensorAlertType (Required if there is no type field in SensorReport)

An identifier that indicates what kind of exception this SensorReport denotes.

deviceID EPC See previous section.

deviceMetadata ResourceID See previous section.

rawData ResourceID See previous section.

dataProcessingMethod ResourceID See previous section.

time xsd:dateTimeStamp See previous section.

microorganism MicroorganismID (Optional) Identifies a specific microorganism species.
If microorganism is present, a SensorReport element SHALL NOT include
chemicalSubstance.

chemicalSubstance ChemicalSubstanceID (Optional) Identifies a specific chemical substance.
If chemicalSubstance is present, a SensorReport element SHALL NOT include
microorganism.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 69 of 229

Field Type Description

value xsd:double (Optional) Value of the property specified by the type as part of the sensorReport
element.
If a chemicalSubstance or microorganism field is present, the value indicates the
detected measurement (e.g., of molar mass or concentration) of a chemical substance or
microorganism in the physical objects specified in the ‘What’ dimension.
If a time field is present, the value SHALL pertain to this point in time. Otherwise,
value SHALL refer to the eventTime.

NOTE: xsd:float supports values with positive or negative exponents, whereas
xsd:decimal supports only values with negative exponents.

For example, a sensor pressure value in pascals may have positive exponents.

component cbv:Comp (Optional) Some measurement types (e.g. force, pressure) are vectors (having magnitude
and direction in space), whereas others (e.g. temperature, absolute humidity) are scalars.
The components of a vector in a coordinate system can be specified by setting the value of
component to indicate which vector component has magnitude indicated by the value
parameter. The SensorReport element is then repeated as two or three instances to
express each component of the vector in two or three dimensions, the pair or trio of
SensorReport elements sharing the same values for all fields except value,
component and uom (which may differ for each vector component).

If present, the SensorReport element MUST also include the value and uom fields.

Sensor measurement types SHALL be expressed using either URIs or Compact URI
Expressions (CURIEs), as follows:

• https://gs1.org/voc/X

• gs1: X

where the X part is a string as specified in CBV section 7.8
Enumeration list:

• X, Y, Z (cartesian coordinates in 2 or 3 dimensions)
• axialDistance, azimuth, height (cylindrical polars)
• sphericalRadius, azimuth, inclination / polarAngle, elevationAngle (spherical

polars)
• latitude, longitude, elevation / altitude
• easting, northing

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 70 of 229

Field Type Description

stringValue String (Optional) The String value of the property specified by the type and/or exception field as
part of the sensorReport element. If a time field is present, the String value SHALL pertain
to this point in time. Otherwise, it SHALL refer to the eventTime.

booleanValue Boolean (Optional) The Boolean value of the property specified by the type and/or exception field as
part of the sensorReport element. If a time field is present, the Boolean value SHALL
pertain to this point in time. Otherwise, it SHALL refer to the eventTime.

If a chemicalSubstance or microorganism field is included, booleanValue=true means
that this chemical substance/microorganism is present, while booleanValue=false means
that this chemical substance/microorganism is absent, whereas value can be used to
specify the concentration; a non-zero concentration value is incompatible
with booleanValue=false.

hexBinaryValue HexBinary (Optional) The HexBinary value of the property specified by the type and/or exception field
as part of the sensorReport element. If a time field is present, the HexBinary value
SHALL pertain to this point in time. Otherwise, it SHALL refer to the eventTime.

uriValue AnyURI (Optional) The URI value of the property specified by the type and/or exception field as
part of the sensorReport element. If a time field is present, the URI value SHALL
pertain to this point in time. Otherwise, it SHALL refer to the eventTime.

minValue xsd:double (Optional) Minimum quantitative value of the property specified by type , as part of the
sensorReport element.

If a startTime and endTime field is present, the minValue SHALL pertain to the
resulting period. Otherwise, minValue SHALL pertain to the business process step the
EPCIS event captures.

maxValue xsd:double (Optional) Maximum quantitative value of the property specified by type, as part of the
SensorReport element. If startTime and endTime fields are present, the
maxValue SHALL pertain to the resulting period. Otherwise, maxValue SHALL pertain to
the business process step the EPCIS event captures.

meanValue xsd:double (Optional) The arithmetic mean of the values of the property specified by the type as part
of the sensorReport element.

If a startTime and endTime field is present, the meanValue SHALL pertain to the
resulting period. Otherwise, it SHALL pertain to the business process step the EPCIS event
captures.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 71 of 229

Field Type Description

sDev xsd:double (Optional) Standard deviation of the values of the property specified by type, as part of
the sensorReport element.

sDev SHALL only be used in conjunction with the field meanValue.

percRank xsd:double (Optional) Percentile rank, signifying the percentage of observations in a frequency
distribution that are equal to or lower than it.
percRank SHALL only be used in conjunction with the field percValue.

percValue xsd:double (Optional) The percentile value, at or below which a given percentage of observations (as
specified by percRank) may be found.

percValue SHALL only be used in conjunction with the field percRank.

uom UOM (Optional) 2- or 3-character code for a physical unit specified in the Common Code
column of UN/CEFACT Recommendation 20.
Defines a unit of measure by which the specified value(s) should be interpreted. If there is
no value, minValue, maxValue, meanValue or percValue field present, uom
SHALL be omitted.
If present, uom should correlate with the specified type (epcis:measurementType),
e.g., uom "KGM" can only be used with type "Mass".

coordinateReferenceSystem anyURI (Optional) A URI identifying the Coordinate Reference System.
If omitted, the World Geodetic System 1984 (WGS-84) is assumed to apply.

NOTE on extensibility by users/vendors:

Because of <xsd:anyAttribute processContents="lax"/> within XSD validation of SensorReport, any other (user-defined) attributes can be
included / tolerated and will validate, even if they use other data types.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 72 of 229

7.3.7.1.3 Coordinate reference systems (CRS)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 73 of 229

 Non-Normative: Note: In addition to the EPCIS standard attributes as defined above, organisations may wish to provide further sensor-related
context information. In such a case, they may populate the sensorMetadata and sensorReport element with additional attributes. The latter SHOULD
be standardised to the greatest extent possible, through the usage of linked data attributes as specified in [SSN].

7.3.7.1.4 Sensor property type

SensorPropertyTypeID is a standard vocabulary type (see section 7.2.3) whose elements denote specific sensor properties. An example is an identifier
that denotes ‘temperature’.

7.3.7.1.5 UOM

The uom field qualifies the unit of measure of one or several double-precision floating point values that are part of the same sensorReport element and
pertain to the property indicated by the type attribute. When a uom field is present, its value SHALL be the 2- or 3-character code for a physical unit
specified in the “Common Code” column of UN/CEFACT Recommendation 20 [CEFACT20]. Moreover, the code SHALL NOT be marked as “X” (deleted) or
“D” (deprecated).

7.3.7.1.6 Microorganism ID

MicroorganismID is a user vocabulary type (see section 7.2.3) whose elements denote specific microorganisms. An example is an identifier that
denotes ‘Listeria monocytogenes’.

7.3.7.1.7 Chemical Substance ID

ChemicalSubstanceID is a user vocabulary type (see section 7.2.3) whose elements denote specific chemical substances. An example is an identifier
that denotes “sucrose”.

7.3.7.1.8 Resource ID

ResourceID is a user vocabulary type (see section 7.2.3) whose elements denote specific electronic information resources. An example is an identifier
that denotes a product information page provided by the manufacturer of a sensor device.

7.3.8 Instance/Lot master data (ILMD)
Instance/Lot master data (ILMD) is data that describes a specific instance of a physical or digital object, or a specific batch/lot of objects that are produced
in batches/lots. ILMD consists of a set of descriptive attributes that provide information about one or more specific objects or lots. It is similar to ordinary
master data, which also consists of a set of descriptive attributes that provide information about objects. But whereas master data attributes have the
same values for a large class of objects, (e.g., for all objects having a given GTIN), the values of ILMD attributes may be different for much smaller

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 74 of 229

groupings of objects (e.g., a single batch or lot), and may be different for each object (i.e., different for each instance). Note that the term 'attribute'
typically corresponds to a fieldname or Linked Data property.

An example of a master data attribute is the weight and physical dimensions of trade items identified by a specific GTIN. These values are the same for all
items sharing that GTIN. An example of ILMD is the expiration date of a perishable trade item. Unlike master data, the expiration date is not the same for
all trade items having the same GTIN; in principle, each may have a different expiration date depending on when it is manufactured. Other examples of
ILMD include date of manufacture, place of manufacture, weight and other physical dimensions of a variable-measure trade item, harvest information for
farm products, and so on.

ILMD, like ordinary master data, is intended to be static over the life of the object. For example, the expiration date of a perishable trade item or the
weight of a variable-measure item does not change over the life of the trade item, even though different trade items having the same GTIN may have
different values for expiration date and weight. ILMD is not to be used to represent information that changes over the life of an object, for example, the
current temperature of an object as it moves through the supply chain.

While there exist standards (such as GDSN) for the registration and dissemination of ordinary master data through the supply chain, standards and
systems for dissemination of ILMD do not yet exist. For this reason, EPCIS allows ILMD to be carried directly in certain EPCIS events. This feature should
only be used when no separate system exists for dissemination of ILMD.

ILMD for a specific object is defined when the object comes into existence. Therefore, ILMD may only be included in ObjectEvents with action ADD
(section 7.4.1.2), and in TransformationEvents (section 7.4.5). In the case of a TransformationEvent, ILMD applies to the outputs of the
transformation, not to the inputs.

The structure of ILMD defined in this EPCIS standard consists of a set of named attributes, with values of any type. In the XML binding (section 9.5), the
XML schema provides for an unbounded list of XML elements having any element name and content. Other documents layered on top of EPCIS may define
specific ILMD data elements; see section 6.3. In this way, ILMD is similar to event-level EPCIS extensions, but is separate in order to emphasise that ILMD
applies for the entire life of objects, whereas an event-level EPCIS extension only applies to that specific event.

7.4 Core event types module – events

7.4.1 EPCISEvent
EPCISEvent is a common base type for all EPCIS events. All of the more specific event types in the following sections are subclasses of EPCISEvent.

This common base type only has the following fields.

Field Type Description

eventTime xsd:dateTimeStamp The date and time at which the EPCIS Capturing Applications asserts the event occurred.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 75 of 229

Field Type Description

recordTime xsd:dateTimeStamp (Optional) The date and time at which this event was recorded by an EPCIS Repository. This field
SHALL be ignored when an event is presented to the EPCIS Capture Interface, and SHALL be present
when an event is retrieved through the EPCIS Query Interfaces. The recordTime does not
describe anything about the real-world event, but is rather a bookkeeping mechanism that plays a
role in the interpretation of standing queries as specified in section 8.2.5.2.

eventTimeZoneOffset xsd:string The time zone offset in effect at the time and place the event occurred, expressed as an offset from
UTC. The value of this field SHALL be a string consisting of the character ‘+’ or the character ‘-’,
followed by two digits whose value is within the range 00 through 14 (inclusive), followed by a
colon character ‘:’, followed by two digits whose value is within the range 00 through 59
(inclusive), except that if the value of the first two digits is 14, the value of the second two digits
must be 00.

For example, the value +05:30 specifies that where the event occurred, local time was five hours
and 30 minutes later than UTC (that is, midnight UTC was 5:30am local time).

eventID EventID (Optional) An identifier for this event as specified by the capturing application, globally unique
across all events other than error declarations. “Globally unique” means different from the
eventID on any other EPCIS event across any implementation of EPCIS, not merely across the
events captured by a single capturing application or by a single capture server. (The Core Business
Vocabulary standard [CBV2.0] specifies the option of a UUID URI or NI Hash URI for this purpose.)
Note that in the case of an error declaration, the event ID will be equal to the event ID of the
erroneous event (or null if the event ID of the erroneous event is null), and in that sense is not
unique. See section 7.4.1.2.

errorDeclaration ErrorDeclaration (Optional) If present, indicates that this event serves to assert that the assertions made by a prior
event are in error. See section 7.4.1.2.

certificationInfo gs1:CertificationDetails (Optional) If present, specifies a URL at which certification details can be found. Machine-
interpretable certification details may be expressed using properties within the
gs1:CertificationDetails class of the GS1 Web Vocabulary

7.4.1.1 Explanation of eventTimeZoneOffset (Non-Normative)

The eventTimeZoneOffset field is not necessary to understand at what moment in time an event occurred. This is because the eventTime field is of
type Time, defined in section 7.3 to be a “date and time in a time zone-independent manner.” For example, in the XML binding (section 9.5) the
eventTime field is represented as an element of type xsd:dateTimeStamp, and section 9.5 further stipulates that the XML must include a time zone
specifier. Therefore, the XML for eventTime unambiguously identifies a moment in absolute time, and it is not necessary to consult
eventTimeZoneOffset to understand what moment in time that is.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 76 of 229

The purpose of eventTimeZoneOffset is to provide additional business context about the event, namely to identify what time zone offset was in effect
at the time and place the event was captured. This information may be useful, for example, to determine whether an event took place during business
hours, to present the event to a human in a format consistent with local time, and so on. The local time zone offset information is not necessarily available
from eventTime, because there is no requirement that the time zone specifier in the XML representation of eventTime be the local time zone offset
where the event was captured. For example, an event taking place at 8:00am US Eastern Standard Time could have an XML eventTime field that is
written 08:00-05:00 (using US Eastern Standard Time), or 13:00Z (using UTC), or even 07:00-06:00 (using US Central Standard Time). Moreover,
XML processors are not required by [XSD2] to retain and present to applications the time zone specifier that was part of the xsd:dateTimeStamp field,
and so the time zone specifier in the eventTime field might not be available to applications at all. Similar considerations would apply for other (non-XML)
bindings of the Core Event Types module. For example, a hypothetical binary binding might represent Time values as a millisecond offset relative to
midnight UTC on January 1, 1970 – again, unambiguously identifying a moment in absolute time, but not providing any information about the local time
zone. For these reasons, eventTimeZoneOffset is provided as an additional event field.

7.4.1.2 ErrorDeclaration

When an event contains an ErrorDeclaration element, it indicates that this event has special semantics: instead of the normal semantics which assert
that various things happened and that various things are true following the event, the semantics of this event assert that those prior assertions are in
error. An event containing an ErrorDeclaration element SHALL be otherwise identical to a prior event, “otherwise identical” meaning that all fields of
the event other than the ErrorDeclaration element and the value of recordTime are exactly equal to the prior event. (Note that includes the
eventID field: the eventID of the error declaration will be equal to the eventID of the prior event or null if the eventID of the prior event is null. This
is the sole case where the same non-null eventID may appear in two events.) The semantics of an event containing the ErrorDeclaration element
are that all assertions implied by the prior event are considered to be erroneous, as of the specified declarationTime. The prior event is not modified in
any way, and subsequent queries will return both the prior event and the error declaration.

An ErrorDeclaration element contains the following fields:

Field Type Description

declarationTime xsd:dateTimeStamp The date and time at which the declaration of error is made. (Note that the eventTime of this
event must match the eventTime of the prior event being declared erroneous, so the
declarationTime field is required to indicate the time at which this event is asserted.)

reason ErrorReasonID (Optional) An element from a standard vocabulary that specifies the reason the prior event is
considered erroneous.

correctiveEventIDs List<EventID> (Optional) If present, indicates that the events having the specified URIs as the value of their
eventID fields are to be considered as “corrections” to the event declared erroneous by this
event. This provides a means to link an error declaration event to one or more events that are
intended to replace the erroneous event.

An ErrorDeclaration element SHOULD NOT be used if there is a way to model the real-world situation as an ordinary event (that is, using an event
that does not contain an ErrorDeclaration element).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 77 of 229

7.4.1.2.1 Use of error declarations (Non-Normative)

An EPCIS event records the completion of a step of a business process. A business process is modelled by breaking it down into a series of steps, and
modelling each as an EPCIS event. The net effect is that the collection of all events pertaining to a specific object (often referred to as a “trace”) should
correctly indicate the history and current state of that object, by interpreting the events according to the semantics specified in this standard and relevant
vocabulary standards.

Sometimes, it is discovered that an event recorded earlier does not accurately reflect what happened in the real world. In such cases, as noted in section
6.1, earlier events are never deleted or modified. Instead, additional events are recorded whose effect is that the complete trace (including the new
events and all prior events including the incorrect event) accurately reflects the history and current state, as stated in the above principle.

The preferred way to arrive at the additional events is to recognise that the discovery of an erroneous event and its remediation is itself a business
process which can be modelled by creating suitable EPCIS events. In most situations, this is done using EPCIS events from the Core Event Types Module
as specified in section 7.4, using suitable vocabulary.

Example 1: Company X records an EPCIS event asserting that serial numbers 101, 102, and 103 of some product were shipped to Company Y. Company
Y receives the shipment and finds serial number 104 in addition to serial numbers 101, 102, 103. In discussion with Company X, it is agreed that serial
104 was indeed shipped and that the shipping event was in error. Remediation: Company X records a new EPCIS event asserting that serial number 104
was shipped, with similar contextual information as the original event.

Example 2: Company X records an EPCIS event asserting that serial numbers 101, 102, and 103 of some product were shipped to Company Y. Company
Y receives the shipment and finds only serial numbers 101, 102. In discussion with Company X, it is agreed that serial 103 was not shipped but remains in
Company X's inventory. They agree to reverse the billing for the third product. Remediation: Company X records a new EPCIS event asserting that the
shipment of serial 103 is voided.

In the first example, the additional event uses the same business vocabulary as the first. In the second example, vocabulary specifically associated with
the process of voiding a shipment is used, but it is still “ordinary” EPCIS semantics in the sense that it models the completion of a well-defined business
process step. This reflects the reality that the act remediation is itself a business process, and so may be modelled as an EPCIS event.

In some situations, it either is not possible (or is highly undesirable) to remediate the history of an object by creating a new EPCIS event with ordinary
semantics (that is, with the semantics specified in section 7.4).

Example 3: Company X records an EPCIS event to assert that serial number 101 of product X was destroyed. This event is an Object Event as specified in
section 7.4.2 with action = DELETE. Later it is discovered that serial 101 is still in storage, not destroyed. An ordinary event cannot be used to amend the
history, because the semantics of action DELETE for an Object Event specify that “the objects … SHOULD NOT appear in subsequent events.”

Example 4: Company X records an EPCIS event asserting that several products have been shipped, indicating Purchase Order 123 as a business
transaction in the “why” dimension. Company Y receives the products and records a receiving event. Only then it is discovered that the purchase order
reference in the shipping event is wrong: it says PO 456 instead of 123. This could be remediated using ordinary EPCIS events by Company X recording a
“cancel shipment” event followed by a “shipping” event with the correct PO #. But this is rather undesirable from the perspective of the overall trace,
especially given that there is already a receiving event.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 78 of 229

To accommodate such situations, the Core Event Types Module provides a mechanism to assert that the assertions made by a prior event are in error.
These semantics may only be used when an event specifies exactly the same conditions as a prior ordinary event, so that the assertion of error can be
correlated to the prior event. Such an event is termed an “error declaration event.”

In Example 3 above, the error declaration event would imply that serial number 101 of product X was not destroyed. In Example 4 above, the error
declaration event would imply that a shipment with PO 123 as the context did not occur, and an additional event (the “corrective event”) would say that a
shipment with PO 456 did occur. This is rather similar to modelling Example 4 using a “cancel shipment” event, except that instead of asserting a
shipment was carried out under PO 123 then cancelled, the error declaration event simply asserts that the PO 123 assertion was erroneous.

An error declaration event is constructed by including an ErrorDeclaration section. Specifically, given Event E1, an error declaration event E2 whose
effect is to declare the assertions of E1 to be in error is an event structure whose content is identical to E1, but with the ErrorDeclaration element
included. For example, the error declaration for the "destroying" event in Example 3 is also an Object Event with action = DELETE, but with the
ErrorDeclaration element included. In general, to declare event E to be in error, a new event is recorded that is identical to event E except that the
ErrorDeclaration element is also included (and the record time will be different).

There are three reasons why error declaration events in EPCIS are expressed this way. One, an event ID is not required to indicate the erroneous event,
which in turn implies it is not necessary to include an event ID on every event to provide for possible error declaration in the future. Event IDs are
available to link an error declaration event to a corrective event, but it is never necessary to use event IDs. Two, any EPCIS query that matches an event
will also match an error declaration for that event, if it exists. This means that EPCIS Accessing Applications require no special logic to become aware of
error declarations, if they exist. Three, if an EPCIS Accessing Application receives an error declaration event and for some reason does not have a copy of
the original (erroneous) event, it is not necessary to retrieve the original event as every bit of information in that event is also present in the error
declaration event.

7.4.1.2.2 Matching an error declaration to the original event (non-normative)

As discussed in section 7.4.1.2, an error declaration event has identical content to the original (erroneous) event, with the exception of the
ErrorDeclaration element itself and the record time. One of the benefits of this approach is that when an EPCIS Accessing Application encounters an
error declaration, it is not necessary to retrieve the original (erroneous) event, as all of the information in that event is also present in the error
declaration event which the EPCIS Accessing Application already has.

Nevertheless, there may be situations in which an EPCIS Accessing Application or EPCIS Capturing Application wishes to confirm the existence of the
original (erroneous) event by querying for it. The only way to recognise that an event is the original event matching an error declaration is to confirm that
all data elements in the events (save the ErrorDeclaration element and record time) match. See [EPCISGuideline] for suggested approaches for
querying in this situation.

7.4.2 ObjectEvent (subclass of EPCISEvent)
An ObjectEvent captures information about an event pertaining to one or more physical or digital objects identified by instance-level (EPC) or class-level
(EPC Class) identifiers. Most ObjectEvents are envisioned to represent actual observations of objects, but strictly speaking it can be used for any event
a Capturing Application wants to assert about objects, including for example capturing the fact that an expected observation failed to occur.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 79 of 229

While more than one EPC and/or EPC Class may appear in an ObjectEvent, no relationship or association between those objects is implied other than
the coincidence of having experienced identical events in the real world.

The action field of an ObjectEvent describes the event’s relationship to the lifecycle of the objects and their identifiers named in the event.
Specifically:

action value Meaning

ADD The objects identified in the event have been commissioned as part of this event. For objects identified by EPCs (instance-level identifiers), the EPC(s) have
been issued and associated with an object (s) for the first time. For objects identified by EPC Classes (class-level identifiers), the specified quantities of EPC
Classes identified in the event have been created (though other instances of those same classes may have existed prior this event, and additional instances
may be created subsequent to this event).

OBSERVE The event represents a simple observation of the objects identified in the event, not their commissioning or decommissioning.

DELETE The objects identified in the event have been decommissioned as part of this event. For objects identified by EPCs (instance-level identifiers), the EPC(s) do
not exist subsequent to the event and SHOULD NOT be observed again. For objects identified by EPC Classes (class-level identifiers), the specified quantities
of EPC Classes identified in the event have ceased to exist (though other instances of those same classes may continue to exist subsequent to this event,
and additional instances may be have ceased to exist prior this event).

An ObjectEvent has the following fields:

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see section 7.4.1)

epcList List<EPC> (Optional) An unordered list of one or more EPCs naming specific
objects to which the event pertained. See section 7.3.3.2
An ObjectEvent SHALL contain either a non-empty epcList, a non-
empty quantityList, or both. The only permissible exception is if
the object of observation is a physical location – in this case, the
ObjectEvent SHALL contain a sensorElement and a non-empty
readPoint populated with a physical location ID.

quantityList List<QuantityElement> (Optional) An unordered list of one or more QuantityElements
identifying (at the class level) objects to which the event pertained.
An ObjectEvent SHALL contain either a non-empty epcList, a non-
empty quantityList, or both. The only permissible exception is if
the object of observation is a physical location – in this case, the
ObjectEvent SHALL contain a sensorElement and a non-empty
readPoint populated with a physical location ID.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 80 of 229

Field Type Description

Action Action How this event relates to the lifecycle of the EPCs named in this event.
See above for more detail.

bizStep BusinessStepID (Optional) The business step of which this event was a part.

disposition DispositionID (Optional) The business condition of the objects, in the epcList and
quantityList, presumed to hold true until contradicted by a
subsequent event.

persistentDisposition PersistentDisposition (Optional) One or more business conditions of the objects, in the
epcList and quantityList.

Each persistentDisposition is explicitly set and unset independently of
other persistentDisposition values. The set field within
persistentDisposition may specify a list of persistentDisposition
URI values to be set. The unset field within persistentDisposition
may specify a list of persistentDisposition URI values to be unset
(revoked).

set DispositionID (Optional, multivalued)
If used in PersistentDisposition, specifies Disposition
(cbv:Disp) values to be set "persistently", i.e., until they are
explicitly unset.

unset DispositionID (Optional, multivalued)
If used in PersistentDisposition, specifies Disposition
(cbv:Disp) values to be unset "persistently", i.e., until they are
explicitly set.

readPoint ReadPointID (Optional) The read point at which the event took place.

bizLocation BusinessLocationID (Optional) The business location where the objects associated with the
EPCs may be found, until contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction instances

(Optional) An unordered list of business transactions that define the
context of this event.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 81 of 229

Field Type Description

sourceList List<Source> (Optional) An unordered list of Source elements (section 7.3.6.4)
that provide context about the originating endpoint of a business
transfer of which this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination elements (section
7.3.6.4) that provide context about the terminating endpoint of a
business transfer of which this event is a part.

ilmd ILMD (Optional) Instance/Lot master data (section 7.3.8) that describes the
objects created during this event.
An ObjectEvent SHALL NOT contain ilmd if action is OBSERVE
or DELETE.

sensorElementList List<sensorElement> (Optional) An unordered list of one or more sensorElements (section
7.3.7).

Note that in the XML binding (section 9.3), quantityList, sourceList, destinationList, ilmd and sensorElementList appear in the standard
extension area, to maintain backward-compatibility with EPCIS 1.0, 1.1 and 1.2.

Retrospective semantics:

■ An event described by bizStep (and any other fields) took place with respect to the objects identified by epcList and quantityList at
eventTime at location readPoint.

■ (If action is ADD) The EPCs in epcList were commissioned (issued for the first time).

■ (If action is ADD) The specified quantities of EPC Class instances in quantityList were created (or an unknown quantity, for each
QuantityElement in which the quantity value is omitted).

■ (If action is DELETE) The EPCs in epcList were decommissioned (retired from future use).

■ (If action is DELETE) The specified quantities of EPC Class instances in quantityList ceased to exist (or an unknown quantity, for each
QuantityElement in which the quantity value is omitted).

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists between the business transactions enumerated in
bizTransactionList and the objects identified in epcList and quantityList.

■ (If action is OBSERVE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

■ (If action is DELETE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 82 of 229

■ (If sourceList is non-empty) This event took place within the context of a business transfer whose originating endpoint is described by the sources
enumerated in sourceList.

■ (If destinationList is non-empty) This event took place within the context of a business transfer whose terminating endpoint is described by the
destinations enumerated in destinationList.

■ (If sensorElementList is non-empty) This event took place in the context of the sensor observation specified in the sensorElementList at time
or during startTime and endTime (or at eventTime when time, startTime and endTime are omitted). All values pertain to the objects
identified by epcList and quantityList (or the physical location indicated in the readPoint when both epcList and quantityList are
omitted).

Prospective semantics:

■ (If action is ADD) The objects identified by the instance-level identifiers in epcList may appear in subsequent events.

■ (If action is ADD) The objects identified by the class-level identifiers in quantityList may appear in subsequent events.

■ (If action is DELETE) The objects identified by the instance-level identifiers in epcList SHOULD NOT appear in subsequent events.

■ (If action is DELETE) The total population of objects identified by the class-level identifiers in quantityList that may appear in subsequent events
has been reduced by the quantities specified in quantityList (or by an unknown quantity, for each QuantityElement in which the quantity
value is omitted).

■ (If disposition is specified) The business condition of the objects identified by epcList and quantityList is as described by disposition.

■ (If disposition is omitted) The business condition of the objects identified by epcList and quantityList is unchanged.

■ (If a specific persistentDisposition is specified as set) The persistent business condition(s) of the objects identified by epcList and
quantityList is as set by persistentDisposition.

■ (If persistentDisposition is omitted) The persistent business condition(s) of the objects identified by epcList and quantityList as previously
set or unset by persistentDisposition is unchanged.

■ (If a specific persistentDisposition value is specified as unset) The specific persistent business condition of the objects identified by epcList
and quantityList is unset (i.e., revoked).

■ (If bizLocation is specified) The objects identified by epcList and quantityList are at business location bizLocation.

■ (If bizLocation is omitted) The business location of the objects identified by epcList and quantityList might be unknown, unless the business
location can be inferred from previous events.

■ (If action is ADD and ilmd is non-empty) The objects identified by epcList and quantityList are described by the attributes in ilmd.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 83 of 229

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists between the business transactions enumerated in
bizTransactionList and the objects identified in epcList and quantityList.

 Non-Normative: Explanation: In the case where action is ADD and a non-empty bizTransactionList is specified, the semantic effect is
equivalent to having an ObjectEvent with no bizTransactionList together with a TransactionEvent having the bizTransactionList and all
the same field values as the ObjectEvent. Note, however, that an ObjectEvent with a non-empty bizTransactionList does not cause a
TransactionEvent to be returned from a query.

7.4.3 AggregationEvent (subclass of EPCISEvent)
The event type AggregationEvent describes events that apply to objects that have been aggregated to one another. In such an event, there is a set of
“contained” objects that have been aggregated within a “containing” entity that’s meant to identify the aggregation itself.

This event type is intended to be used for “aggregations,” in which there is a strong physical relationship between the containing and the contained
objects such that they will all occupy the same location at the same time, until such time as they are disaggregated. An example of an aggregation is
where cases are loaded onto a pallet and carried as a unit. The AggregationEvent type is not intended for weaker relationships such as two pallets that
are part of the same shipment, but where the pallets might not always be in exactly the same place at the same time. (The TransactionEvent may be
appropriate for such circumstances.) More specific semantics may be specified depending on the Business Step.

The Action field of an AggregationEvent describes the event’s relationship to the lifecycle of the aggregation. Specifically:

Action value Meaning

ADD The objects identified in the child list have been aggregated to the parent during this event. This includes situations where the aggregation is created for the
first time, as well as when new children are added to an existing aggregate.

OBSERVE The event represents neither adding nor removing children from the aggregation. The observation may be incomplete: there may be children that are part of
the aggregation but not observed during this event and therefore not included in the childEPCs or childQuantityList field of the
AggregationEvent; likewise, the parent identity may not be observed or known during this event and therefore the parentID field be omitted from
the AggregationEvent.

DELETE The objects identified in the child list have been disaggregated from the parent during this event. This includes situations where a subset of children are
removed from the aggregation, as well as when the entire aggregation is dismantled. Both childEPCs and childQuantityList field may be omitted
from the AggregationEvent, which means that all children have been disaggregated. (This permits disaggregation when the event capture software
does not know the identities of all the children.)

The AggregationEvent type includes fields that refer to a single “parent” (often a “containing” entity) and one or more “children” (often “contained”
objects). A parent identifier is required when action is ADD or DELETE, but optional when action is OBSERVE.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 84 of 229

 Non-Normative: Explanation: A parent identifier is used when action is ADD so that there is a way of referring to the aggregation in subsequent
events when action is DELETE. The parent identifier is optional when action is OBSERVE because the parent is not always known during an
intermediate observation. For example, a pallet receiving process may rely on RFID tags to determine the EPCs of cases on the pallet, but there
might not be an RFID tag for the pallet (or if there is one, it may be unreadable).

The AggregationEvent is intended to indicate aggregations among objects, and so the children are identified by EPCs and/or EPC classes. The parent
entity, however, is not necessarily a physical or digital object separate from the aggregation itself, and so the parent is identified by an arbitrary URI,
which MAY be an EPC, but MAY be another identifier drawn from a suitable private vocabulary.

 Non-Normative: Explanation: In many manufacturing operations, for example, it is common to create a load several steps before an EPC for the
load is assigned. In such situations, an internal tracking number (often referred to as a “license plate number,” or LPN) is assigned at the time the
load is created, and this is used up to the point of shipment. At the point of shipment, an SSCC code (which is an EPC) is assigned. In EPCIS, this
would be modelled by (a) an AggregationEvent with action equal to ADD at the time the load is created, (b) an invalidation of the first
association via an AggregationEvent with action equal to DELETE when the SSCC is ready to be assigned, and (c) a second
AggregationEvent with action equal to ADD at the time the SSCC is assigned. During (a) and (b), the LPN would be the parent identifier
(expressed in a suitable URI representation; see section 6.4), while the AggregationEvent during (c) would use the SSCC (which is a type of
EPC) as the parent identifier, thereby changing the parentID.

An additional example comes from logistics operations where heterogenous sets of items are often assembled together for shipping efficiencies.
Commonly, order fulfillments to retail locations from distribution centers require a wider variety of items but in smaller quantities. The items
combined for transportation is a logistics unit and is assigned an SSCC as the assembly is completed. In EPCIS, this would be modelled by
an AggregationEvent with action equal to ADD at the time the unit is assembled. Suppose the unit was assembled, initially, to be shipped by truck
but later determined that parcel shipping was necessary to meet timing constraints of the order. In this situation,
an AggregationEvent with action equal to DELETE is needed to reflect the items have been disassembled. These two events would be followed by
an AggregationEvent with action equal to ADD with a new SSCC for each parcel and containing items.

An AggregationEvent has the following fields:

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see section 7.4.1)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 85 of 229

Field Type Description

parentID URI (Optional when action is OBSERVE, required
otherwise) The identifier of the parent object of
the aggregation. When the parent identifier is an
EPC, this field SHALL contain the “pure identity”
URI for the EPC as specified in [TDS].

childEPCs List<EPC> (Optional) An unordered list of the EPCs of
contained objects identified by instance-level
identifiers. See section 8.2 of the CBV.
An AggregationEvent SHALL contain either a non-
empty childEPCs, a non-empty
childQuantityList, or both, except that
both childEPCs and childQuantityList
MAY be empty if action is DELETE, indicating
that all children are disaggregated from the
parent.

childQuantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying (at the class level)
contained objects. See section 8.3 of the CBV.
An AggregationEvent SHALL contain either a non-
empty childEPCs, a non-empty
childQuantityList, or both, except that
both childEPCs and childQuantityList
MAY be empty if action is DELETE, indicating
that all children are disaggregated from the
parent.

action Action How this event relates to the lifecycle of the
aggregation named in this event. See above for
more detail.

bizStep BusinessStepID (Optional) The business step of which this event
was a part.

disposition DispositionID (Optional) The business condition of the objects,
in the parentID, childEPCs and
childQuantityList, presumed to hold true
until contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 86 of 229

Field Type Description

bizLocation BusinessLocationID (Optional) The business location where the
aggregated objects, in the parentID,
childEPCs and childQuantityList, may
be found, until contradicted by a subsequent
event.

bizTransactionList Unordered list of zero or more
BusinessTransaction instances

(Optional) An unordered list of business
transactions that define the context of this event.

sourceList List<Source> (Optional) An unordered list of Source elements
(section 7.3.6.4) that provide context about the
originating endpoint of a business transfer of
which this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination
elements (section 7.3.6.4) that provide context
about the terminating endpoint of a business
transfer of which this event is a part.

sensorElementList List<sensorElement> (Optional) An unordered list of one or more
sensorElements (section 7.3.7).

Note that in the XML binding (section 9.3), childQuantityList, sourceList, destinationList and sensorElementList appear in the standard
extension area, to maintain backward-compatibility with EPCIS 1.0, 1.1 and 1.2.

Retrospective semantics:

■ An event described by bizStep (and any other fields) took place involving containing entity parentID and the contained objects in childEPCs and
childQuantityList, at eventTime and location readPoint.

■ (If action is ADD) The objects identified in childEPCs and childQuantityList were aggregated to containing entity parentID.

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) The objects identified in childEPCs and childQuantityList were
disaggregated from parentID.

■ (If action is DELETE and both childEPCs and childQuantityList are empty) All contained objects have been disaggregated from containing
entity parentID.

■ (If action is ADD and a non-empty bizTransactionList is specified) An aggregation exists between the business transactions enumerated in
bizTransactionList, the objects identified in childEPCs and childQuantityList, and containing entity parentID.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 87 of 229

■ (If action is OBSERVE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

■ (If action is DELETE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

■ (If sourceList is non-empty) This event took place within the context of a business transfer whose originating endpoint is described by the sources
enumerated in sourceList.

■ (If destinationList is non-empty) This event took place within the context of a business transfer whose terminating endpoint is described by the
destinations enumerated in destinationList.

Prospective semantics:

■ (If action is ADD) An aggregation exists between containing entity parentID and the contained objects in childEPCs and childQuantityList.

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) An aggregation no longer exists between containing entity parentID
and the contained objects identified in childEPCs and childQuantityList.

■ (If action is DELETE and both childEPCs and childQuantityList are empty) An aggregation no longer exists between containing entity
parentID and any contained objects.

■ (If disposition is specified) The business condition of the objects aggregated with the objects identified in parentID, childEPCs, and
childQuantityList is as described by disposition.

■ (If disposition is omitted) The business condition of the objects aggregated with the objects in parentID, childEPCs, and childQuantityList
is unchanged.

■ (If bizLocation is specified) The objects aggregated with the objects in parentID, childEPCs, and childQuantityList are at business location
bizLocation.

■ (If bizLocation is omitted) The business location of the objects aggregated with the objects in parentID, childEPCs, and childQuantityList
might be unknown, unless the business location can be inferred from previous events.

■ (If action is ADD and a non-empty bizTransactionList is specified) An aggregation exists between the business transactions enumerated in
bizTransactionList, the objects in childEPCs and childQuantityList, and containing entity parentID (if specified).

 Non-Normative: Explanation: In the case where action is ADD and a non-empty bizTransactionList is specified, the semantic effect is
equivalent to having an AggregationEvent with no bizTransactionList together with a TransactionEvent having the bizTransactionList and
all same field values as the AggregationEvent. Note, however, that an AggregationEvent with a non-empty bizTransactionList does not cause a
TransactionEvent to be returned from a query.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 88 of 229

 Non-Normative: Note: Many semantically invalid situations can be expressed with incorrect use of aggregation. For example, the same objects
may be given multiple parents during the same time period by distinct ADD operations without an intervening Delete. Similarly, an object can be
specified to be a child of its grand-parent or even of itself. A non-existent aggregation may be DELETED. These situations cannot be detected
syntactically and in general an individual EPCIS repository may not have sufficient information to detect them. Thus, this specification does not
address these error conditions.

7.4.4 TransactionEvent (subclass of EPCISEvent)
The event type TransactionEvent describes the association or disassociation of physical or digital objects to one or more business transactions. While
other event types have an optional bizTransactionList field that may be used to provide context for an event, the TransactionEvent is used to
declare in an unequivocal way that certain objects have been associated or disassociated with one or more business transactions as part of the event.

The action field of a TransactionEvent describes the event’s relationship to the lifecycle of the transaction. Specifically:

Action value Meaning

ADD The objects identified in the event have been associated to the business transaction(s) during this event. This includes situations where the transaction(s) is
created for the first time, as well as when new objects are added to an existing transaction(s).

OBSERVE The objects named in the event have been confirmed as continuing to be associated to the business transaction(s) during this event.

 Explanation (non-normative): A TransactionEvent with action OBSERVE is quite similar to an ObjectEvent that includes a non-empty
bizTransactionList field. When an end user group agrees to use both kinds of events, the group should clearly define when each should be used.
An example where a TransactionEvent with action OBSERVE might be appropriate is an international shipment with transaction ID xxx moving
through a port, and there’s a desire to record the EPCs that were observed at that point in handling that transaction. Subsequent queries will
concentrate on querying the transaction ID to find the EPCs, not on the EPCs to find the transaction ID.

DELETE The objects named in the event have been disassociated from the business transaction(s) during this event. This includes situations where a subset of
objects are disassociated from the business transaction(s), as well as when the entire business transaction(s) has ended. As a convenience, both the list of
EPCs and QuantityElements may be omitted from the TransactionEvent, which means that all objects have been disassociated.

A TransactionEvent has the following fields:

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see section 7.4.1)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 89 of 229

Field Type Description

bizTransactionList Unordered list of one or more
BusinessTransaction instances

The business transaction(s).

parentID URI (Optional) The identifier of the parent
object of objects listed in epcList
and quantityList, if these fields
are present. When the parent identifier
is an EPC, this field SHALL contain the
“pure identity” URI for the EPC as
specified in [TDS]. See also the note
following the table.

epcList List<EPC> (Optional) An unordered list of the EPCs
of the objects identified by instance-
level identifiers associated with the
business transaction. See section 8.2 of
the CBV.
A TransactionEvent SHALL contain
either a non-empty epcList, a non-
empty quantityList, or both,
except that both epcList and
quantityList MAY be empty if
action is DELETE, indicating that all
the objects are disassociated from the
business transaction(s).

quantityList List<QuantityElement> (Optional) An unordered list of one or
more QuantityElements identifying
objects (at the class level) to which the
event pertained.
A TransactionEvent SHALL contain
either a non-empty epcList, a non-
empty quantityList, or both,
except that both epcList and
quantityList MAY be empty if
action is DELETE, indicating that all
the objects are disassociated from the
business transaction(s).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 90 of 229

Field Type Description

action Action How this event relates to the lifecycle of
the business transaction named in this
event. See above for more detail.

bizStep BusinessStepID (Optional) The business step of which
this event was a part.

disposition DispositionID (Optional) The business condition of the
objects, in the epcList and
quantityList, presumed to hold
true until contradicted by a subsequent
event.

readPoint ReadPointID (Optional) The read point at which the
event took place.

bizLocation BusinessLocationID (Optional) The business location where
the objects associated with the
containing and contained objects may
be found, until contradicted by a
subsequent event.

sourceList List<Source> (Optional) An unordered list of Source
elements (section 7.3.6.4) that provide
context about the originating endpoint
of a business transfer of which this
event is a part.

destinationList List<Destination> (Optional) An unordered list of
Destination elements (section
7.3.6.4) that provide context about the
terminating endpoint of a business
transfer of which this event is a part.

sensorElementList List<sensorElement> (Optional) An unordered list of one or
more sensorElements (section
7.3.7).

Note that in the XML binding (section 9.3), quantityList, sourceList, destinationList and sensorElementList appear in the standard
extension area, to maintain backward-compatibility with EPCIS 1.0, 1.1 and 1.2.

 Non-Normative: Explanation: The use of the field name parentID in both TransactionEvent and AggregationEvent (section 7.2.10) does
not indicate a similarity in function or semantics. In general, a TransactionEvent carries the same object identification information as an

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 91 of 229

ObjectEvent, that is, a list of EPCs and/or QuantityElements. All the other information fields (bizTransactionList, bizStep,
bizLocation, etc) apply equally and uniformly to all objects specified, whether or not the objects are specified in just the epcList and
quantityList field or if the optional parentID field is also supplied.

 Non-Normative: The TransactionEvent provides a way to describe the association or disassociation of business transactions to objects. The
parentID field in the TransactionEvent highlights a specific EPC or other identifier as the preferred or primary object but does not imply a
physical relationship of any kind, nor is any kind of nesting or inheritance implied by the TransactionEvent itself. Only AggregationEvent
instances describe actual parent-child relationships and nestable parent-child relationships. This can be seen by comparing the semantics of
AggregationEvent in section 7.2.10 with the semantics of TransactionEvent below.

Retrospective semantics:

■ An event described by bizStep (and any other fields) took place involving the business transactions enumerated in bizTransactionList, the
objects in epcList and quantityList, and containing entity parentID (if specified), at eventTime and location readPoint.

■ (If action is ADD) The objects in epcList and quantityList and containing entity parentID (if specified) were associated to the business
transactions enumerated in bizTransactionList.

■ (If action is DELETE and epcList or quantityList is non-empty) The objects in epcList, quantityList, and containing entity parentID (if
specified) were disassociated from the business transactions enumerated in bizTransactionList.

■ (If action is DELETE, both epcList and quantityList are empty, and parentID is omitted) All objects have been disassociated from the
business transactions enumerated in bizTransactionList.

■ (If sourceList is non-empty) This event took place within the context of a business transfer whose originating endpoint is described by the sources
enumerated in sourceList.

■ (If destinationList is non-empty) This event took place within the context of a business transfer whose terminating endpoint is described by the
destinations enumerated in destinationList.

Prospective semantics:

■ (If action is ADD) An association exists between the business transactions enumerated in bizTransactionList, the objects in epcList and
quantityList, and containing entity parentID (if specified).

■ (If action is DELETE and epcList or quantityList is non-empty) An association no longer exists between the business transactions enumerated
in bizTransactionList, the objects in epcList and quantityList, and containing entity parentID (if specified).

■ (If action is DELETE, both epcList and quantityList are empty, and parentID is omitted) An association no longer exists between the
business transactions enumerated in bizTransactionList and any objects.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 92 of 229

■ (If disposition is specified) The business condition of the objects associated with the objects in epcList and quantityList and containing entity
parentID (if specified) is as described by disposition.

■ (If disposition is omitted) The business condition of the objects associated with the objects in epcList and quantityList and containing entity
parentID (if specified) is unchanged.

■ (If bizLocation is specified) The objects associated with the objects in epcList, quantityList, and containing entity parentID (if specified) are
at business location bizLocation.

■ (If bizLocation is omitted) The business location of the objects associated with the objects in epcList and quantityList and containing entity
parentID (if specified) might be unknown, unless the business location can be inferred from previous events.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 93 of 229

7.4.5 TransformationEvent (subclass of EPCISEvent)
A TransformationEvent captures information about an event in which one or more physical or digital objects identified by instance-level (EPC) or class-
level (EPC Class) identifiers are fully or partially consumed as inputs and one or more objects identified by instance-level (EPC) or class-level (EPC Class)
identifiers are produced as outputs. The TransformationEvent captures the relationship between the inputs and the outputs, such that any of the
inputs may have contributed in some way to each of the outputs.

Some transformation business processes take place over a long period of time, and so it is more appropriate to represent them as a series of EPCIS
events. A transformationID may be included in two or more TransformationEvents to link them together. When events share an identical
transformationID, the meaning is that the inputs to any of those events may have contributed in some way to each of the outputs in any of those
same events.

Fields:

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see section 7.4.1)

inputEPCList List<EPC> (Optional) An unordered list of one or more EPCs identifying (at the
instance level) objects that were inputs to the transformation..

inputQuantityList List<QuantityElement> (Optional) An unordered list of one or more QuantityElements
identifying (at the class level) objects that were inputs to the
transformation.

outputEPCList List<EPC> (Optional) An unordered list of one or more EPCs naming (at the
instance level) objects that were outputs from the transformation.

outputQuantityList List<QuantityElement> (Optional) An unordered list of one or more QuantityElements
identifying (at the class level) objects that were outputs from the
transformation.

transformationID TransformationID (Optional) A unique identifier that links this event to other
TransformationEvents having an identical value of
transformationID. When specified, all inputs to all events
sharing the same value of the transformationID may
contribute to all outputs of all events sharing that value of
transformationID. If transformationID is omitted, then
the inputs of this event may contribute to the outputs of this event,
but the inputs and outputs of other events are not connected to
this one.

bizStep BusinessStepID (Optional) The business step of which this event was a part.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 94 of 229

Field Type Description

disposition DispositionID (Optional) The business condition of the objects, in the
outputEPCList and outputQuantityList, presumed to
hold true until contradicted by a subsequent event.

persistentDisposition PersistentDisposition (Optional) One or more business conditions of the objects, in the
outputEPCList and outputQuantityList.
Each persistentDisposition is explicitly set and unset
independently of other persistentDisposition values. The set
field within persistentDisposition may specify a list of
persistentDisposition URI values to be set. The unset field
within persistentDisposition may specify a list of
persistentDisposition URI values to be unset (revoked).

set DispositionID (Optional, multivalued)
If used in PersistentDisposition, specifies
Disposition (cbv:Disp) values to be set "persistently",
i.e., until they are explicitly unset.

unset DispositionID (Optional, multivalued)
If used in PersistentDisposition, specifies
Disposition (cbv:Disp) values to be unset
"persistently", i.e., until they are explicitly set.

readPoint ReadPointID (Optional) The read point at which the event took place.

bizLocation BusinessLocationID (Optional) The business location where the output objects of this
event may be found, until contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction instances

(Optional) An unordered list of business transactions that define
the context of this event.

sourceList List<Source> (Optional) An unordered list of Source elements (section 7.3.6.4)
that provide context about the originating endpoint of a business
transfer of which this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination elements (section
7.3.6.4) that provide context about the terminating endpoint of a
business transfer of which this event is a part.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 95 of 229

Field Type Description

ilmd ILMD (Optional) Instance/Lot master data (section 7.3.8) that describes
the output objects created during this event.

sensorElementList List<sensorElement> (Optional) An unordered list of one or more
sensorElements (section 7.3.7).

Note that in the XML binding (section 9.3), sensorElementList appears in the standard extension area, to maintain backward-compatibility with EPCIS
1.2.

If transformationID is omitted, then a TransformationEvent SHALL include at least one input (i.e., at least one of inputEPCList and
inputQuantityList are non-empty) AND at least one output (i.e., at least one of outputEPCList and outputQuantityList are non-empty). If
transformationID is included, then a TransformationEvent SHALL include at least one input OR at least one output (or both). The latter provides
for the possibility that in a transformation described by several events linked by a common transformationID, any one event might only add inputs or
extract outputs.

Retrospective semantics:

■ A transformation described by bizStep (and any other fields) took place with input objects identified by inputEPCList and inputQuantityList
and output objects identified by outputEPCList and outputQuantityList, at eventTime at location readPoint.

■ This event took place within the context of the business transactions enumerated in bizTransactionList.

■ (If transformationID is omitted) Any of the input objects identified by inputEPCList and inputQuantityList of this event may have
contributed to each of the output objects identified by outputEPCList and outputQuantityList of this event.

■ (If transformationID is included) Any of the input objects identified by inputEPCList and inputQuantityList of this event, together with the
input objects identified by inputEPCList and inputQuantityList of other events having the same value of transformationID, may have
contributed to each of the output objects identified by outputEPCList and outputQuantityList of this event, as well as to each of the output
objects identified by outputEPCList and outputQuantityList of other events having the same value of transformationID.

■ (If sourceList is non-empty) This event took place within the context of a business transfer whose originating endpoint is described by the sources
enumerated in sourceList.

■ (If destinationList is non-empty) This event took place within the context of a business transfer whose terminating endpoint is described by the
destinations enumerated in destinationList.

Prospective semantics:

■ The objects identified by the instance-level identifiers in outputEPCList may appear in subsequent events.

■ The objects identified by the class-level identifiers in outputQuantityList may appear in subsequent events.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 96 of 229

■ (If disposition is specified) The business condition of the objects identified by outputEPCList and outputQuantityList is as described by
disposition.

■ (If disposition is omitted) The business condition of the objects associated with identified by outputEPCList and outputQuantityList is
unknown.

■ (If a specific persistentDisposition is specified as set) The persistent business condition(s) of the objects identified by outputEPCList and
outputQuantityList is as set by persistentDisposition.

■ (If persistentDisposition is omitted) The persistent business condition(s) of the objects identified by outputEPCList and
outputQuantityList as previously set or unset by persistentDisposition is unchanged.

■ (If a specific persistentDisposition value is specified as unset) The specific persistent business condition of the objects identified by
outputEPCList and outputQuantityList is unset (i.e., revoked).

■ (If bizLocation is specified) The objects identified by outputEPCList and outputQuantityList are at business location bizLocation.

■ (If bizLocation is omitted) The business location of the objects identified by outputEPCList and outputQuantityList might be unknown,
unless the business location can be inferred from previous events.

■ (If ilmd is non-empty) The objects identified by outputEPCList and outputQuantityList are described by the attributes in ilmd.

7.4.6 AssociationEvent (subclass of EPCISEvent)
The event type AssociationEvent describes the association or disassociation of one or several physical objects with a parent object or a specific
physical location.

Like the AggregationEvent, the AssociationEvent is also used to capture associations where there is a strong physical relationship between the
containing and the contained objects such that they will all occupy the same location at the same time, until such time as they are disaggregated.
However, the AggregationEvent does not allow for associations of objects with physical locations; if action is DELETE while omitting the childEPC
and childQuantityList field, all contained children are disaggregated from the containing parent.

Because there are situations in which associations are more permanent, i.e. beyond the physical flow of goods (e.g. packing/unpacking and
loading/unloading), an AssociationEvent SHOULD be used: (a) when objects need to be associated with a physical location or (b) when the parent
object could also be subject to other, more temporary associations (i.e. captured with AggregationEvents).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 97 of 229

 Non-Normative: Explanation on why the AssociationEvent is required:

 Assume that an AggregationEvent is used to capture the construction of a
wagon or the installation of sensors into a reusable conveyance (RTI). Later on,
the identifiers of these units also appear in other AggregationEvents,
documenting the physical flow of goods (e.g. pallets are loaded onto a lorry,
maritime containers are loaded on a ship, or vegetables are packed into a
plastic transport box). If an organisation captures an AggregationEvent with
action DELETE while not indicating any of the aggregated children, it would
mean that ALL children ever aggregated to that parent ID are no longer
aggregated to it – i.e. not just the pallets, the maritime containers or the
vegetables, but also all assemblies, screws, tyres, sensors, etc. used to assemble
those parent units. Use of an AssociationEvent for construction/installation
processes removes the ambiguity, allowing an accessing application to infer which
children are inherent parts and which of them are only temporary parts of the
association with the parent object.

Association
Event
(ADD)

assembling

Aggregation
Event
(ADD)

loading

Aggregation
Event

(DELETE)
unloading

Association
Event

(DELETE)
removing

Association
Event
(ADD)

installing

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 98 of 229

 The three examples to the right illustrate the respective applicability of the AggregationEvent and the AssociationEvent in common business
process flows:

The AssociationEvent SHALL be the only event type in which it is permissible to
populate the parentID field with a location ID (for instance, a GLN with or without
extension).

The action field of an AssociationEvent describes the event’s relationship to the
lifecycle of the association. Specifically:

Action
value

Meaning

ADD The objects identified in the child list have been associated to the parent during this event. This includes situations where the association is created for the
first time, as well as when new children are added to an existing association.

OBSERVE The event represents neither adding nor removing children from the association. The observation may be incomplete: there may be children that are part of
the association but not observed during this event and therefore not included in the childEPCs or childQuantityList field of the
AssociationEvent; likewise, the parent identity may not be observed or known during this event and therefore the parentID field be omitted from
the AssociationEvent.

DELETE The objects identified in the child list have been disassociated from the parent during this event. This includes situations where a subset of children are
removed from the association, as well as when the entire association is dismantled. Both childEPCs and childQuantityList field may be omitted
from the AssociationEvent, which means that all children have been disassociated. (This permits disassociation when the event capture software does
not know the identities of all the children.)

The AssociationEvent type includes fields that refer to a single “parent” (often a “containing” entity) and one or more “children” (often “contained”
objects). A parent identifier is required when action is ADD or DELETE, but optional when action is OBSERVE.

 Non-Normative: Explanation: A parent identifier is used when action is ADD so that there is a way of referring to the association in subsequent
events when action is DELETE. The parent identifier is optional when action is OBSERVE because the parent is not always known during an
intermediate observation.

Association
Event
(ADD)

installing

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 99 of 229

An AssociationEvent has the following fields:

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see section 7.3.)

parentID URI The identifier of the parent object or parent location of the association. When the parent identifier is
an EPC, this field SHALL contain the “pure identity” URI for the EPC as specified in [TDS].

childEPCs List<EPC> (Optional) An unordered list of the EPCs of contained objects identified by instance-level identifiers.
An AssociationEvent SHALL contain either a non-empty childEPCs, a non-empty
childQuantityList, or both, except that both childEPCs and childQuantityList
MAY be empty if action is DELETE, indicating that all children are disassociated from the parent.

childQuantityList List<QuantityElement> (Optional) An unordered list of one or more QuantityElements identifying (at the class level)
contained objects. See section 7.3.3.1.
An AssociationEvent SHALL contain either a non-empty childEPCs, a non-empty
childQuantityList, or both, except that both childEPCs and childQuantityList
MAY be empty if action is DELETE, indicating that all children are disaggregated from the
parent.

action Action How this event relates to the lifecycle of the association named in this event. See above for more
detail.

bizStep BusinessStepID (Optional) The business step of which this event was a part.

disposition DispositionID (Optional) The business condition of the object, in the parentID, childEPCs and
childQuantityList, presumed to hold true until contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took place.

bizLocation BusinessLocationID (Optional) The business location where the objects associated with the containing and contained
EPCs may be found, until contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered list of business transactions that define the context of this event.

sourceList List<Source> (Optional) An unordered list of Source elements (section 7.3.6.4) that provide context about the
originating endpoint of a business transfer of which this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination elements (section 7.3.6.4) that provide context
about the terminating endpoint of a business transfer of which this event is a part.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 100 of 229

Field Type Description

sensorElementList List<sensorElement> (Optional) An unordered list of one or more sensorElements (section 7.3.7.1).

 Non-Normative: The parentID of a AssociationEvent SHOULD have been captured in a prior commissioning event, even if the object is simply
the planned result of associating / assembling the child components, even if they are not yet mounted/installed.

Retrospective semantics:

■ An event described by bizStep (and any other fields) took place involving containing entity parentID and the contained objects in childEPCs and
childQuantityList, at eventTime and location readPoint.

■ (If action is ADD) The objects identified in childEPCs and childQuantityList were associated to containing entity parentID.

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) The objects identified in childEPCs and childQuantityList were
disassociated from parentID.

■ (If action is DELETE and both childEPCs and childQuantityList are empty) All contained objects have been disassociated from containing
entity parentID.

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists between the business transactions enumerated in
bizTransactionList, the objects identified in childEPCs and childQuantityList, and containing entity parentID.

■ (If action is OBSERVE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

■ (If action is DELETE and a non-empty bizTransactionList is specified) This event took place within the context of the business transactions
enumerated in bizTransactionList.

■ (If sourceList is non-empty) This event took place within the context of a business transfer whose originating endpoint is described by the sources
enumerated in sourceList.

■ (If destinationList is non-empty) This event took place within the context of a business transfer whose terminating endpoint is described by the
destinations enumerated in destinationList.

■ (If sensorElementList is non-empty) This event took place in the context of the sensor observation specified in the sensorElementList at time
or during startTime and endTime (or at eventTime when time, startTime and endTime are omitted). All values pertain to the objects
identified by epcList and quantityList.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 101 of 229

Prospective semantics:

■ (If action is ADD) An association exists between containing entity parentID and the contained objects in childEPCs and childQuantityList.

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) An association no longer exists between containing entity parentID
and the contained objects identified in childEPCs and childQuantityList.

■ (If action is DELETE and both childEPCs and childQuantityList are empty) An association no longer exists between containing entity
parentID and any contained objects.

■ (If disposition is specified) The business condition of the objects associated with the objects identified in parentID, childEPCs, and
childQuantityList is as described by disposition.

■ (If disposition is omitted) The business condition of the objects associated with the objects in parentID, childEPCs, and childQuantityList
is unchanged.

■ (If bizLocation is specified) The objects associated with the objects in parentID, childEPCs, and childQuantityList are at business location
bizLocation.

■ (If bizLocation is omitted) The business location of the objects associated with the objects in parentID, childEPCs, and childQuantityList
might be unknown, unless the business location can be inferred from previous events.

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists between the business transactions enumerated in
bizTransactionList, the objects in childEPCs and childQuantityList, and containing entity parentID (if specified).

 Non-Normative: Explanation: In the case where action is ADD and a non-empty bizTransactionList is specified, the semantic effect is
equivalent to having an AssociationEvent with no bizTransactionList together with a TransactionEvent having the
bizTransactionList and all same field values as the AssociationEvent. Note, however, that an AssociationEvent with a non-empty
bizTransactionList does not cause a TransactionEvent to be returned from a query.

 Non-Normative: Note: Many semantically invalid situations can be expressed with incorrect use of association. For example, the same objects may
be given multiple parents during the same time period by distinct ADD operations without an intervening DELETE. Similarly, an object can be
specified to be a child of its grand-parent or even of itself. A non-existent association may be deleted. These situations cannot be detected
syntactically and in general an individual EPCIS repository may not have sufficient information to detect them. This specification does not address
such situations.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 102 of 229

8 Service layer
This section includes normative specifications of modules in the Service Layer. Together, these modules define three interfaces: the EPCIS Capture
Interface, the EPCIS Query Control Interface, and the EPCIS Query Callback Interface. (The latter two interfaces are referred to collectively as the EPCIS
Query Interfaces.)

The diagram below illustrates the relationship between these interfaces, expanding upon the diagram in section 2 (this diagram is non-normative).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 103 of 229

In the subsections below, services are specified using UML class diagram notation. UML class diagrams used for this purpose may contain interfaces
having operations, but not fields or associations. Here is an example:

This diagram shows a service definition for Service1, which provides three operations. Operation1 takes two arguments, arg11 and arg12, having
types ArgType11 and ArgType12, respectively, and returns a value of type ReturnType1. Operation2 takes one argument but does not return a
result. Operation3 does not take any arguments but returns a value of type ReturnType3.

Within the UML descriptions, the notation <<extension point>> identifies a place where implementations SHALL provide for extensibility through the
addition of new operations. Extensibility mechanisms SHALL provide for both proprietary extensions by vendors of EPCIS-compliant products, and for
extensions defined by GS1 through future versions of this specification or through new specifications.

In the case of the standard WSDL bindings, the extension points are implemented simply by permitting the addition of additional operations.

8.1 Core capture operations module
The Core Capture Operations Module provides operations by which core events may be delivered from an EPCIS Capture Application. Within this section,
the word “client” refers to an EPCIS Capture Application and “EPCIS Service” refers to a system that implements the EPCIS Capture Interface.

8.1.1 Authentication and authorisation

Some bindings of the EPCIS Capture Interface provide a means for the EPCIS Service to authenticate the client’s identity, for the client to authenticate the
EPCIS Service’s identity, or both. The specification of the means to authenticate is included in the specification of each binding. If the EPCIS Service
authenticates the identity of the client, an implementation MAY use the client identity to make authorisation decisions as described below. Moreover, an
implementation MAY record the client identity with the captured data, for use in subsequent authorisation decisions by the system implementing the EPCIS
Query Interfaces, as described in section 8.2.2.

Because of the simplicity of the EPCIS Capture Interface, the authorisation provisions are very simple to state: namely, an implementation MAY use the
authenticated client identity to decide whether a capture operation is permitted or not.

<<interface>>
Service1

operation1(arg11 : ArgType11, arg12 : ArgType12) :
ReturnType1
operation2(arg21 : ArgType21) : void
operation3() : ReturnType3

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 104 of 229

 Non-Normative: Explanation: It is expected that trading partners will always use bindings that provide for client identity authentication or mutual
authentication when using EPCIS interfaces to share data across organisational boundaries. The bindings that do not offer authentication are
expected to be used only within a single organisation in situations where authentication is not required to meet internal security requirements.

8.1.2 Capture service

The capture interface contains only a single method, capture, which takes a single argument; if events are successfully accepted, the capture interface
responds with 202 Accepted and a captureID. Implementations of the EPCIS Capture Interface SHALL accept each element of the argument list that is
a valid EPCISEvent or subtype thereof according to this specification. Implementations MAY accept other types of events through vendor extension. The
simplicity of this interface admits a wide variety of bindings, including simple message-queue type bindings.

 Non-Normative: Explanation: “Message-queue type bindings” means the following. Enterprises commonly use “message bus” technology for
interconnection of different distributed system components. A message bus provides a reliable channel for in-order delivery of messages from a
sender to a receiver. (The relationship between sender and receiver may be point-to-point (a message “queue”) or one-to-many via a
publish/subscribe mechanism (a message “topic”).) A “message-queue type binding” of the EPCIS Capture Interface would simply be the
designation of a particular message bus channel for the purpose of delivering EPCIS events from an EPCIS Capture Application to an EPCIS
Repository, or to an EPCIS Accessing Application by way of the EPCIS Query Callback Interface. Each message would have a payload containing one
or more EPCIS events (serialised through some binding at the Data Definition Layer; e.g., an XML binding). In such a binding, therefore, each
transmission/delivery of a message corresponds to a single “capture” operation.

The capture operation records one or more EPCIS events, of any type.

<<interface>>
CoreCaptureService

capture(event : List<EPCISEvent>) : void
<<extension point>>

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 105 of 229

Arguments:

Argument Type Description

event List of
EPCISEvent

The event(s) to capture. All relevant information such as the event time, EPCs, etc., are contained within each event. Exception: the
recordTime MAY be omitted. Whether the recordTime is omitted or not in the input, following the capture operation the
recordTime of the event as recorded by the EPCIS Repository or EPCIS Accessing Application is the time of capture. Note that the
optional eventID is not treated like recordTime; like any other EPCIS field, eventID shall be captured without modification by the
capture interface unless the eventID field is empty, in which case a capture interface MAY add an eventID.

 Explanation (non-normative): this treatment of recordTime is necessary for standing queries to be processed properly. See
section 8.2.5.2.

Return value:

(none)

The concrete bindings of the EPCIS Capture Interface in section 11 use the EPCIS document structure defined in section 9.5 to carry the list of EPCIS
events to be captured. An EPCIS document may contain master data in the document header. An implementation of the EPCIS Capture Interface
conforming to this standard MAY choose to record that master data or MAY choose to ignore it – the disposition of master data received through the EPCIS
Capture Interface is not specified by the EPCIS standard.

On the other hand, any instance/lot master data carried in the ILMD section of an event SHALL be captured as part of the event, as is true for any data
element within an EPCIS event. It SHALL be possible to query such master data by using the query parameters of the SimpleEventQuery specified in
section 8.2.7.1.

An implementation of the capture interface SHALL either capture all events specified in a given capture operation or fail to capture all events in that
operation. That is, an implementation SHALL NOT have the possibility of partial success where some events in the list are captured and others are not.

The reasons why a capture operation fails are implementation-specific. Examples of possible reasons a failure may occur include:

■ The input to the capture operation is not well formed or does not conform to the syntactic requirements of the concrete binding being used, including
schema-validity for concrete bindings that use the XML schemas defined in section 9.

■ The client is not authorized to perform the capture operation.

■ Implementation-specific limits regarding the number of events in a single capture operation, the total number of events stored, the frequency of
capture, etc., are exceeded.

■ Implementation-specific rules regarding the content of events, either in isolation or with reference to previously captured events, are violated. Note
that such rules may be appropriate in a closed system where the use of EPCIS is governed by a specific application standard, but may not be
appropriate in an open system designed to handle any EPCIS data. Rules of this kind may limit interoperability if they are too narrow.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 106 of 229

■ A temporary failure, such as the temporary unavailability of a server or network.

8.2 Core Query operations module
The Core Query Operations Module provides two interfaces, called the EPCIS Query Control Interface and the EPCIS Query Callback Interface, by which
EPCIS data can be retrieved by an EPCIS Accessing Application. The EPCIS Query Control Interface defines a means for EPCIS Accessing Applications and
trading partners to obtain EPCIS data subsequent to capture from any source, typically by interacting with an EPCIS Repository. It provides a means for
an EPCIS Accessing Application to retrieve data on-demand, and also enter subscriptions for standing queries. Results of standing queries are delivered to
EPCIS Accessing Applications via the EPCIS Query Callback Interface. Within this section, the word “client” refers to an EPCIS Accessing Application and
“EPCIS Service” refers to a system that implements the EPCIS Query Control Interface, and in addition delivers information to a client via the EPCIS Query
Callback Interface.

8.2.1 Authentication

Some bindings of the EPCIS Query Control Interface provide a means for the EPCIS Service to authenticate the client’s identity, for the client to
authenticate the EPCIS Service’s identity, or both. The specification of the means to authenticate is included in the specification of each binding. If the
EPCIS Service authenticates the identity of the client, an implementation MAY use the client identity to make authorisation decisions as described in the
next section.

 Non-Normative: Explanation: It is expected that trading partners will always use bindings that provide for client identity authentication or mutual
authentication when using EPCIS interfaces to share data across organisational boundaries. The bindings that do not offer authentication are
expected to be used only within a single organisation in situations where authentication is not required to meet internal security requirements.

8.2.2 Authorisation and redaction
An EPCIS service may wish to provide access to only a subset of information, depending on the identity of the requesting client. This situation commonly
arises in cross-enterprise scenarios where the requesting client belongs to a different organisation than the operator of an EPCIS service, but may also
arise in intra-enterprise scenarios.

Given an EPCIS query, an EPCIS service MAY take any of the following actions in processing the query, based on the authenticated identity of the client:

■ The service MAY refuse to honour the request altogether, by responding with a SecurityException as defined below.

■ The service MAY respond with less data than requested. For example, if a client presents a query requesting all ObjectEvent instances within a
specified time interval, the service knows of 100 matching events, the service may choose to respond with fewer than 100 events (e.g., returning only
those events whose EPCs are SGTINs with a company prefix known to be assigned to the client).

■ The service MAY respond with coarser grained information. In particular, when the response to a query includes a location type (as defined in section
7.3.4), the service may substitute an aggregate location in place of a primitive location.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 107 of 229

■ The service MAY hide information. For example, if a client presents a query requesting ObjectEvent instances, the service may choose to delete the
bizTransactionList fields in its response. The information returned, however, SHALL be well-formed EPCIS events consistent with this
specification and industry guidelines. In addition, if hiding information would otherwise result in ambiguous, or misleading information, then the entire
event SHOULD be withheld. This applies whether the original information was captured through the EPCIS Capture Interface or provided by some
other means. For example, given an AggregationEvent with action equal to ADD, an attempt to hide the parentID field would result in a non-well-
formed event, because parentID is required when the action is ADD; in this instance, therefore, the entire event would have to be withheld.

■ The service MAY limit the scope of the query to data that was originally captured by a particular client identity. This allows a single EPCIS service to be
“partitioned” for use by groups of unrelated users whose data should be kept separate.

An EPCIS implementation is free to determine which if any of these actions to take in processing any query, using any means it chooses. The specification
of authorisation rules is outside the scope of this specification.

 Non-Normative: Explanation: Because the EPCIS specification is concerned with the query interfaces as opposed to any particular implementation,
the EPCIS specification does not take a position as to how authorisation decisions are taken. Particular implementations of EPCIS may have
arbitrarily complex business rules for authorisation. That said, the EPCIS specification may contain standard data that is needed for authorisation,
whether exclusively for that purpose or not.

8.2.3 Queries for large amounts of data
Many of the query operations defined below allow a client to make a request for a potentially unlimited amount of data. For example, the response to a
query that asks for all ObjectEvent instances within a given interval of time could conceivably return one, a thousand, a million, or a billion events
depending on the time interval and how many events had been captured. This may present performance problems for service implementations.

To mitigate this problem, an EPCIS service MAY reject any request by raising a QueryTooLarge exception. This exception indicates that the amount of
data being requested is larger than the service is willing to provide to the client. The QueryTooLarge exception is a hint to the client that the client might
succeed by narrowing the scope of the original query, or by presenting the query at a different time (e.g., if the service accepts or rejects queries based
on the current computational load on the service).

 Non-Normative: Roadmap: It is expected that future versions of this specification will provide more sophisticated ways to deal with the large
query problem, such as paging, use of cursors, etc. Nothing more complicated was agreed to in this version.

8.2.4 Overly complex queries
EPCIS service implementations may wish to restrict the kinds of queries that can be processed, to avoid processing queries that will consume more
resources than the service is willing to expend. For example, a query that is looking for events having a specific value in a particular event field may
require more or fewer resources to process depending on whether the implementation anticipated searching on that field (e.g., depending on whether or

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 108 of 229

not a database column corresponding to that field is indexed). As with queries for too much data (section 8.2.3), this may present performance problems
for service implementations.

To mitigate this problem, an EPCIS service MAY reject any request by raising a QueryTooComplex exception. This exception indicates that structure of
the query is such that the service is unwilling to carry it out for the client. Unlike the QueryTooLarge exception (section 8.2.3), the QueryTooComplex
indicates that merely narrowing the scope of the query (e.g., by asking for one week’s worth of events instead of one month’s) is unlikely to make the
query succeed.

A particular query language may specify conditions under which an EPCIS service is not permitted to reject a query with a QueryTooComplex exception.
This provides a minimum level of interoperability.

8.2.5 Query framework (EPCIS query control interface)
The EPCIS Query Control Interface provides a general framework by which client applications may query EPCIS data. The interface provides both on-
demand queries, in which an explicit request from a client causes a query to be executed and results returned in response, and standing queries, in which
a client registers ongoing interest in a query and thereafter receives periodic delivery of results via the EPCIS Query Callback Interface without making
further requests. These two modes are informally referred to as “pull” and “push,” respectively.

The EPCIS Query Control Interface is defined below. An implementation of the Query Control Interface SHALL implement all of the methods defined below.

<<interface>>
EPCISQueryControlInterface

subscribe(queryName : String, params : QueryParams, dest : URI, controls : SubscriptionControls, subscriptionID : String)
unsubscribe(subscriptionID : String)
poll(queryName : String, params : QueryParams) : QueryResults
getQueryNames() : List // of names
getSubscriptionIDs(queryName : String) : List // of Strings
getStandardVersion() : string
getVendorVersion() : string
<<extension point>>

Standing queries are made by making one or more subscriptions to a previously defined query using the subscribe method. Results will be delivered
periodically via the Query Callback Interface to a specified destination, until the subscription is cancelled using the unsubscribe method. On-demand
queries are made by executing a previously defined query using the poll method. Each invocation of the poll method returns a result directly to the
caller. In either case, if the query is parameterised, specific settings for the parameters may be provided as arguments to subscribe or poll.

An implementation MAY provide one or more “pre-defined” queries. A pre-defined query is available for use by subscribe or poll, and is returned in the
list of query names returned by getQueryNames, without the client having previously taken any action to define the query. In particular, EPCIS 1.0 does
not support any mechanism by which a client can define a new query, and so pre-defined queries are the only queries available. See section 8.2.7 for
specific pre-defined queries that SHALL be provided by an implementation of the EPCIS 1.0 Query Interface.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 109 of 229

An implementation MAY permit a given query to be used with poll but not with subscribe. Generally, queries for event data may be used with both
poll and subscribe, but queries for master data may be used only with poll. This is because subscribe establishes a periodic schedule for running a
query multiple times, each time restricting attention to new events recorded since the last time the query was run. This mechanism cannot apply to
queries for master data, because master data is presumed to be quasi-static and does not have anything corresponding to a record time.

The specification of these methods is as follows:

Method Description

subscribe Registers a subscriber for a previously defined query having the specified name. The params argument provides the values to be used for
any named parameters defined by the query. The dest parameter specifies a destination where results from the query are to be
delivered, via the Query Callback Interface. The dest parameter is a URI that both identifies a specific binding of the Query Callback
Interface to use and specifies addressing information. The controls parameter controls how the subscription is to be processed; in
particular, it specifies the conditions under which the query is to be invoked (e.g., specifying a periodic schedule). The
subscriptionID is an arbitrary string that is copied into every response delivered to the specified destination, and otherwise not
interpreted by the EPCIS service. The client may use the subscriptionID to identify from which subscription a given result was
generated, especially when several subscriptions are made to the same destination.
The dest argument may be null or empty, in which case the EPCIS implementation SHALL deliver results to a pre-arranged destination
based on the authenticated identity of the caller; however, if the implementation does not have a destination pre-arranged for the caller,
or does not permit this usage, it SHALL raise an InvalidURIException instead.

unsubscribe Removes a previously registered subscription having the specified subscriptionID.

poll Invokes a previously defined query having the specified name, returning the results. The params argument provides the values to be
used for any named parameters defined by the query.

getQueryNames Returns a list of all query names available for use with the subscribe and poll methods. This includes all pre-defined queries provided
by the implementation, including those specified in section 8.2.7.

getSubscriptionIDs Returns a list of all subscriptionIDs currently subscribed to the specified named query.

getStandardVersion Returns a string that identifies what version of the EPCIS specification this implementation complies with. The possible values for this
string are defined by GS1. An implementation SHALL return a string corresponding to a version of this specification to which the
implementation fully complies, and SHOULD return the string corresponding to the latest version with which it complies. To indicate
compliance with this Version 2.0 of the EPCIS specification, the implementation SHALL return the string 2.0.

getVendorVersion Returns a string that identifies what vendor extensions this implementation provides. The possible values of this string and their meanings
are vendor-defined, except that the empty string SHALL indicate that the implementation implements only standard functionality with no
vendor extensions. When an implementation chooses to return a non-empty string, the value returned SHALL be a URI where the vendor
is the owning authority. For example, this may be an HTTP URL whose authority portion is a domain name owned by the vendor, a URN
having a URN namespace identifier issued to the vendor by IANA, an OID URN whose initial path is a Private Enterprise Number assigned
to the vendor, etc.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 110 of 229

This framework applies regardless of the content of a query. The detailed contents of a query, and the results as returned from poll or delivered to a
subscriber via the Query Callback Interface, are defined in later sections of this document. This structure is designed to facilitate extensibility, as new
types of queries may be specified and fit into this general framework.

An implementation MAY restrict the behaviour of any method according to authorisation decisions based on the authenticated client identity of the client
making the request. For example, an implementation may limit the IDs returned by getSubscriptionIDs and recognised by unsubscribe to just
those subscribers that were previously subscribed by the same client identity. This allows a single EPCIS service to be “partitioned” for use by groups of
unrelated users whose data should be kept separate.

If a pre-defined query defines named parameters, values for those parameters may be supplied when the query is subsequently referred to using poll or
subscribe. A QueryParams instance is simply a set of name/value pairs, where the names correspond to parameter names defined by the query, and
the values are the specific values to be used for that invocation of (poll) or subscription to (subscribe) the query. If a QueryParams instance includes
a name/value pair where the value is empty string, empty array or null, it SHALL be interpreted as though that query parameter were omitted altogether
and disregarded.

The poll or subscribe method SHALL raise a QueryParameterException under any of the following circumstances:

■ A parameter required by the specified query was omitted or was supplied with an empty value

■ A parameter was supplied whose name does not correspond to any parameter name defined by the specified query

■ Two parameters are supplied having the same name

■ Any other constraint imposed by the specified query is violated. Such constraints may include restrictions on the range of values permitted for a given
parameter, requirements that two or more parameters be mutually exclusive or must be supplied together, and so on. The specific constraints
imposed by a given query are specified in the documentation for that query.

8.2.5.1 Subscription controls

Standing queries are subscribed to via the subscribe method. For each subscription, a SubscriptionControls instance defines how the query is to
be processed.

SubscriptionControls

schedule : QuerySchedule // see Section 8.2.5.3
trigger : URI // specifies a trigger event known by the service
initialRecordTime : Time // see Section 8.2.5.2
reportIfEmpty : boolean
<<extension point>>

The fields of a SubscriptionControls instance are defined below.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 111 of 229

Argument Type Description

schedule QuerySchedule (Optional) Defines the periodic schedule on which the query is to be executed. See section 8.2.5.3. Exactly one of
schedule or trigger is required; if both are specified or both are omitted, the implementation SHALL raise a
SubscriptionControlsException.

trigger URI (Optional) Specifies a triggering event known to the EPCIS service that will serve to trigger execution of this query.
The available trigger URIs are service-dependent. Exactly one of schedule or trigger is required; if both
are specified or both are omitted, the implementation SHALL raise a SubscriptionControlsException.

initialRecordTime Time (Optional) Specifies a time used to constrain what events are considered when processing the query when it is
executed for the first time. See section 8.2.5.2. If omitted, defaults to the time at which the subscription is created.

reportIfEmpty boolean If true, a QueryResults instance is always sent to the subscriber when the query is executed. If false, a
QueryResults instance is sent to the subscriber only when the results are non-empty.

8.2.5.2 Automatic limitation based on event record time

Each subscription to a query results in the query being executed many times in succession, the timing of each execution being controlled by the specified
schedule or being triggered by a triggering condition specified by trigger. Having multiple executions of the same query is only sensible if each
execution is limited in scope to new event data generated since the last execution – otherwise, the same events would be returned more than once.
However, the time constraints cannot be specified explicitly in the query or query parameters, because these do not change from one execution to the
next.

For this reason, an EPCIS service SHALL constrain the scope of each query execution for a subscribed query in the following manner. The first time the
query is executed for a given subscription, the only events considered are those whose recordTime field is greater than or equal to
initialRecordTime specified when the subscription was created. For each execution of the query following the first, the only events considered are
those whose recordTime field is greater than or equal to the time when the query was last executed. It is implementation dependent as to the extent
that failure to deliver query results to the subscriber affects this calculation; implementations SHOULD make best efforts to insure reliable delivery of
query results so that a subscriber does not miss any data. The query or query parameters may specify additional constraints upon record time; these are
applied after restricting the universe of events as described above.

 Non-Normative: Explanation: one possible implementation of this requirement is that the EPCIS service maintains a minRecordTime value for
each subscription that exists. The minRecordTime for a given subscription is initially set to initialRecordTime, and updated to the current time
each time the query is executed for that subscription. Each time the query is executed, the only events considered are those whose recordTime is
greater than or equal to minRecordTime for that subscription.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 112 of 229

8.2.5.3 Query schedule

A QuerySchedule may be specified to specify a periodic schedule for query execution for a specific subscription. Each field of QuerySchedule is a string
that specifies a pattern for matching some part of the current time. The query will be executed each time the current date and time matches the
specification in the QuerySchedule.

Each QuerySchedule field is a string, whose value must conform to the following grammar:

QueryScheduleField ::= Element (“,” Element)*

Element ::= Number | Range

Range ::= “[“ Number “-“ Number “]”

Number ::= Digit+

Digit ::= “0” | “1” | “2” | “3” | “4”
 | “5” | “6” | “7” | “8” | “9”

Each Number that is part of the query schedule field value must fall within the legal range for that field as specified in the table below. An EPCIS
implementation SHALL raise a SubscriptionControlsException if any query schedule field value does not conform to the grammar above, or
contains a Number that falls outside the legal range, or includes a Range where the first Number is greater than the second Number.

The QuerySchedule specifies a periodic sequence of time values (the “query times”). A query time is any time value that matches the QuerySchedule,
according to the following rule:

■ Given a time value, extract the second, minute, hour (0 through 23, inclusive), dayOfMonth (1 through 31, inclusive), and dayOfWeek (1 through 7,
inclusive, denoting Monday through Sunday). This calculation is to be performed relative to a time zone chosen by the EPCIS Service.

■ The time value matches the QuerySchedule if each of the values extracted above matches (as defined below) the corresponding field of the
QuerySchedule, for all QuerySchedule fields that are not omitted.

■ A value extracted from the time value matches a field of the QuerySchedule if it matches any of the comma-separated Elements of the query
schedule field.

■ A value extracted from the time value matches an Element of a query schedule field if

■ the Element is a Number and the value extracted from the time value is equal to the Number; or

■ the Element is a Range and the value extracted from the time value is greater than or equal to the first Number in the Range and less than or equal
to the second Number in the Range.

See examples following the table below.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 113 of 229

An EPCIS implementation SHALL interpret the QuerySchedule as a client’s statement of when it would like the query to be executed, and SHOULD make
reasonable efforts to adhere to that schedule. An EPCIS implementation MAY, however, deviate from the requested schedule according to its own policies
regarding server load, authorisation, or any other reason. If an EPCIS implementation knows, at the time the subscribe method is called, that it will not
be able to honour the specified QuerySchedule without deviating widely from the request, the EPCIS implementation SHOULD raise a
SubscriptionControlsException instead.

 Non-Normative: Explanation: The QuerySchedule, taken literally, specifies the exact timing of query execution down to the second. In practice,
an implementation may not wish to or may not be able to honour that request precisely, but can honour the general intent. For example, a
QuerySchedule may specify that a query be executed every hour on the hour, while an implementation may choose to execute the query every
hour plus or minus five minutes from the top of the hour. The paragraph above is intended to give implementations latitude for this kind of
deviation.

In any case, the automatic handling of recordTime as specified earlier SHALL be based on the actual time the query is executed, whether or not that
exactly matches the QuerySchedule.

The field of a QuerySchedule instance are as follows.

Argument Type Description

second String (Optional) Specifies that the query time must have a matching seconds value. The range for this parameter is 0 through 59, inclusive.

minute String (Optional) Specifies that the query time must have a matching minute value. The range for this parameter is 0 through 59, inclusive.

hour String (Optional) Specifies that the query time must have a matching hour value. The range for this parameter is 0 through 23, inclusive, with 0
denoting the hour that begins at midnight, and 23 denoting the hour that ends at midnight.

dayOfMonth String (Optional) Specifies that the query time must have a matching day of month value. The range for this parameter is 1 through 31, inclusive.
(Values of 29, 30, and 31 will only match during months that have at least that many days.)

month String (Optional) Specifies that the query time must have a matching month value. The range for this parameter is 1 through 12, inclusive.

dayOfWeek String (Optional) Specifies that the query time must have a matching day of week value. The range for this parameter is 1 through 7, inclusive,
with 1 denoting Monday, 2 denoting Tuesday, and so forth, up to 7 denoting Sunday.

 Explanation (non-normative): this numbering scheme is consistent with ISO-8601.

8.2.5.3.1 Query schedule examples (Non-Normative)

Here are some examples of QuerySchedule and what they mean.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 114 of 229

Example 1

QuerySchedule
 second = “0”
 minute = “0”
 all other fields omitted

This means “run the query once per hour, at the top of the hour.” If the reportIfEmpty argument to subscribe is false, then this does not necessarily cause
a report to be sent each hour – a report would be sent within an hour of any new event data becoming available that matches the query.

Example 2

QuerySchedule
 second = “0”
 minute = “30”
 hour = “2”
 all other fields omitted

This means “run the query once per day, at 2:30 am.”

Example 3

QuerySchedule
 second = “0”
 minute = “0”
 dayOfWeek = “[1-5]”

This means “run the query once per hour at the top of the hour, but only on weekdays.”

Example 4

QuerySchedule
 hour = “2”
 all other fields omitted

This means “run the query once per second between 2:00:00 and 2:59:59 each day.” This example illustrates that it usually not desirable to omit a field
of finer granularity than the fields that are specified.

8.2.5.4 QueryResults

A QueryResults instance is returned synchronously from the poll method of the EPCIS Query Control Interface, and also delivered asynchronously to a
subscriber of a standing query via the EPCIS Query Callback Interface.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 115 of 229

QueryResults

queryName : string
subscriptionID : string
resultsBody : QueryResultsBody
<<extension point>>

The fields of a QueryResults instance are defined below.

Field Type Description

queryName String This field SHALL contain the name of the query (the queryName argument that was specified in the call to poll
or subscribe).

subscriptionID string (Conditional) When a QueryResults instance is delivered to a subscriber as the result of a standing query,
subscriptionID SHALL contain the same string provided as the subscriptionID argument the call to
subscribe.

When a QueryResults instance is returned as the result of a poll method, this field SHALL be omitted.

resultsBody QueryResultsBody The information returned as the result of a query. The exact type of this field depends on which query is executed.
Each of the predefined queries in section 8.2.7 specifies the corresponding type for this field.

8.2.6 Error conditions

Methods of the EPCIS Query Control API signal error conditions to the client by means of exceptions. The following exceptions are defined. All the
exception types in the following table are extensions of a common EPCISException base type, which contains one required string element giving the
reason for the exception.

Exception Name Meaning

SecurityException The operation was not permitted due to an access control violation or other security concern. This includes the case
where the service wishes to deny authorisation to execute a particular operation based on the authenticated client
identity. The specific circumstances that may cause this exception are implementation-specific, and outside the scope
of this specification.

DuplicateNameException (Not implemented in EPCIS 1.2)
The specified query name already exists.

QueryValidationException (Not implemented in EPCIS 1.2)
The specified query is invalid; e.g., it contains a syntax error.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 116 of 229

Exception Name Meaning

QueryParameterException One or more query parameters are invalid, including any of the following situations:
 the parameter name is not a recognised parameter for the specified query
 the value of a parameter is of the wrong type or out of range
 two or more query parameters have the same parameter name

QueryTooLargeException An attempt to execute a query resulted in more data than the service was willing to provide.

QueryTooComplexException The specified query parameters, while otherwise valid, implied a query that was more complex than the service was
willing to execute.

InvalidURIException The URI specified for a subscriber cannot be parsed, does not name a scheme recognised by the implementation, or
violates rules imposed by a particular scheme.

SubscriptionControlsException The specified subscription controls was invalid; e.g., the schedule parameters were out of range, the trigger URI could
not be parsed or did not name a recognised trigger, etc.

NoSuchNameException The specified query name does not exist.

NoSuchSubscriptionException The specified subscriptionID does not exist.

NoSuchResourceException The specified resource does not exist.

DuplicateSubscriptionException The specified subscriptionID is identical to a previous subscription that was created and not yet unsubscribed.

SubscribeNotPermittedException The specified query name may not be used with subscribe, only with poll.

ValidationException The input to the operation was not syntactically valid according to the syntax defined by the binding. Each binding
specifies the particular circumstances under which this exception is raised.

ImplementationException A generic exception thrown by the implementation for reasons that are implementation-specific. This exception
contains one additional element: a severity member whose values are either ERROR or SEVERE. ERROR indicates
that the EPCIS implementation is left in the same state it had before the operation was attempted. SEVERE indicates
that the EPCIS implementation is left in an indeterminate state.

Note that the REST interface does not implement the following exceptions:

The exceptions that may be thrown by each method of the EPCIS Query Control Interface are indicated in the table below:

EPCIS Method Exceptions

getQueryNames SecurityException
ValidationException
ImplementationException

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 117 of 229

EPCIS Method Exceptions

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

unsubscribe NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

poll NoSuchNameException
QueryParameterException
QueryTooComplexException
QueryTooLargeException
SecurityException
ValidationException
ImplementationException

getSubscriptionIDs NoSuchNameException SecurityException
ValidationException
ImplementationException

getStandardVersion SecurityException
ValidationException
ImplementationException

getVendorVersion SecurityException
ValidationException
ImplementationException

In addition to exceptions thrown from methods of the EPCIS Query Control Interface as enumerated above, an attempt to execute a standing query may
result in a QueryTooLargeException or an ImplementationException being sent to a subscriber via the EPCIS Query Callback Interface instead of

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 118 of 229

a normal query result. In this case, the QueryTooLargeException or ImplementationException SHALL include, in addition to the reason string, the
query name and the subscriptionID as specified in the subscribe call that created the standing query.

8.2.7 Predefined queries for EPCIS
In EPCIS, no query language is provided by which a client may express an arbitrary query for data. Instead, an EPCIS implementation SHALL provide the
following predefined queries, which a client may invoke using the poll and subscribe methods of the EPCIS Query Control Interface. Each poll or
subscribe call may include parameters via the params argument. The predefined queries defined in this section each have a large number of optional
parameters; by appropriate choice of parameters a client can achieve a variety of effects.

The parameters for each predefined query and what results it returns are specified in this section. An implementation of EPCIS is free to use any internal
representation for data it wishes, and implement these predefined queries using any database or query technology it chooses, so long as the results seen
by a client are consistent with this specification.

8.2.7.1 SimpleEventQuery

This query is invoked by specifying the string SimpleEventQuery as the queryName argument to poll or subscribe. The result is a QueryResults
instance whose body contains a (possibly empty) list of EPCISEvent instances. Unless constrained by the eventType parameter, each property of the
result list could be of any event type; i.e., ObjectEvent, AggregationEvent, TransactionEvent, or any extension event type that is a subclass of
EPCISEvent.

The SimpleEventQuery SHALL be available via both poll and subscribe; that is, an implementation SHALL NOT raise
SubscribeNotPermittedException when SimpleEventQuery is specified as the queryName argument to subscribe.

The SimpleEventQuery is defined to return a set of events that matches the criteria specified in the query parameters (as specified below). When
returning events that were captured via the EPCIS Capture Interface, each event that is selected to be returned SHALL be identical to the originally
captured event, subject to the provisions of authorisation (section 8.2.2), the inclusion of the recordTime field, and any necessary conversions to and
from an abstract internal representation. For any event field defined to hold an unordered list, however, an EPCIS implementation MAY preserve the order.

The parameters for this query are as follows. None of these parameters is required (though in most cases, a query will include at least one query
parameter).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 119 of 229

Parameter name Parameter value
type

Meaning

eventType List of String If specified, the result will only include events whose type matches one of the
types specified in the parameter value. Each property of the parameter value may
be one of the following strings: ObjectEvent, AggregationEvent,
TransactionEvent, TransformationEvent or AssociationEvent.
A property of the parameter value may also be the name of an extension event
type.
If omitted, all event types will be considered for inclusion in the result.

GE_eventTime DateTimeStamp If specified, only events with eventTime greater than or equal to the specified
value will be included in the result.
If omitted, events are included regardless of their eventTime (unless
constrained by the LT_eventTime parameter).

LT_eventTime DateTimeStamp If specified, only events with eventTime less than the specified value will be
included in the result.
If omitted, events are included regardless of their eventTime (unless
constrained by the GE_eventTime parameter).

GE_recordTime DateTimeStamp If provided, only events with recordTime greater than or equal to the specified
value will be returned. The automatic limitation based on event record time
(section 8.2.5.2) may implicitly provide a constraint similar to this parameter.
If omitted, events are included regardless of their recordTime, other than
automatic limitation based on event record time (section 8.2.5.2).

LT_recordTime DateTimeStamp If provided, only events with recordTime less than the specified value will be
returned.
If omitted, events are included regardless of their recordTime (unless
constrained by the GE_recordTime parameter or the automatic limitation
based on event record time).

EQ_action List of String If specified, the result will only include events that (a) have an action field; and
where (b) the value of the action field matches one of the specified values. The
properties of the value of this parameter each must be one of the strings ADD,
OBSERVE, or DELETE; if not, the implementation SHALL raise a
QueryParameterException.

If omitted, events are included regardless of their action field.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 120 of 229

Parameter name Parameter value
type

Meaning

EQ_bizStep List of URIs If specified, the result will only include events that (a) have a non-null bizStep
field; and where (b) the value of the bizStep field matches one of the specified
values.
If this parameter is omitted, events are returned regardless of the value of the
bizStep field or whether the bizStep field exists at all.

EQ_disposition List of URIs Like the EQ_bizStep parameter, but for the disposition field.

EQ_persistentDisposition_set List of URIs Like the EQ_bizStep parameter, but for the persistentDisposition set
field.

EQ_persistentDisposition_unset List of URIs Like the EQ_bizStep parameter, but for the persistentDisposition
unset field.

EQ_readPoint List of URIs If specified, the result will only include events that (a) have a non-null
readPoint field; and where (b) the value of the readPoint field matches one
of the specified URIs.
If this parameter and WD_readPoint are both omitted, events are returned
regardless of the value of the readPoint field or whether the readPoint field
exists at all.

EQ_readPoint_fieldname List of String Analogous to EQ_fieldname, but matches events whose readPoint contains a
field having the specified fieldname whose value matches one of the specified
values.

EQ_readPoint_fieldname Int
Float
DateTimeStamp
Double

Like EQ_readPoint_fieldname as described above, but may be applied to a
field of type Int, Float, Double or Time. The result will include events whose
readPoint (a) has a field named fieldname; and where (b) the type of the
field matches the type of this parameter (Int, Float, Double or Time); and where
(c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_readPoint_fieldname.

EQ_INNER_readPoint_fieldname List of String Analogous to EQ_INNER fieldname, but matches inner extension fields; that
is, any field nested within a top-level extension element. Note that a matching
inner field may exist within more than one top-level field or may occur more than
once within a single top-level field; this parameter matches if at least one
matching occurrence is found anywhere in the event (except at top-level).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 121 of 229

Parameter name Parameter value
type

Meaning

EQ_INNER_readPoint_fieldname Int
Float
DateTimeStamp
Double

Like EQ_INNER_readPoint_fieldname as described above, but may be
applied to a field of type Int, Float, Double or Time. The result will include events
whose readPoint (a) has an inner extension (nested) field named fieldname;
and where (b) the type of the field matches the type of this parameter (Int, Float,
Double or Time); and where (c) the value of the field is equal to the specified
value.

fieldname is constructed as for EQ_INNER_readPoint_fieldname.

WD_readPoint List of URIs If specified, the result will only include events that (a) have a non-null
readPoint field; and where (b) the value of the readPoint field matches one
of the specified URIs, or is a direct or indirect descendant of one of the specified
values. The meaning of “direct or indirect descendant” is specified by master data,
as described in section 6.5. (WD is an abbreviation for “with descendants.”)

If this parameter and EQ_readPoint are both omitted, events are returned
regardless of the value of the readPoint field or whether the readPoint field
exists at all.

EQ_bizLocation List of URIs Like the EQ_readPoint parameter, but for the bizLocation field.

EQ_bizLocation_fieldname List of String Analogous to EQ_readPoint_fieldname, but matches events whose
bizLocation contains a field having the specified fieldname whose value
matches one of the specified values.

EQ_bizLocation_fieldname Int
Float
DateTimeStamp
Double

Like EQ_bizLocation_fieldname as described above, but may be applied to
a field of type Int, Float, Double or Time. The result will include events whose
bizLocation (a) has a field named fieldname; and where (b) the type of the
field matches the type of this parameter (Int, Float, Double or Time); and where
(c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_bizLocation_fieldname.

EQ_INNER_bizLocation_fieldname List of String Analogous to EQ_INNER_bizLocation_fieldname, but matches inner
extension fields; that is, any field nested within a top-level extension element.
Note that a matching inner field may exist within more than one top-level field or
may occur more than once within a single top-level field; this parameter matches
if at least one matching occurrence is found anywhere in the event (except at top-
level).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 122 of 229

Parameter name Parameter value
type

Meaning

EQ_INNER_bizLocation_fieldname Int
Float
DateTimeStamp
Double

Like EQ_INNER_bizLocation_fieldname as described above, but may be
applied to a field of type Int, Float, Double or Time. The result will include events
whose bizLocation (a) has an inner extension (nested) field named
fieldname; and where (b) the type of the field matches the type of this
parameter (Int, Float, Double or Time); and where (c) the value of the field is
equal to the specified value.

fieldname is constructed as for EQ_INNER_bizLocation_fieldname.

WD_bizLocation List of URIs Like the WD_readPoint parameter, but for the bizLocation field.

EQ_bizTransaction_type List of URIs This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
include a bizTransactionList; (b) where the business transaction list
includes an entry whose type subfield is equal to type extracted from the name
of this parameter; and (c) where the bizTransaction subfield of that entry is
equal to one of the values specified in this parameter.

EQ_source_type List of URIs This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
include a sourceList; (b) where the source list includes an entry whose type
subfield is equal to type extracted from the name of this parameter; and (c)
where the source subfield of that entry is equal to one of the values specified in
this parameter.

EQ_destination_type List of URIs This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
include a destinationList; (b) where the destination list includes an entry
whose type subfield is equal to type extracted from the name of this
parameter; and (c) where the destination subfield of that entry is equal to
one of the values specified in this parameter.

EQ_transformationID List of URIs If this parameter is specified, the result will only include events that (a) have a
transformationID field (that is, TransformationEvents or extension
event type that extend TransformationEvent); and where (b) the
transformationID field is equal to one of the values specified in this
parameter.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 123 of 229

Parameter name Parameter value
type

Meaning

MATCH_epc List of URIs If this parameter is specified, the result will only include events that (a) have an
epcList or a childEPCs field (that is, ObjectEvent,
AggregationEvent, TransactionEvent, AssociationEvent or
extension event types that extend one of those event types); and where (b) one of
the EPCs listed in the epcList or childEPCs field (depending on event type)
matches one of the URIs specified in this parameter, where the meaning of
“matches” is as specified in section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their epcList or
childEPCs field or whether the epcList or childEPCs field exists.

MATCH_parentID List of URIs Like MATCH_epc, but matches the parentID field of AggregationEvent, the
parentID field of TransactionEvent, the parentID field of
AssociationEvent and extension event types that extend those event types.
The meaning of “matches” is as specified in section 8.2.7.1.1.

MATCH_inputEPC List of URIs If this parameter is specified, the result will only include events that (a) have an
inputEPCList (that is, TransformationEvent or an extension event type that
extends TransformationEvent); and where (b) one of the EPCs listed in the
inputEPCList field matches one of the URIs specified in this parameter. The
meaning of “matches” is as specified in section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their
inputEPCList field or whether the inputEPCList field exists.

MATCH_outputEPC List of URIs If this parameter is specified, the result will only include events that (a) have an
outputEPCList (that is, TransformationEvent or an extension event type
that extends TransformationEvent); and where (b) one of the EPCs listed in
the outputEPCList field matches one of the URIs specified in this parameter.
The meaning of “matches” is as specified in section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their
outputEPCList field or whether the outputEPCList field exists.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 124 of 229

Parameter name Parameter value
type

Meaning

MATCH_anyEPC List of URIs If this parameter is specified, the result will only include events that (a) have an
epcList field, a childEPCs field, a parentID field, an inputEPCList field,
or an outputEPCList field (that is, ObjectEvent, AggregationEvent,
TransactionEvent, TransformationEvent, AssociationEvent or
extension event types that extend one of those event types); and where (b) the
parentID field or one of the EPCs listed in the epcList, childEPCs,
inputEPCList, or outputEPCList field (depending on event type) matches one
of URIs specified in this parameter. The meaning of “matches” is as specified in
section 8.2.7.1.1.

MATCH_epcClass List of URIs If this parameter is specified, the result will only include events that (a) have a
quantityList or a childQuantityList field (that is, ObjectEvent,
AggregationEvent, TransactionEvent, AssociationEvent or
extension event types that extend one of those event types); and where (b) one of
the EPC classes listed in the quantityList or childQuantityList field
(depending on event type) matches one of the EPC patterns or URIs specified in
this parameter. The result will also include QuantityEvents whose epcClass
field matches one of the URIs specified in this parameter. The meaning of
“matches” is as specified in section 8.2.7.1.1.

MATCH_inputEPCClass List of URIs If this parameter is specified, the result will only include events that (a) have an
inputQuantityList field (that is, TransformationEvent or extension event
types that extend it); and where (b) one of the EPC classes listed in the
inputQuantityList field (depending on event type) matches one of the EPC
patterns or URIs specified in this parameter. The meaning of “matches” is as
specified in section 8.2.7.1.1.

MATCH_outputEPCClass List of URIs If this parameter is specified, the result will only include events that (a) have an
outputQuantityList field (that is, TransformationEvent or extension event
types that extend it); and where (b) one of the EPC classes listed in the
outputQuantityList field (depending on event type) matches one of the URIs
specified in this parameter. The meaning of “matches” is as specified in section
8.2.7.1.1.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 125 of 229

Parameter name Parameter value
type

Meaning

MATCH_anyEPCClass List of URIs If this parameter is specified, the result will only include events that (a) have a
quantityList, childQuantityList, inputQuantityList, or
outputQuantityList field (that is, ObjectEvent, AggregationEvent,
TransactionEvent, TransformationEvent, AssociationEvent or
extension event types that extend one of those event types); and where (b) one of
the EPC classes listed in any of those fields matches one of the EPC patterns or
URIs specified in this parameter. The result will also include QuantityEvents
whose epcClass field matches one of the URIs specified in this parameter. The
meaning of “matches” is as specified in section 8.2.7.1.1.

EQ_quantity Double (DEPCRECATED in EPCIS 1.1, REPURPOSED in EPCIS 2.0) If this parameter is
specified, the result will only include events that (a) have a quantity field as part
of a QuantityElement; and where (b) the quantity field is equal to the
specified parameter.

EQ_quantity_uom Double If this parameter is specified, the result will only include events that (a) have a
quantity and a uom field as part of a QuantityElement; and where (b) a pair
of quantity and uom is equal to or – in case the query includes a uom value that
is different from those in the events – corresponds to the specified parameter.
If omitted, events are in included regardless of the values of their quantity and
uom fields.

GT_quantity Double (DEPCRECATED in EPCIS 1.1, REPURPOSED in EPCIS 2.0) Like EQ_quantity, but
includes events whose quantity field is greater than the specified parameter.

GT_quantity_uom Double Like EQ_quantity_uom, but includes events whose quantity-uom-pair (or a
corresponding quantity-uom-pair when an alternative uom is applied) is greater
than the specified parameter.

GE_quantity Double (DEPCRECATED in EPCIS 1.1, REPURPOSED in EPCIS 2.0) Like EQ_quantity,
but includes events whose quantity field is greater than or equal to the specified
parameter.

GE_quantity_uom Double Like EQ_quantity_uom, but includes events whose quantity-uom-pair (or a
corresponding quantity-uom-pair when an alternative uom is applied) is greater
than or equal to the specified parameter.

LT_quantity Double (DEPCRECATED in EPCIS 1.1, REPURPOSED in EPCIS 2.0) Like EQ_quantity, but
includes events whose quantity field is less than the specified parameter.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 126 of 229

Parameter name Parameter value
type

Meaning

LT_quantity_uom Double Like EQ_quantity_uom, but includes events whose quantity-uom-pair (or a
corresponding quantity-uom-pair when an alternative uom is applied) is less
than the specified parameter.

LE_quantity Double (DEPCRECATED in EPCIS 1.1, REPURPOSED in EPCIS 2.0) Like EQ_quantity, but
includes events whose quantity field is less than or equal to the specified
parameter.

LE_quantity_uom Double Like EQ_quantity_uom, but includes events whose quantity-uom-pair (or a
corresponding quantity-uom-pair when an alternative uom is applied) is less
than or equal to the specified parameter.

EQ_fieldname List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
have a top-level extension field named fieldname whose type is either String or
a vocabulary type; and where (b) the value of that field matches one of the values
specified in this parameter.
fieldname is the fully qualified name of a top-level extension field. The name of
an extension field is an XML qname; that is, a pair consisting of an XML
namespace URI and a name. The name of the corresponding query parameter is
constructed by concatenating the following: the string EQ_, the namespace URI
for the extension field, a pound sign (#), and the name of the extension field.

“Top level” means that the matching extension data field must be nested as an
immediate child attribute of the containing EPCIS event, not a data field nested
within a top-level event extension or class. See EQ_INNER_fieldname for querying
data fields nested within extension elements / classes.

EQ_fieldname Int
Float
DateTimeStamp
Double

Like EQ_fieldname as described above, but may be applied to a field of type Int,
Float, Double or Time. The result will include events that (a) have a field named
fieldname; and where (b) the type of the field matches the type of this
parameter (Int, Float, Double or Time); and where (c) the value of the field is
equal to the specified value.

fieldname is constructed as for EQ_fieldname.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 127 of 229

Parameter name Parameter value
type

Meaning

GT_fieldname Int
Float
DateTimeStamp
Double

Like EQ_fieldname as described above, but may be applied to a field of type
Int, Float, Double or Time. The result will include events that (a) have a field
named fieldname; and where (b) the type of the field matches the type of this
parameter (Int, Float, Double or Time); and where (c) the value of the field is
greater than the specified value.

fieldname is constructed as for EQ_fieldname.

GE_fieldname
LT_fieldname
LE_fieldname

Int
Float
DateTimeStamp
Double

Analogous to GT_fieldname

EQ_ILMD_fieldname List of String This is not a single parameter, but a family of parameters.
Analogous to EQ_fieldname, but matches events whose ILMD area (section
7.3.8) contains a top-level field having the specified fieldname whose value
matches one of the specified values. “Top level” means that the matching ILMD
field must be an immediate child of the <ilmd> element, not an element nested
within such an element. See EQ_INNER_ILMD_fieldname for querying inner
extension elements.

EQ_ILMD_fieldname Int
Float
DateTimeStamp
Double

Like EQ_ILMD_fieldname as described above, but may be applied to a field of
type Int, Float, Double or Time. The result will include events that (a) have an
ILMD field named fieldname; and where (b) the type of the field matches the
type of this parameter (Int, Float, Double or Time); and where (c) the value of the
field is equal to the specified value.

fieldname is constructed as for EQ_ILMD_fieldname.

GT_ILMD_fieldname

GE_ILMD_fieldname

LT_ILMD_fieldname

LE_ILMD_fieldname

Int
Float
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches events whose ILMD (section 7.3.8) contains a field having the specified
fieldname whose integer, float, double-precision float or time value matches
the specified value according to the specified relational operator.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 128 of 229

Parameter name Parameter value
type

Meaning

EQ_INNER_fieldname List of String Analogous to EQ_fieldname, but matches inner extension fields; that is, any
XML field nested at any level within a top-level extension element. Note that a
matching inner field may exist within more than one top-level element or may
occur more than once within a single top-level element; this parameter matches if
at least one matching occurrence is found anywhere in the event (except at top-
level).
Note that unlike a top-level extension element, an inner extension element may
have a null XML namespace. To match such an inner element, the empty string is
used in place of the XML namespace when constructing the query parameter
name. For example, to match inner element <elt1> with no XML namespace, the
query parameter would be EQ_INNER_#elt1.

EQ_INNER_fieldname Int
Float
DateTimeStamp
Double

Like EQ_INNER_fieldname as described above, but may be applied to a field of
type Int, Float, Double or Time. The result will include events that (a) have an
inner extension (nested) field named fieldname; and where (b) the type of the
field matches the type of this parameter (Int, Float, Double or Time); and where
(c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_INNER_fieldname.

GT_INNER_fieldname

GE_INNER_fieldname

LT_INNER_fieldname

LE_INNER_fieldname

Int
Float
DateTimeStamp
Double

Like EQ_INNER_fieldname as described above, but may be applied to a field
of type Int, Float, Double or Time.

EQ_INNER_ILMD_fieldname List of String Analogous to EQ_ILMD_fieldname, but matches inner ILMD elements; that is,
any XML field nested at any level within a top-level ILMD element. Note that a
matching inner field may exist within more than one top-level element or may
occur more than once within a single top-level element; this parameter matches if
at least one matching occurrence is found anywhere in the ILMD section (except at
top-level).

GT_INNER_ILMD_fieldname

GE_INNER_ILMD_fieldname

LT_INNER_ILMD_fieldname

LE_INNER_ILMD_fieldname

Int
Float
DateTimeStamp
Double

Like EQ_INNER_ILMD_fieldname as described above, but may be applied to
a field of type Int, Float, Double or Time.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 129 of 229

Parameter name Parameter value
type

Meaning

EXISTS_fieldname Void Like EQ_fieldname as described above, but may be applied to a field of any
type (including complex types). The result will include events that have a non-
empty field named fieldname.

Fieldname is constructed as for EQ_fieldname.
Note that the value for this query parameter is ignored.

EXISTS_INNER_fieldname Void Like EXISTS_fieldname as described above, but includes events that have a
non-empty inner extension field named fieldname.

Note that the value for this query parameter is ignored.

EXISTS_ILMD_fieldname Void Like EXISTS_fieldname as described above, but events that have a non-
empty field named fieldname in the ILMD area (section 7.3.8).

Fieldname is constructed as for EQ_ILMD_fieldname.
Note that the value for this query parameter is ignored.

EXISTS_INNER_ILMD_fieldname Void Like EXISTS_ILMD_fieldname as described above, but includes events that
have a non-empty inner extension field named fieldname within the ILMD area.

Note that the value for this query parameter is ignored.

HASATTR_fieldname List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
have a field named fieldname whose type is a vocabulary type; and (b) where
the value of that field is a vocabulary element for which master data is available;
and (c) the master data has a non-null attribute whose name matches one of the
values specified in this parameter.
Fieldname is the fully qualified name of a field. For a standard field, this is
simply the field name; e.g., bizLocation. For an extension field, the name of
an extension field is an XML qname; that is, a pair consisting of an XML
namespace URI and a name. The name of the corresponding query parameter is
constructed by concatenating the following: the string HASATTR_, the namespace
URI for the extension field, a pound sign (#), and the name of the extension field.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 130 of 229

Parameter name Parameter value
type

Meaning

EQ_ATTR_fieldname_attrname List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include events that (a)
have a field named fieldname whose type is a vocabulary type; and (b) where
the value of that field is a vocabulary element for which master data is available;
and (c) the master data has a non-null attribute named attrname; and (d)
where the value of that attribute matches one of the values specified in this
parameter.
fieldname is constructed as for HASATTR_fieldname.

The implementation MAY raise a QueryParameterException if fieldname
or attrname includes an underscore character.

 Explanation (non-normative): because the presence of an underscore in
fieldname or attrname presents an ambiguity as to where the division
between fieldname and attrname lies, an implementation is free to reject
the query parameter if it cannot disambiguate.

EQ_ATTR_fieldname_attrname Int
Float
DateTimeStamp
Double

Like EQ_ATTR_fieldname_attrname as described above, but may be applied
to a field of type Int, Float, Double or Time. The result will only include events that
(a) have a field named fieldname whose type is a vocabulary type; and (b)
where the value of that field is a vocabulary element for which master data is
available; and (c) the master data has a non-null attribute named attrname;
and where (b) the type of the field matches the type of this parameter (Int, Float,
Double or Time); and where (c) the value of the field is equal to the specified
value.
fieldname_attrname is constructed as for
EQ_ATTR_fieldname_attrname.

EQ_eventID List of URIs If this parameter is specified, the result will only include events that (a) have a
non-null eventID field; and where (b) the eventID field is equal to one of the
values specified in this parameter.
If this parameter is omitted, events are returned regardless of the value of the
eventID field or whether the eventID field exists at all.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 131 of 229

Parameter name Parameter value
type

Meaning

EXISTS_errorDeclaration Void If this parameter is specified, the result will only include events that contain an
ErrorDeclaration.

If this parameter is omitted, events are returned regardless of whether they
contain an ErrorDeclaration.

GE_errorDeclarationTime DateTimeStamp If this parameter is specified, the result will only include events that (a) contain an
ErrorDeclaration; and where (b) the value of the errorDeclarationTime
field is greater than or equal to the specified value.
If this parameter is omitted, events are returned regardless of whether they
contain an ErrorDeclaration or what the value of the
errorDeclarationTime field is.

LT_errorDeclarationTime DateTimeStamp If this parameter is specified, the result will only include events that (a) contain an
ErrorDeclaration; and where (b) the value of the errorDeclarationTime
field is less than to the specified value.
If this parameter is omitted, events are returned regardless of whether they
contain an ErrorDeclaration or what the value of the
errorDeclarationTime field is.

EQ_errorReason List of URIs If this parameter is specified, the result will only include events that (a) contain an
ErrorDeclaration; and where (b) the error declaration contains a non-null
reason field; and where (c) the reason field is equal to one of the values
specified in this parameter.
If this parameter is omitted, events are returned regardless of whether they
contain an ErrorDeclaration or what the value of the reason field is.

EQ_correctiveEventID List of URIs If this parameter is specified, the result will only include events that (a) contain an
ErrorDeclaration; and where (b) one of the elements of the
correctiveEventIDs list is equal to one of the values specified in this
parameter.
If this parameter is omitted, events are returned regardless of whether they
contain an ErrorDeclaration or the contents of the correctiveEventIDs
list.

EQ_ERROR_DECLARATION_fieldname List of String Analogous to EQ_fieldname, but matches events containing an
ErrorDeclaration and where the ErrorDeclaration contains a field having
the specified fieldname whose value matches one of the specified values.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 132 of 229

Parameter name Parameter value
type

Meaning

EQ_ERROR_DECLARATION_fieldname Int
Float
DateTimeStamp
Double

Like EQ_ERROR_DECLARATION_fieldname as described above, but may be
applied to a field of type Int, Float, Double or Time. The result will include events
whose ErrorDeclaration (a) has a field named fieldname; and where (b)
the type of the field matches the type of this parameter (Int, Float, Double or
Time); and where (c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_ERROR_DECLARATION_fieldname.

GT_ERROR_DECLARATION_fieldname

GE_ERROR_DECLARATION_fieldname

LT_ERROR_DECLARATION_fieldname

LE_ERROR_DECLARATION_fieldname

Int
Float
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches events containing an ErrorDeclaration and where the
ErrorDeclaration contains a field having the specified fieldname whose
integer, float, double-precision floating point or time value matches the specified
value according to the specified relational operator.

EQ_INNER_ERROR_DECLARATION_fieldname List of String Analogous to EQ_ERROR_DECLARATION_fieldname, but matches inner
extension elements; that is, any XML field nested within a top-level extension
element. Note that a matching inner field may exist within more than one top-level
element or may occur more than once within a single top-level element; this
parameter matches if at least one matching occurrence is found anywhere in the
event (except at top-level).

EQ_INNER_ERROR_DECLARATION_fieldname Int
Float
DateTimeStamp
Double

Like EQ_INNER_ERROR_DECLARATION_fieldname as described above, but
may be applied to a field of type Int, Float, Double or Time. The result will include
events whose inner extension element ErrorDeclaration (a) has a field
named fieldname; and where (b) the type of the field matches the type of this
parameter (Int, Float, Double or Time); and where (c) the value of the field is
equal to the specified value.
fieldname is constructed as for
EQ_INNER_ERROR_DECLARATION_fieldname.

GT_INNER_ERROR_DECLARATION_fieldname

GE_INNER_ERROR_DECLARATION_fieldname

LT_INNER_ERROR_DECLARATION_fieldname

LE_INNER_ERROR_DECLARATION_fieldname

Int
Float
DateTimeStamp
Double

Like EQ_INNER_ERROR_DECLARATION_fieldname as described above, but
may be applied to a field of type Int, Float, Double or Time.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 133 of 229

Parameter name Parameter value
type

Meaning

EXISTS_ERROR_DECLARATION_fieldname Void Like EXISTS_fieldname as described above, but events that have an error
declaration containing a non-empty extension field named fieldname.

Fieldname is constructed as for EQ_ERROR_DECLARATION_fieldname.
Note that the value for this query parameter is ignored

EXISTS_INNER_ERROR_DECLARATION_fieldname Void Like EXISTS_ERROR_DECLARATION_fieldname as described above, but
includes events that have an error declaration containing a non-empty inner
extension field named fieldname.

Note that the value for this query parameter is ignored.

orderBy String If specified, names a single field that will be used to order the results. The
orderDirection field specifies whether the ordering is in ascending sequence
or descending sequence. Events included in the result that lack the specified field
altogether may occur in any position within the result event list.
The value of this parameter SHALL be one of: eventTime, recordTime, or
the fully qualified name of an extension field whose type is Int, Float, Double,
Time, or String. A fully qualified fieldname is constructed as for the
EQ_fieldname parameter.

In the case of a field of type String, sorting SHALL be according to their case-
sensitive lexical ordering, considering UTF-8/ASCII code values of each successive
character.
If omitted, no order is specified. The implementation MAY order the results in any
order it chooses, and that order MAY differ even when the same query is executed
twice on the same data.
(In EPCIS 1.0, the value quantity was also permitted, but its use is deprecated
in EPCIS 1.1.)

orderDirection String If specified and orderBy is also specified, specifies whether the results are
ordered in ascending or descending sequence according to the key specified by
orderBy. The value of this parameter must be one of ASC (for ascending order)
or DESC (for descending order); if not, the implementation SHALL raise a
QueryParameterException.

If omitted, defaults to DESC.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 134 of 229

Parameter name Parameter value
type

Meaning

eventCountLimit Int If specified, the results will only include the first N events that match the other
criteria, where N is the value of this parameter. The ordering specified by the
orderBy and orderDirection parameters determine the meaning of “first”
for this purpose.
If omitted, all events matching the specified criteria will be included in the results.
This parameter and maxEventCount are mutually exclusive; if both are
specified, a QueryParameterException SHALL be raised.

This parameter may only be used when orderBy is specified; if orderBy is
omitted and eventCountLimit is specified, a
QueryParameterException SHALL be raised.

This parameter differs from maxEventCount in that this parameter limits the
amount of data returned, whereas maxEventCount causes an exception to be
thrown if the limit is exceeded.

 Explanation (non-normative): A common use of the orderBy,
orderDirection, and eventCountLimit parameters is for extremal
queries. For example, to select the most recent event matching some
criteria, the query would include parameters that select events matching
the desired criteria, and set orderBy to eventTime, orderDirection to
DESC, and eventCountLimit to one.

maxEventCount Int If specified, at most this many events will be included in the query result. If the
query would otherwise return more than this number of events, a
QueryTooLargeException SHALL be raised instead of a normal query result.

This parameter and eventCountLimit are mutually exclusive; if both are
specified, a QueryParameterException SHALL be raised.

If this parameter is omitted, any number of events may be included in the query
result. Note, however, that the EPCIS implementation is free to raise a
QueryTooLargeException regardless of the setting of this parameter (see
section 8.2.3).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 135 of 229

Parameter name Parameter value
type

Meaning

GE_startTime DateTimeStamp If specified, only events with startTime greater than or equal to the specified
value will be included in the result.
If omitted, events are included regardless of their startTime (unless
constrained by the LT_startTime parameter).

LT_startTime DateTimeStamp If specified, only events with startTime less than the specified value will be
included in the result.
If omitted, events are included regardless of their startTime (unless
constrained by the GE_startTime parameter).

GE_endTime DateTimeStamp If specified, only events with endTime greater than or equal to the specified
value will be included in the result.
If omitted, events are included regardless of their endTime (unless constrained
by the LT_endTime parameter).

LT_endTime DateTimeStamp If specified, only events with endTime less than the specified value will be
included in the result.
If omitted, events are included regardless of their endTime (unless constrained
by the GE_startTime parameter).

EQ_type List of URIs If this parameter is specified, the result will only include events that (a)
accommodate one or more sensorElement fields; and where (b) the type
attribute in one of these sensorElement fields is equal to one of the values
specified in this parameter.
If this parameter is omitted, events are returned regardless of the value of the
type attribute or whether a sensorElement field exists at all.

EQ_deviceID List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a deviceID attribute; and where (b) the deviceID attribute is
equal to one of the URIs specified in this parameter.
If this parameter is omitted, events are returned regardless of the value of the
deviceID attribute or whether the deviceID attribute exists at all.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 136 of 229

Parameter name Parameter value
type

Meaning

EQ_dataProcessingMethod List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a dataProcessingMethod attribute; and where (b) the
dataProcessingMethod attribute is equal to one of the URIs specified in this
parameter.
If this parameter is omitted, events are returned regardless of the value of the
dataProcessingMethod attribute or whether the
dataProcessingMethod attribute exists at all.

EQ_microorganism List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a microorganism attribute; and where (b) the
microorganism attribute is equal to one of the URIs specified in this
parameter.
If this parameter is omitted, events are returned regardless of the value of the
microorganism attribute or whether the microorganism attribute exists at
all.

EQ_chemicalSubstance List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a chemicalSubstance attribute; and where (b) the
chemicalSubstance attribute is equal to one of the URIs specified in this
parameter.
If this parameter is omitted, events are returned regardless of the value of the
chemicalSubstance attribute or whether the chemicalSubstance
attribute exists at all.

EQ_bizRules List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a bizRules attribute; and where (b) the bizRules attribute is
equal to one of the values specified in this parameter.
If this parameter is omitted, events are returned regardless of the value of the
bizRules attribute or whether the bizRules attribute exists at all.

EQ_value_uom List of Double If this parameter is specified, the result will only include events that (a) have a
uom and a value attribute; and where (b) a pair of uom and value is equal or –
in case the query includes a uom value that is different from those in the events –
corresponds to the specified parameter.

If omitted, events are in included regardless of the values of their uom and value
attributes.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 137 of 229

Parameter name Parameter value
type

Meaning

GT_value_uom

GE_value_uom

LT_value_uom

LE_value_uom

Double Analogous to EQ_uom_value, but includes events whose uom-value-pair (or a
corresponding uom-value-pair when an alternative uom is applied) matches the
specified relational operator; GT = greater than (>), GE = greater than or equal to
(>=), LT = less than (<), LE = less than or equal to (<=).

GT_minValue_uom Double Like GT_value_uom, but pertaining to the minValue attribute.

GE_minValue_uom Double

Like GE_value_uom, but pertaining to the minValue attribute.

LT_minValue_uom Double Like LT_value_uom, but pertaining to the minValue attribute.

LE_minValue_uom Double Like LE_value_uom, but pertaining to the minValue attribute.

GE_maxValue_uom Double Like GE_value_uom, but pertaining to the maxValue attribute.

LT_maxValue_uom Double Like LT_value_uom, but pertaining to the maxValue attribute.

GT_meanValue_uom Double Like GT_value_uom, but pertaining to the meanValue attribute.

GE_meanValue_uom Double Like GE_value_uom, but pertaining to the meanValue attribute.

LT_meanValue_uom Double Like LT_value_uom, but pertaining to the meanValue attribute.

LE_meanValue_uom Double Like LE_value_uom, but pertaining to the meanValue attribute.

GT_sDev_uom Double Like GT_value_uom, but pertaining to the sDev attribute.

GE_sDev_uom Double Like GE_value_uom, but pertaining to the sDev attribute.

LT_sDev_uom Double Like LT_value_uom, but pertaining to the sDev attribute.

LE_sDev_uom Double Like LE_value_uom, but pertaining to the sDev attribute.

EQ_stringValue List of String If this parameter is specified, the result will only include events that (a)
accommodate a stringValue attribute; and where (b) the stringValue
attribute is equal to one of the specified parameter.
If this parameter is omitted, events are returned regardless of the value of the
stringValue attribute or whether the stringValue attribute exists at all.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 138 of 229

Parameter name Parameter value
type

Meaning

EQ_booleanValue Boolean If this parameter is specified, the result will only include events that (a)
accommodate a booleanValue attribute; and where (b) the booleanValue
attribute is equal to the specified value (i.e. ‘true’ or ‘false’).

If this parameter is omitted, events are returned regardless of the value of the
booleanValue attribute or whether the booleanValue attribute exists at all.

EQ_hexBinaryValue List of String If this parameter is specified, the result will only include events that (a)
accommodate a hexBinaryValue attribute; and where (b) the
hexBinaryValue attribute is equal to one of the values specified in this
parameter.
If this parameter is omitted, events are returned regardless of the value of the
hexBinaryValue attribute or whether the hexBinaryValue attribute exists at
all.

EQ_uriValue List of URIs If this parameter is specified, the result will only include events that (a)
accommodate a uriValue attribute; and where (b) the uriValue attribute is
equal to one of the URIs specified in this parameter.
If this parameter is omitted, events are returned regardless of the value of the
uriValue attribute or whether the uriValue attribute exists at all.

EQ_SENSORELEMENT_fieldname List of String Analogous to EQ_fieldname, but matches events containing a
SensorElement and where the SensorElement contains a field having the
specified fieldname whose value matches one of the specified values.

EQ_SENSORELEMENT_fieldname Int
DateTimeStamp
Double

Like EQ_SENSORELEMENT_fieldname as described above, but may be applied
to a field of type Int, Double or Time. The result will include events whose
SensorElement (a) has a field named fieldname; and where (b) the type of
the field matches the type of this parameter (integer, double-precision or time);
and where (c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_SENSORELEMENT_fieldname.

GT_SENSORELEMENT_fieldname

GE_SENSORELEMENT_fieldname

LT_SENSORELEMENT_fieldname

LE_SENSORELEMENT_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches events containing a SensorElement and where the SensorElement
contains a field having the specified fieldname whose integer, double-precision,
or time value matches the specified value according to the specified relational
operator.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 139 of 229

Parameter name Parameter value
type

Meaning

EQ_INNER_SENSORELEMENT_fieldname List of String Analogous to EQ_SENSORELEMENT_fieldname, but matches inner
extension elements (i.e., any XML field nested at any level within a top-level
extension element) containing a SensorElement and where the
SensorElement contains a field having the specified fieldname whose value
matches one of the specified values.

EQ_INNER_SENSORELEMENT_fieldname Int
DateTimeStamp
Double

Like EQ_INNER_ERROR_SENSORELEMENT_fieldname as described above,
but may be applied to a field of type Int, Double or Time. The result will include
events whose inner extension SensorElement (a) has a field named
fieldname; and where (b) the type of the field matches the type of this
parameter (integer, double-precision or time); and where (c) the value of the field
is equal to the specified value.
fieldname is constructed as for
EQ_INNER_SENSORELEMENT_fieldname.

GT_INNER_SENSORELEMENT_fieldname

GE_INNER_SENSORELEMENT_fieldname

LT_INNER_SENSORELEMENT_fieldname

LE_INNER_SENSORELEMENT_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches inner extension elements (i.e., any XML field nested at any level within
a top-level extension element) containing a SensorElement and where the
SensorElement contains a field having the specified fieldname whose
integer, double-precision, or time value matches the specified value according to
the specified relational operator.

EQ_SENSORMETADATA_fieldname List of String Analogous to EQ_fieldname, but matches events containing a
SensorMetadata element and where the SensorMetadata element contains a
field having the specified fieldname whose value matches one of the specified
values.

EQ_SENSORMETADATA_fieldname Int
DateTimeStamp
Double

Like EQ_SENSORMETADATA_fieldname as described above, but may be
applied to a field of type Int, Double or Time. The result will include events whose
SensorMetadata element (a) has a field named fieldname; and where (b)
the type of the field matches the type of this parameter (integer, double-precision
or time); and where (c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_SENSORMETADATA_fieldname.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 140 of 229

Parameter name Parameter value
type

Meaning

GT_SENSORMETADATA_fieldname

GE_SENSORMETADATA_fieldname

LT_SENSORMETADATA_fieldname

LE_SENSORMETADATA_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches events containing a SensorMetadata element and where the
SensorMetadata element contains a field having the specified fieldname
whose integer, double-precision, or time value matches the specified value
according to the specified relational operator.

EQ_INNER_SENSORMETADATA_fieldname List of String Analogous to EQ_fieldname, but matches inner extension elements (i.e.,
any XML field nested at any level within a top-level extension element) containing
a SensorMetadata element and where the SensorMetadata element contains
a field having the specified fieldname whose value matches one of the specified
values.

EQ_INNER_SENSORMETADATA_fieldname Int
DateTimeStamp
Double

Like EQ_INNER_SENSORMETADATA_fieldname as described above, but may
be applied to a field of type Int, Double or Time. The result will include events
whose inner extension SensorMetadata element (a) has a field named
fieldname; and where (b) the type of the field matches the type of this
parameter (integer, double-precision or time); and where (c) the value of the field
is equal to the specified value.
fieldname is constructed as for
EQ_INNER_SENSORMETADATA_fieldname.

GT_INNER_SENSORMETADATA_fieldname

GE_INNER_SENSORMETADATA_fieldname

LT_INNER_SENSORMETADATA_fieldname

LE_INNER_SENSORMETADATA_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches inner extension elements (i.e., any XML field nested at any level within
a top-level extension element)containing a SensorMetadata element and where
the SensorMetadata element contains a field having the specified fieldname
whose integer, double-precision, or time value matches the specified value
according to the specified relational operator.

EQ_SENSORREPORT_fieldname List of String Analogous to EQ_fieldname, but matches events containing a SensorReport
element and where the SensorReport element contains a field having the
specified fieldname whose value matches one of the specified values.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 141 of 229

Parameter name Parameter value
type

Meaning

EQ_SENSORREPORT_fieldname Int
DateTimeStamp
Double

Like EQ_SENSORREPORT_fieldname as described above, but may be applied
to a field of type Int, Double or Time. The result will include events whose
SensorReport element (a) has a field named fieldname; and where (b) the
type of the field matches the type of this parameter (integer, double-precision or
time); and where (c) the value of the field is equal to the specified value.

fieldname is constructed as for EQ_SENSORREPORT_fieldname.

GT_SENSORREPORT_fieldname

GE_SENSORREPORT_fieldname

LT_SENSORREPORT_fieldname

LE_SENSORREPORT_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches events containing a SensorReport element and where the
SensorReport element contains a field having the specified fieldname whose
integer, double-precision, or time value matches the specified value according to
the specified relational operator.

EQ_INNER_SENSOREPORT_fieldname List of String Analogous to EQ_SENSOREPORT_fieldname, but matches inner extension
elements (i.e., any XML field nested at any level within a top-level extension
element) containing a SensorReport and where the SensorReportcontains a
field having the specified fieldname whose value matches one of the specified
values.

EQ_INNER_SENSOREPORT_fieldname Int
DateTimeStamp
Double

Like EQ_INNER_SENSORREPORT_fieldname as described above, but may be
applied to a field of type Int, Double or Time. The result will include events whose
inner extension SensorReport element (a) has a field named fieldname;
and where (b) the type of the field matches the type of this parameter (integer,
double-precision or time); and where (c) the value of the field is equal to the
specified value.

fieldname is constructed as for EQ_INNER_SENSORREPORT_fieldname.

GT_INNER_SENSOREPORT_fieldname

GE_INNER_SENSOREPORT_fieldname

LT_INNER_SENSOREPORT_fieldname

LE_INNER_SENSOREPORT_fieldname

Int
DateTimeStamp
Double

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively, but
matches inner extension elements (i.e., any XML field nested at any level within
a top-level extension element) containing a SensorElement and where the
SensorReport contains a field having the specified fieldname whose integer,
double-precision, or time value matches the specified value according to the
specified relational operator.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 142 of 229

Parameter name Parameter value
type

Meaning

EXISTS_SENSORELEMENT_fieldname Void Like EXISTS_fieldname as described above, but events that have a
SensorElement containing a non-empty extension field named fieldname.

Fieldname is constructed as for EQ_SENSORELEMENT_fieldname.
Note that the value for this query parameter is ignored.

EXISTS_SENSORMETADATA_fieldname Void Like EXISTS_fieldname as described above, but events that have a
SensorMetadata element containing a non-empty extension field named
fieldname.

Fieldname is constructed as for EQ_SENSORMETADATA_fieldname.
Note that the value for this query parameter is ignored.

EXISTS_SENSORREPORT_fieldname Void Like EXISTS_fieldname as described above, but events that have a
SensorReport element containing a non-empty extension field named
fieldname.

Fieldname is constructed as for EQ_SENSORREPORT_fieldname.
Note that the value for this query parameter is ignored.

GE_percRank Double If this parameter is specified, the result will only include events that (a) have a
percRank attribute; and where (b) a value of percRank is greater than or equal
to the specified parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

LT_percRank Double If this parameter is specified, the result will only include events that (a) have a
percRank attribute; and where (b) a value of percRank is less than the specified
parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

GE_percValue_uom Double If this parameter is specified, the result will only include events that (a) have a
percValue attribute; and where (b) a value of percValue is greater than or
equal to the specified parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 143 of 229

Parameter name Parameter value
type

Meaning

GT_percValue_uom Double If this parameter is specified, the result will only include events that (a) have a
percValue attribute; and where (b) a value of percValue is greater than the
specified parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

LE_percValue_uom Double If this parameter is specified, the result will only include events that (a) have a
percValue attribute; and where (b) a value of percValue is less than or equal
to the specified parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

LT_percValue_uom Double If this parameter is specified, the result will only include events that (a) have a
percValue attribute; and where (b) a value of percValue is less than the
specified parameter.
NOTE: since percRank and percValue should be specified together in the data,
if present, it may be appropriate for EPCIS queries to express a query constraint of
both percRank and percValue together (i.e., not independently of each other).

As the descriptions above suggest, if multiple parameters are specified an event must satisfy all criteria in order to be included in the result set. In other
words, if each parameter is considered to be a predicate, all such predicates are implicitly conjoined as though by an AND operator. For example, if a
given call to poll specifies a value for both the EQ_bizStep and EQ_disposition parameters, then an event must match one of the specified
bizStep values AND match one of the specified disposition values in order to be included in the result.

On the other hand, for those parameters whose value is a list, an event must match at least one of the elements of the list in order to be included in the
result set. In other words, if each element of the list is considered to be a predicate, all such predicates for a given list are implicitly disjoined as though
by an OR operator. For example, if the value of the EQ_bizStep parameter is a two-element list (“bs1”, “bs2”), then an event is included if its bizStep
field contains the value bs1 OR its bizStep field contains the value bs2.

As another example, if the value of the EQ_bizStep parameter is a two-element list (“bs1”, “bs2”) and the EQ_disposition parameter is a two-
element list (“d1”, “d2”), then the effect is to include events satisfying the following predicate:

((bizStep = “bs1” OR bizStep = “bs2”)
 AND (disposition = “d1” OR disposition = “d2”))

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 144 of 229

8.2.7.1.1 Processing of MATCH query parameters

The parameter list for MATCH_epc, MATCH_parentID, MATCH_inputEPC, MATCH_outputEPC, and MATCH_anyEPC SHALL be processed as follows. Each
element of the parameter list may be a pure identity pattern as specified in [TDS], or any other URI. If the element is a pure identity pattern, it is
matched against event field values using the procedure for matching identity patterns specified in [TDS1.9]. If the element is any other URI, it is matched
against event field values by testing string equality.

The parameter list for MATCH_epcClass, MATCH_inputEPCClass, MATCH_outputEPCClass, and MATCH_anyEPCClass SHALL be processed as
follows. Let P be one of the patterns specified in the value for this parameter, and let C be the value of an epcClass field in the appropriate quantity list
of an event being considered for inclusion in the result. Then the event is included if each component Pi of P matches the corresponding component Ci of
C, where “matches” is as defined in [TDS].

 Non-Normative: Explanation: The difference between MATCH_epcClass and MATCH_epc, and similar parameters, is that for MATCH_epcClass the
value in the event (the epcClass field in a quantity list) may itself be a Pure Identity EPC Pattern URI, as specified in TDS). This means that the
value in the event may contain a ‘*’ component. The above specification says that a ‘*’ in the EPCClass field of an event is only matched by a ‘*’ in
the query parameter. For example, if the epcClass field within an event is urn:epc:idpat:sgtin:9521321.112345.*, then this event would be
matched by the query parameter urn:epc:idpat:sgtin:9521321.*.* or by urn:epc:idpat:sgtin:9521321.112345.*, but not by
urn:epc:idpat:sgtin:9521321.112345.400.

8.2.7.2 SimpleMasterDataQuery - REMOVED in EPCIS 2.0

8.2.8 Query callback interface

The Query Callback Interface is the path by which an EPCIS service delivers standing query results to a client.

<<interface>>
EPCISQueryCallbackInterface

callbackResults(resultData : QueryResults) : void
callbackQueryTooLargeException(e : QueryTooLargeException) : void
callbackImplementationException(e : ImplementationException) : void

Each time the EPCIS service executes a standing query according to the QuerySchedule, it SHALL attempt to deliver results to the subscriber by
invoking one of the three methods of the Query Callback Interface. If the query executed normally, the EPCIS service SHALL invoke the
callbackResults method. If the query resulted in a QueryTooLargeException or ImplementationException, the EPCIS service SHALL invoke
the corresponding method of the Query Callback Interface.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 145 of 229

Note that “exceptions” in the Query Callback Interface are not exceptions in the usual sense of an API exception, because they are not raised as a
consequence of a client invoking a method. Instead, the exception is delivered to the recipient in a similar manner to a normal result, as an argument to
an interface method.

9 XML bindings for data definition modules
This section specifies a standard XML binding for the Core Event Types data definition module, using the W3C XML Schema language [XSD1, XSD2].
Samples are also shown.

The schema below conforms to GS1 standard schema design rules. The schema below imports the EPCglobal standard base schema, as mandated by the
design rules [XMLDR].

9.1 Extensibility mechanism
The XML schema in this section implements the <<extension point>> given in the UML of section 7 using a methodology described in [XMLVersioning].
This methodology provides for both vendor/user extension, and for extension by GS1 in future versions of this specification or in supplemental
specifications. Extensions introduced through this mechanism will be backward compatible, in that documents conforming to older versions of the schema
will also conform to newer versions of the standard schema and to schema containing vendor-specific extensions. Extensions will also be forward
compatible, in that documents that contain vendor/user extensions or that conform to newer versions of the standard schema will also conform to older
versions of the schema.

When a document contains extensions (vendor/user-specific or standardised in newer versions of schema), it may conform to more than one schema. For
example, a document containing vendor extensions to the GS1 Version 1.0 schema will conform both to the GS1 Version 1.0 schema and to a vendor-
specific schema that includes the vendor extensions. In this example, when the document is parsed using the standard schema there will be no validation
of the extension elements and attributes, but when the document is parsed using the vendor-specific schema the extensions will be validated. Similarly, a
document containing new features introduced in the GS1 Version 1.2 schema will conform to the GS1 Version 1.0 schema, the GS1 Version 1.1 schema,
and the GS1 Version 1.2 schema, but validation of the new features will only be available using the Version 1.2 schema.

The design rules for this extensibility pattern are given in [XMLVersioning]. In summary, it amounts to the following rules:

■ For each type in which <<extension point>> occurs, include an xsd:anyAttribute declaration. This declaration provides for the addition of new
XML attributes, either in subsequent versions of the standard schema or in vendor/user-specific schema.

■ For each type in which <<extension point>> occurs, include an optional (minOccurs = 0) element named extension. The type declared for the
extension element will always be as follows:

 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded"
 namespace="##local"/>
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax"/>

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 146 of 229

This declaration provides for forward-compatibility with new elements introduced into subsequent versions of the standard schema.

■ For each type in which <<extension point>> occurs, include at the end of the element list a declaration

 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded"
 namespace="##other"/>

This declaration provides for forward-compatibility with new elements introduced in vendor/user-specific schema.

The rules for adding vendor/user-specific extensions to the schema are as follows:

■ Vendor/user-specific attributes may be added to any type in which <<extension point>> occurs. Vendor/user-specific attributes SHALL NOT be in
the EPCglobal EPCIS namespace (urn:epcglobal:epcis:xsd:2) nor in the empty namespace. Vendor/user-specific attributes SHALL be in a
namespace whose namespace URI has the vendor as the owning authority. (In schema parlance, this means that all vendor/user-specific attributes
must have qualified as their form.) For example, the namespace URI may be an HTTP URL whose authority portion is a domain name owned by the
vendor/user, a URN having a URN namespace identifier issued to the vendor/user by IANA, an OID URN whose initial path is a Private Enterprise
Number assigned to the vendor/user, etc. Declarations of vendor/user-specific attributes SHALL specify use="optional".

■ Vendor/user-specific elements may be added to any type in which <<extension point>> occurs. Vendor/user-specific elements SHALL NOT be in
the EPCglobal EPCIS namespace (urn:epcglobal:epcis:xsd:2) nor in the empty namespace. Vendor/user-specific elements SHALL be in a
namespace whose namespace URI has the vendor/user as the owning authority (as described above). (In schema parlance, this means that all
vendor/user-specific elements must have qualified as their form.)

To create a schema that contains vendor/user extensions, replace the <xsd:any … namespace=”##other”/> declaration with a content group
reference to a group defined in the vendor/user namespace; e.g., <xsd:group ref="vendor:VendorExtension">. In the schema file defining
elements for the vendor/user namespace, define a content group using a declaration of the following form:

 <xsd:group name="VendorExtension">
 <xsd:sequence>
 <!--
 Definitions or references to vendor elements
 go here. Each SHALL specify minOccurs="0".
 -->
 <xsd:any processContents="lax"
 minOccurs="0" maxOccurs="unbounded"
 namespace="##other"/>
 </xsd:sequence>
</xsd:group>

(In the foregoing illustrations, vendor and VendorExtension may be any strings the vendor/user chooses.)

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 147 of 229

 Non-Normative: Explanation: Because vendor/user-specific elements must be optional, including references to their definitions directly into the
EPCIS schema would violate the XML Schema Unique Particle Attribution constraint, because the <xsd:any …> element in the EPCIS schema can
also match vendor/user-specific elements. Moving the <xsd:any …> into the vendor/user’s schema avoids this problem, because ##other in that
schema means “match an element that has a namespace other than the vendor/user’s namespace.” This does not conflict with standard elements,
because the element form default for the standard EPCIS schema is unqualified, and hence the ##other in the vendor/user’s schema does not
match standard EPCIS elements, either.

 Note: The rules for adding attributes or elements to future versions of the GS1 standard schema are as follows:

■ Standard attributes may be added to any type in which <<extension point>> occurs. Standard attributes SHALL NOT be in any namespace (i.e.,
SHALL be in the empty namespace), and SHALL NOT conflict with any existing standard attribute name.

■ Standard elements may be added to any type in which <<extension point>> occurs. New elements are added using the following rules:

□ Find the innermost extension element type.

□ Replace the <xsd:any … namespace="##local"/> declaration with (a) new elements (which SHALL NOT be in any namespace; equivalently,
which SHALL be in the empty namespace); followed by (b) a new extension element whose type is constructed as described before. In
subsequent revisions of the standard schema, new standard elements will be added within this new extension element rather than within this
one.

 Non-Normative: Explanation: the reason that new standard attributes and elements are specified above not to be in any namespace is to be
consistent with the EPCIS schema’s attribute and element form default of unqualified.

As applied to the EPCIS 2.0 XML schema for core events (section 9.5), this results in the following:

Event types defined in EPCIS 1.0 appear within the <EventList> element.

Event types defined in EPCIS 1.1 (i.e., TransformationEvent) each appear within an <extension> element within the <EventList> element.

For event types defined in EPCIS 1.0, new fields added in EPCIS 1.1 appear within the <extension> element that follows the EPCIS 1.0 fields.

EventType (i.e., AssociationEvent) and additional fields (e.g., sensorElement) added to EPCIS 2.0 are not nested in additonal <extension>
elements; a set of XSL transformation tools published at https://ref.gs1.org/tools/epcis/xsl/ accompanies the EPCIS 2.0 major release, to support
implementer migration from EPCIS 1.2 to EPCIS 2.0.

For the TransformationEvent (defined in EPCIS 1.1), there is no <extension> element, as the entire event type is new in EPCIS 1.1. If additional fields
are added in a future version of EPCIS, they will appear within an <extension> element following the fields defined in EPCIS 1.1.

https://ref.gs1.org/tools/epcis/xsl/

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 148 of 229

 Note that the sensorElement (EPCIS 2.0) can be used in an AssociationEvent (EPCIS 2.0) without embedding, but must be embedded
through <extension> elements if used in the TransformationEvent (EPCIS 1.1).

Vendor/user event-level extensions always appear just before the closing tag for the event (i.e., after any standard fields and any <extension>
element), and are always in a non-empty XML namespace. Under no circumstances do vendor/user extensions appear within an <extension> element;
the <extension> element is reserved for fields defined in the EPCIS standard itself.

 Note: Examples (in XML and JSON/JSON-LD format) are published at https://ref.gs1.org/docs/epcis/examples/.

9.2 Standard business document header
The XML binding for the Core Event Types data definition module includes an optional EPCISHeader element, which may be used by industry groups to
incorporate additional information required for processing within that industry. The core schema includes a “Standard Business Document Header” (SBDH)
as defined in [SBDH] as an optional component of the EPCISHeader element. Industry groups MAY also require some other kind of header within the
EPCISHeader element in addition to the SBDH.

The XSD schema for the Standard Business Document Header may be obtained from the UN/CEFACT website; see [SBDH]. This schema is incorporated
herein by reference. GS1's SBDH Technical Implementation Guide [SBDHGS1] provides GS1-specific clarifications around the use of the SBDH.

When the Standard Business Document Header is included, the following values SHALL be used for those elements of the SBDH schema specified below.

SBDH Field (XPath) Value

HeaderVersion 1.0

DocumentIdentification/Standard EPCglobal

DocumentIdentification/TypeVersion 1.0

DocumentIdentification/Type As specified below.

The value for DocumentIdentification/Type SHALL be set according to the following table, which specifies a value for this field based on the kind of
EPCIS document and the context in which it is used.

Document Type and Context Value for
DocumentIdentification/Type

EPCISDocument used in any context Events

EPCISQueryDocument used as the request side of the binding in section 11.3 QueryControl-Request

EPCISQueryDocument used as the response side of the binding in section 11.3 QueryControl-Response

https://ref.gs1.org/docs/epcis/examples

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 149 of 229

Document Type and Context Value for
DocumentIdentification/Type

EPCISQueryDocument used in any XML binding of the Query Callback interface (section 11.4.2 – 11.4.4) QueryCallback

EPCISQueryDocument used in any other context Query

The AS2 binding for the Query Control Interface (section 11.3) also specifies additional Standard Business Document Header fields that must be present in
an EPCISQueryDocument instance used as a Query Control Interface response message. See section 11.3 for details.

In addition to the fields specified above, the Standard Business Document Header SHALL include all other fields that are required by the SBDH schema,
and MAY include additional SBDH fields. In all cases, the values for those fields SHALL be set in accordance with [SBDH]. An industry group MAY specify
additional constraints on SBDH contents to be used within that industry group, but such constraints SHALL be consistent with the specifications herein.

9.3 EPCglobal Base schema
The XML binding for the Core Event Types data definition module, as well as other XML bindings in this specification, refer to the EPCglobal Base Schema.
This schema is published at https://ref.gs1.org/standards/epcis/2.0.0/epcglobal.xsd.

9.4 Master data in the XML binding
As noted in section 6.1.1, EPCIS provides two ways to transmit master data, supported by different parts of the XML schema specified in the remainder of
this section, as summarised in the following table:

Mechanism Schema Support

ILMD XML element contained within ILMD element

Header of
EPCIS
document

VocabularyElement within VocabularyList, as contained within EPCISHeader

Each master data attribute is a name/value pair, where the name part is a qualified name consisting of a namespace URI and a local name, and the value
is any data type expressible in XML. Regardless of which of the mechanisms above are used to transmit master data, the data transmitted SHALL always
use the same namespace URI and local name for a given attribute. The way the namespace URI and local name are encoded into XML, however, differs
depending on the mechanism:

■ For ILMD elements, the master data attribute SHALL be an XML element whose element name is a qualified name, where the prefix of the qualified
name is bound to the namespace URI of the master data attribute and the local name of the qualified name is the local name of the master data
attribute. The content of the element SHALL be the value of the master data attribute.

https://ref.gs1.org/standards/epcis/2.0.0/epcglobal.xsd

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 150 of 229

■ For the mechanisms that use VocabularyElement, the id attribute of the VocabularyElement element SHALL be a string consisting of the
namespace URI, a pound sign (#) character, and the local name. The content of the VocabularyElement element SHALL be the value of the master
data attribute.

 Non-Normative: Example: Consider a master data attribute whose namespace URI is http://epcis.example.com/ns/md, whose local name is
myAttrName, and whose value is the string myAttrValue. Here is how that attribute would appear in an ILMD section:

 <epcis:EPCISDocument
 xmlns:epcis="urn:epcglobal:epcis:xsd:2"
 xmlns:example="http://epcis.example.com/ns/md" ...>
 ...
 <ObjectEvent>
 ...
 <ILMD>
 <example:myAttrName>myAttrValue</example:myAttrName>
 ...
 </ObjectEvent>
 ...
</epcis:EPCISDocument>

 And here is how that attribute would appear in a VocabularyElement:

 <VocabularyElement
 id="http://epcis.example.com/ns/md#myAttrName">
 myAttrValue
</VocabularyElement>

 (Newlines and whitespace have been added on either side of myAttrValue for clarity, but they would not be present in actual XML.)

The XML binding for the Core Event Types data definition module includes a facility for the inclusion of additional information in the readPoint and
bizLocation fields of all event types by including additional subelements within those fields following the required id subelement. This facility was
originally conceived as a means to communicate master data for location identifiers. However, this facility is DEPRECATED as of EPCIS 1.2, and SHOULD
NOT be used in EPCIS data conforming to EPCIS 1.2 or later. One or more of the other mechanisms for communicating master data should be used
instead.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 151 of 229

Vendor extensions (including but not limited to FIT mappings) are tolerated in XML validation by lax processing of the ##other namespace.

9.5 Schema for core event types
The Core Event Types data definition module, an XML Schema (XSD) artefact, published at https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-
2_0.xsd , imports additional schemas as shown in the following table:

Namespace Location Reference Source

urn:epcglobal:xsd:2 epcglobal.xsd section 9.3

http://www.unece.org/cefact/namespaces/StandardBusine
ssDocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT web site; see section 9.2x

In addition to the constraints implied by the schema, any value of type xsd:dateTimeStamp in an instance document SHALL include a time zone
specifier (either “Z” for UTC or an explicit offset from UTC).

For any XML element that specifies minOccurs="0" of type xsd:anyURI, xsd:string, or a type derived from one of those, an EPCIS implementation
SHALL treat an instance having the empty string as its value in exactly the same way as it would if the element were omitted altogether. The same is true
for any XML attribute of similar type that specifies use="optional".

This schema also includes the XML binding of master data for the Core Event Types data definition module. The master data portions of the schema are
used to provide for an optional master data section of the EPCIS header which may be used in an EPCIS document or EPCIS query document.

The EPCISDocument top-level element defined in the schema is used by the concrete bindings of the EPCIS Capture Interface specified in section 11. In
addition, trading partners may by mutual agreement use an EPCIS Document as a means to transport a collection of EPCIS events, optionally
accompanied by relevant master data, as a single electronic document.

An EPCIS document MAY include master data in its header. This is intended to allow the creator of an EPCIS document to include master data that the
recipient of the document might otherwise need to query using the EPCIS Query Interface. It is not required that an EPCIS document include master data
in the header, nor is it required that master data in the header include master data for every identifier used in the body of the EPCIS document, or that
master data in the header be limited to identifiers used in the body of the EPCIS document. If master data in the header does pertain to an identifier in
the body, however, it SHALL be current master data for that identifier at the time the EPCIS document is created. The receiver of an EPCIS document,
including an implementation of the EPCIS capture interface, may use or ignore such master data as it sees fit. Master data in the header of an EPCIS
document SHALL NOT specify attribute values that conflict with the ILMD section of any event contained within the EPCIS document body.

The XML Schema (XSD) for the Core Event Types data definition module is published at https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-
2_0.xsd.

https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-2_0.xsd
https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-2_0.xsd
https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-2_0.xsd
https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-2_0.xsd

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 152 of 229

9.6 Core event types – examples (Non-Normative)

 Note: Examples (in XML and JSON/JSON-LD format) are published at https://ref.gs1.org/docs/epcis/examples/.

https://ref.gs1.org/docs/epcis/examples

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 153 of 229

10 JSON/JSON-LD bindings for data definition
This chapter defines the JSON/JSON-LD data format for EPCIS 2.0. It contains a couple of introductory non-normative sections to provide background and
explanation, intended to be helpful for anyone already familiar with the XML data format for EPCIS that is defined in section 9.

Section 10.1 provides a brief introduction to JSON and JSON-LD and why it is considered important that EPCIS 2.0 supports these data formats in addition
to XML.

Section 10.2 provides an explanation about how various EPCIS data structures are expressed in XML and JSON/JSON-LD and how these are validated in
XSD, JSON Schema and Shape Constraint Language (SHACL) respectively. This section provides a number of examples and is intended to help anyone
familiar with the XSD validation of EPCIS data to understand how equivalent validation rules are expressed in JSON Schema and SHACL.

Section 10.3 provides references to the normative validation schema, using JSON Schema to validate the JSON representation and Shape Constraint
Language (SHACL) to validate the JSON-LD representation.

Section 10.4 provides references to non-normative examples equivalent to the XML examples provided in section 9.

10.1 Brief introduction to JSON and JSON-LD in the context of EPCIS
EPCIS 2.0 is one of the first GS1 technical standards to support a data format in JSON and JSON-LD as an alternative to XML, which was the only data
format specified in EPCIS 1.2 and earlier. XML continues to be supported in Epcis 2.0.

The additional JSON/JSON-LD data format was motivated by two factors:

1. A desire to support a more lightweight data format that was more familiar to the current generation of software developers

2. A desire to support a Linked Data format for EPCIS data, to enable easier integration of EPCIS data with data from other systems, using Linked Data
formats / Resource Description Framework (RDF) as a common framework. (see info box below)

Through the use of scoped contexts within the JSON-LD context file (see section 10.1.3) it has been possible to make the JSON/JSON-LD format even
more developer friendly, supporting 'bare word' values for standard CBV code list values for populating bizStep, disposition or the type of a
bizTransaction, source, destination or the type (measurement type) within the value of sensorReport. This means that in JSON/JSON-LD,
event data can include key:value pairs such as "bizStep":"shipping" or "disposition":"in_transit" while the JSON-LD context resource takes
care of expanding CBV standard 'bare word' code values such as "shipping" or "in_transit" to the corresponding Web URIs for standard CBV code
values.

About Linked Data

Linked Data is structured data that can be interlinked with other structured data and uses semantic relationships to make factual assertions accessible in a
machine-interpretable way. Linked Data is a realization of the vision of the Semantic Web that has gained acceptance by industry.

In Linked Data, URIs (ideally Web URIs / IRIs) are used to give each thing a globally unambiguous identifier which can be used to retrieve machine-
interpretable facts and also used to express those facts.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 154 of 229

The World Wide Web Consortium (W3C) has defined fundamental technical standards for Linked Data / Semantic Web technology, including Resource
Description Framework (RDF), RDF Schema (RDFS), Web Ontology Language (OWL), Simple Knowledge Organization System (SKOS) as well as
standardised Linked Data formats such as JSON for Linked Data (JSON-LD).

Linked Data can be used to represent facts in a directed data ‘graph’ or network consisting of nodes (representing things of interest or simple values such
as strings, dates or numbers) joined together by directed arcs that corresponds to predicates, properties or relationships.

At the most fundamental level, Linked Data uses the idea of an RDF Triple consisting of a Subject, Property and Value (also referred to as Subject,
Predicate and Object).

Linked Data triples provide a ‘lowest common denominator’ across various data formats, whether the source data is formatted as tables or spreadsheets or
comma-separated values or whether it is more hierarchical, such as XML.

Linked Data technology also includes query languages such as SPARQL that can be used to perform simple or complex semantic queries across multiple
distributed datasets as easily as if all the data were present in the same local database.

For this reason, there is some interest in having a Linked Data representation (e.g. JSON-LD format) for EPCIS data, to simplify data integration and
queries when EPCIS data is combined / compared with data from other systems.

10.1.1 JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON) is defined in RFC 8259 [https://tools.ietf.org/html/rfc8259] and as ISO/IEC 21778:2017. JSON provides a lightweight
data interchange format that can be used across multiple programming or scripting languages for the exchange of structured data. Compared with XML,
JSON is simpler and usually also more compact and better supported in many modern programming languages without the need to include an additional
processing library.

JSON supports four simple data types:

■ String – a sequence of zero or more Unicode characters enclosed within double quotes

■ Number – supports positive or negative integers and floating-point numbers, optionally using exponential E notation, e.g. -1.2345E-6

■ Boolean – either true or false

■ null

Subject Value
Property

https://tools.ietf.org/html/rfc8259

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 155 of 229

JSON also supports two complex data types:

■ Arrays or Lists – a comma-separated sequence of zero or more elements enclosed within square brackets, e.g. [1,"xyz",true]

■ Objects or Associative Arrays or Dictionaries – a comma-separated sequence of zero or more key:value pairs enclosed within curly brackets, e.g.
{"key1":2,"key2":"abc"}

Due to its simplicity, JSON can simplify the expression of some data structures (especially arrays/lists) but it lacks some of the features present in XML:

■ XML uses named element tags to declare that everything between the opening and closing tags is of a specific data type (often user-defined).
Declarations within XML Schema Definition (XSD) link a named element to a defined data structure.

■ XML uses hreflang to declare that a string value is provided in a specific human language.

■ XML Schema Definition language (XSD) can define that some specific string values should be cast to (interpreted as) other data types, such as specific
XSD data types for dates, date+time timestamps etc.

10.1.2 JSON for Linked Data (JSON-LD)
JSON for Linked Data [JSON-LD] is a W3C technical recommendation that defines an extended JSON format that addresses some of these shortcomings of
JSON, as well as positioning JSON-LD as another serialisation format for Linked Data (logical triples of data), within the Resource Description Framework
(RDF) alongside other Linked Data formats such as [RDFa], Terse Triple Notation [Turtle], [RDF/XML] etc.

Because EPCIS 1.2 already provides an XML data format that makes use of some of these features missing in JSON (explicit data type casting, support for
multiple namespaces) and because some use cases were seeking a Linked Data format for EPCIS data, EPCIS 2.0 provides a JSON/JSON-LD data format.
What is meant by JSON/JSON-LD is that as far as possible, most annotations that are specific to JSON-LD are hidden from the body of the data payload by
placing them within the JSON-LD context resource and through the use of aliases. This means that if the software consuming EPCIS 2.0 data only expects
to treat it as JSON data, it can simply ignore the JSON-LD context resource and use existing JSON processing functions for parsing the body of the data
payload. Software that specifically needs EPCIS 2.0 as a JSON-LD or Linked Data format makes use of the JSON-LD context resource (including retrieval of
any referenced online context files/resources) to obtain a full JSON-LD document / data structure, which can also be easily translated into other Linked
Data formats using available translation tools.

For the JSON-LD format, EPCIS 2.0 requires a minimum of JSON-LD v1.1 because it makes use of some features such as protected term definitions (using
"@protected") that were not defined in JSON-LD v1.0.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 156 of 229

EPCIS 2.0 makes use of the following special keywords of JSON-LD:

Special keyword Explanation

"@id" "@id" is used to specify the Subject of Linked Data triples within data objects of associative arrays; for each key:value pair, the key is
interpreted as an RDF Property or Predicate of the Subject that was specified by the value of the special @id key, while the
corresponding value is interpreted as the corresponding RDF Object or Value for the same Subject – Predicate – Object triple or Subject
– Property – Value triple. For example, the EPCIS field "eventID" is declared as "@id" to indicate that its value (such as "ni:///sha-
256;c6407ffcac52ec159528f2b556ba4ac3844c5aa48485c1fd61643

e94f0a2d678?ver=CBV2.0") is an IRI/URI to be treated as the Subject of various RDF triples.

"@id" is also used to map a JSON key to an IRI/URI for the corresponding Linked Data property. For example, to enable a simpler JSON
syntax such as "bizStep": "shipping", "bizStep" is declared as "@id":"epcis:bizStep", which in turn expands to
"@id":"https://ref.gs1.org/epcis/bizStep".

"@type" "@type" is used to specify that a string value should be cast to another data type, such as an xsd:dateTimeStamp.

"@context" "@context" is used to specify the JSON-LD context resource, either declared explicitly inline or via URL reference. See section 10.1.3 for
further details. The JSON-LD context resources for EPCIS 2.0 and CBV 2.0 make use of scoped contexts (defined locally within an EPCIS
property or field) and protected term definitions, in order to support correct mapping of bare string values for property names and
standard CBV code values, to enable a much simpler JSON syntax such as "bizStep": "shipping" when standard CBV values are used.

"@protected" "@protected": true is used to prevent the definition of a term being overridden by other JSON-LD contexts.

"@version" "@version" is set to 1.1 to ensure that implementations of only JSON-LD v1.0 do not attempt to process the EPCIS 2.0 / CBV 2.0
context resources, which depend on features (such as "@protected") that were introduced in JSON-LD v1.1.

"@type": "@id" When a property is declared to be of "@type": "@id", its value is interpreted (cast) as an IRI/URI rather than a string. EPCIS properties
such as readPoint, bizLocation, epcList, parentID, deviceID, microorganism etc. make use of this.

"@type": "@vocab" When a property is declared to be of "@type": "@vocab", the context resource can define a set of standard bare-word strings that can
expand to IRIs / URIs for enumerations of standard values, such as CBV standard code lists for populating EPCIS properties such as
bizStep, disposition, set or unset within persistentDisposition, type within bizTransactionList or type within
sensorReport. This enables a much simpler JSON syntax such as "bizStep": "shipping" when standard CBV values are used.

"@container": "@set" When a property is declared with "@container": "@set", its values are treated as an unordered set, rather than an ordered list. EPCIS
properties such as epcList, childEPCs, inputEPCList etc. make use of this feature, whereas some other properties such as
parentID do not declare this because they expect a single value rather than an unordered set of zero or more values.

Many users of EPCIS 2.0 will initially focus on the JSON representation and may disregard the context resource. However, retrieval and usage of the
context resource enables the full Linked Data potential of the JSON-LD representation to be reached.

In order to hide such special JSON-LD keywords from the JSON body of the data, EPCIS 2.0 makes use of a JSON-LD context resource to express
namespace mappings, aliases and to cast values of particular data fields to specific data types. Features of the JSON-LD context resource that are relevant
for EPCIS 2.0 are explained in section 10.1.3.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 157 of 229

It should be noted that a JSON-LD dataset may reference or include more than one context resource. Typically, it may reference the standard JSON-LD
context resource for EPCIS 2.0, which is published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-context.jsonld. It may also reference
one or more additional JSON-LD context resources that provide additional namespace mappings and aliases for terms from other namespaces such as
those defined by users, industry groups or solution providers.

10.1.3 Features of the JSON-LD context resource

The context resource is a data object container in which the following may be specified:

■ Expansions for Compact URI Expression (CURIE) prefixes,
e.g. "xsd": "http://www.w3.org/2001/XMLSchema#"
In this sense, the context resource is used in a similar way to the way QName namespace declarations are expressed within an XML header.

□ Custom namespace expansions can also be declared within a context resource, e.g. "example": "http://ns.example.com/epcis/"

■ Mappings of fields to IRIs/URIs of Linked Data properties and their values to data types other than string (type casting), e.g.:

□ "eventTime": {"@id":"epcis:eventTime", "@type":"xsd:dateTimeStamp"}
The JSON key "eventTime" should be mapped to Linked Data property https://ref.gs1.org/epcis/eventTime
Every value for eventTime (and also recordTime and declarationTime) should be treated as an xsd:dateTimeStamp value

□ "quantity": {"@id":"epcis:quantity", "@type":"xsd:double"}
The JSON key "quantity" should be mapped to Linked Data property https://ref.gs1.org/epcis/quantity
Every value of quantity should be treated as an xsd:double value

□ "epcList": {"@id":"epcis:epcList", "@type":"@id", "@container": "@set"}
The JSON key "epcList" should be mapped to Linked Data property https://ref.gs1.org/epcis/epcList
Every value within epcList (and also epcClass, parentID, childEPCs, inputEPCList, outputEPCList, bizStep, disposition, readPoint, bizLocation,
bizTransaction, source, destination, type) should be treated as IRIs –JSON-LD uses the special notation "@id" for this purpose.
The values are to be treated as an unordered set, rather than an ordered list.

■ Aliases for JSON-LD keywords, e.g.:

□ "type": "@type"

□ "id":"@id"

□ Mappings of EPCIS fields to semantic URIs defined elsewhere, e.g.:

□ "creationDate": {"@id":"dcterms:created", "@type":"xsd:dateTime"}

□ "schemaVersion": {"@id":"owl:versionInfo"}
The values are data objects in which the value for the "@id" key is the semantic URI or CURIE to which the EPCIS fieldname corresponds, while the
value for the "@type" key is the corresponding data type.

https://ns.gs1.org/epcis/eventTime

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 158 of 229

■ Mappings of sets of 'bare word' values to corresponding Web URIs for standard CBV code list values with properties such as bizStep, disposition
etc. that can be populated with standard CBV code list values. The standard JSON Schema for EPCIS includes the same sets of 'bare word' values as
an enumeration and requires that the value of such properties is either a string from such a defined enumeration or 'bare word' values or a URI if it is
a custom value from another namespace (e.g. defined by a user, sector, region or solution provider). For example, in the JSON/JSON-LD format for
EPCIS, bizStep is expected to be either a string from an enumerated list that includes CBV code values for populating bizStep (such as
"shipping", "receiving", "commissioning" etc.) or otherwise it must be a URI if it is not using one of those standard CBV code values.

Even though each individual member object in a JSON-LD document MAY declare its local @context, EPCIS 2.0 capturing applications that use the JSON-
LD context resource SHOULD specify a consolidated @context for all default and user-defined namespaces at the root level of the EPCISDocument (refers
to the payload of POST /capture endpoint) as well as at the root level of the EPCISEvent (refers to POST /event endpoint). This is strongly recommended,
in order to simplify document parsing and validation.

10.1.4 Compact URI Expressions (CURIEs)

JSON-LD also recognises the use of Compact URI Expressions (CURIEs) [https://www.w3.org/TR/curie/] as a more compact way of expressing Uniform
Resource Identifiers (URIs) especially when a document or data structure includes several URI values that share a common stem and structure, only
differing in the value of the final URI component.

A CURIE is written as two components joined by a colon in the format prefix:finalpart

The prefix (the part before the colon) is a string whose CURIE expansion should be defined in the context resource. To expand the CURIE to the
corresponding full URI, the final part is simply appended to the CURIE expansion of the prefix.

For example, the context resource defines a CURIE expansion for "xsd" (XML Schema Datatypes) as follows:

"xsd" : "http://www.w3.org/2001/XMLSchema#"

This means that a CURIE such as xsd:dateTimeStamp should be expanded to http://www.w3.org/2001/XMLSchema#dateTimeStamp

CURIEs are syntactically similar to QNames in XML but whereas a QName provides globally unambiguous namespace qualification for element names and
attribute names, CURIEs are designed to always expand to a full URI or Internationalised Resource Identifier (IRI). In a CURIE, the local part following the
colon is not required to be a valid XML element name, so for example, an all-numeric local part following the colon is valid in a CURIE even though it
would not be valid in a QName. QNames can therefore be considered as a subset of CURIEs.

10.2 Expression and validation of EPCIS data structures in JSON and JSON-LD
EPCIS v1.2 defines an XML data format which is validated using XML Schema Definition language (XSD). In addition to the XML data format (which is
updated in Epcis 2.0 to support the new AssociationEvent and SensorElement and persistentDisposition), Epcis 2.0 defines a JSON/JSON-LD
data format.

JSON data can be validated using JSON Schema [https://json-schema.org/specification.html]. EPCIS/CBV 2.0 is compatible with version 7 of JSON
Schema and with any future version of JSON Schema that maintains full backward compatibility with JSON Schema version 7, since it makes use of the

https://github.com/context
https://www.w3.org/TR/curie/
http://www.w3.org/2001/XMLSchema#dateTime
https://json-schema.org/specification.html

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 159 of 229

if/then feature introduced in JSON Schema v7 and is used to avoid spurious validation results by ensuring that validation rules can be specific to each
event type.

JSON-LD data can be validated using Shape Constraint Language (SHACL), a W3C technical recommendation [https://www.w3.org/TR/shacl/]

JSON Schema and SHACL play an analogous role to XML Schema Definition language (XSD) for the validation of XML data. EPCIS 2.0 defines JSON
Schema and SHACL files for validation purposes. Some software toolkits may also make use of these for the generation of stub code to reduce
development effort and ensure consistency with the schema.

Figure 10-1 Supporting multiple formats for EPCIS / CBV 2.0

The following sections explain how the EPCIS data structures are expressed in XML and JSON/JSON-LD as well as how validation rules are expressed for
simple literal values, enumerations, lists/arrays and more complex data structures, providing a side-by-side comparison of the syntax expressed in XSD,
JSON Schema and SHACL to help readers of this standard understand how each validation rule is supported in these three validation languages. The

https://www.w3.org/TR/shacl/

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 160 of 229

following subsections are intended as a non-normative introduction. The normative validation rules are expressed in the XSD, JSON Schema and SHACL
files published for EPCIS 2.0.

10.2.1 Expressing data fields expecting simple values
Some EPCIS event fields (such as action, bizStep, disposition, eventTime, recordTime) each expect a single data value, not a list. In XML, the value
appears between the opening and closing tags of an XML element named after the corresponding field.

In JSON/JSON-LD, there are no closing tags and no named elements. Instead, event fields expecting simple values are represented as key:value pairs
within a data object that is enclosed within curly brackets.

The tables below show equivalent examples for how such data might be expressed.

Format EPCIS 2.0 example for action

XML <action>OBSERVE</action>

JSON "action": "OBSERVE"

JSON-LD Within the standard JSON-LD context resource, "action": "epcis:action" (maps to https://ref.gs1.org/epcis/action)

Format EPCIS 2.0 example for eventTime (same pattern for recordTime)

XML <eventTime>2005-04-03T20:33:31.116-06:00</eventTime>

JSON "eventTime": "2005-04-03T20:33:31.116000-06:00"

JSON-LD Within the standard JSON-LD context resource, "eventTime": {"@id":"epcis:eventTime", "@type":"xsd:dateTimeStamp"}

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 161 of 229

Format EPCIS 2.0 example for bizStep (same pattern for disposition)

XML <bizStep>urn:epcglobal:cbv:bizstep:shipping</bizStep>

JSON "bizStep": "shipping"

JSON-LD Within the standard JSON-LD context resource, such fields define a protected scoped context that defines expansion of the corresponding standard
CBV values. A snippet is shown below, with the ellipsis indicating numerous standard CBV values for populating bizStep that are not shown in this
snippet.

"bizStep": {

 "@context": {

 "@protected": true,

 "@version": 1.1,

 "cbv": "https://ref.gs1.org/cbv/",

 "accepting": "cbv:BizStep-accepting",

 ...

 "shipping": "cbv:BizStep-shipping",

 ...

 "void_shipping": "cbv:BizStep-void_shipping"

 },

 "@id": "epcis:bizStep",

 "@type": "@vocab"

 },

Note that in each of these examples, the JSON data consists of a simple key:value pair within a data object, while the mapping to specific data types is
expressed within the JSON-LD context resource. Note also that for bizStep, disposition and other fields that expect a URI value, the context resource
indicates "@type":"@vocab" and defines a protected scoped context that defines the mappings from simple string values such as "shipping" to the
corresponding Web URIs such as <https://ref.gs1.org/cbv/BizStep-shipping>.

10.2.2 Validating data fields expecting simple values

For simple values that are not an xsd:string, the JSON-LD context resource specifies the @type for each field within an EPCIS event. Note that where the
simple value is a URI, JSON-LD indicates this via the special key:value pair "@type":"@id" or "@type":"@vocab" within the JSON-LD context resource, "@id"
indicating that the value should be considered as an IRI or URI that is a potential Linked Data resource with additional properties of its own, rather than a
literal URI; for this reason, EPCIS fields that expect a URI are never mapped using "@type":"xsd:anyURI". The special key:value pair "@type":"@vocab"
indicates that the value is an IRI/URI from a defined vocabulary and the standard JSON-LD context resource for EPCIS/CBV 2.0 provides mappings from
bare strings such as "shipping" to standard CBV values (such as <https://ref.gs1.org/cbv/BizStep-shipping>) that are appropriate for the respective
property or data field in which each scoped context is defined.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 162 of 229

The following tables show how the validation rules for two of the above examples are expressed using XSD, JSON Schema and SHACL. Colour coding is
used to indicate equivalent ways of expressing constraints. For example, the name of the property is highlighted in red. The expected data type is shown
in blue. The purple highlighting shows how each validation format expresses that the property is mandatory. The validation rules for the action field are
discussed in section 10.2.3.

Format EPCIS 2.0 validation example for eventTime (similar pattern for recordTime)

XSD <xsd:element name="eventTime" type="xsd:dateTimeStamp"
 minOccurs="1" maxOccurs="1" />

JSON Schema "definitions": {
 "time": {"type": "string","format": "date-time" }
 …
}

"properties" : [

 "eventTime": {"$ref": "#/definitions/time"},
 …

]

"required" : ["eventTime"]

SHACL epcis:EventTimeShape

 a sh:PropertyShape ;

 sh:path epcis:eventTime ;

 sh:name "eventTime" ;

 sh:datatype xsd:dateTimeStamp ;

 sh:minCount 1 ;

 sh:maxCount 1 ;

 sh:message "In all EPCIS events, eventTime is mandatory, single valued and an xsd:dateTimeStamp" ;

Because eventTime is a mandatory field in all EPCIS events, it must occur exactly once.

For XSD, the default values of both attributes minOccurs and maxOccurs is 1, so they are typically omitted from XSD validation rules unless they specify
other values such as minOccurs="0" for an optional field or maxOccurs="unbounded" if there is no upper limit on the number of permitted values.

In JSON Schema, a mandatory field is listed within the list of "required" fields.

In SHACL, a mandatory field is indicated via a constraint of sh:minCount 1.

In XSD, the type attribute expresses the data type, e.g. type="xsd:dateTimeStamp".

In JSON Schema, the property for eventTime references a definition for a datatype called time, in which the "type" is required to be "string" and
the "format" is required to be "date-time".

In SHACL, the constraint sh:datatype specifies that an xsd:dateTimeStamp value is expected.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 163 of 229

In the next example, bizStep is an optional field in EPCIS events and a URI value is expected. The corresponding validation rules are shown in the table
below.

Format EPCIS 2.0 validation example for bizStep (similar pattern for disposition)

XSD <xsd:element name="bizStep" type="epcis:BusinessStepIDType"
 minOccurs="0" maxOccurs="1" />

<xsd:simpleType name="BusinessStepIDType">

 <xsd:restriction base="xsd:anyURI"/>

</xsd:simpleType>

JSON Schema "definitions": {
 "vocab-uri": {"type": "string","format": "uri" }
 …
}

"properties" : [

 "bizStep": {
 "anyOf": [
 { "$ref": "#/definitions/vocab-uri" },
 {
 "type": "string",

 "enum": [
 "accepting",
 "arriving",
 …
 "unpacking",

 "void_shipping"

]
 }

]
 }
...
]

SHACL epcis:BizStepShape

 a sh:PropertyShape ;

 sh:path epcis:bizStep ;

 sh:name "bizStep" ;

 sh:nodeKind sh:IRI ;

 sh:pattern "^(.+?):(.+)$" ;

 sh:maxCount 1;

 sh:message "bizStep must be single-valued and an IRI/URI" ;

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 164 of 229

In XSD, minOccurs="0" because the bizStep field is not mandatory. The type attribute specifies that the value is a type
epcis:BusinessStepIDType which is effectively an xsd:anyURI according to its definition.

In JSON Schema, the equivalent to specifying minOccurs="0" is to declare the field within the list of "properties" but to omit it from the list of
"required" fields. bizStep then supports two alternative formats, indicated by "anyOf". The first alternative references a definition named vocab-uri, in
which the "type" attribute specifies "string" and the "format" attribute specifies "uri"; this is to support values from custom vocabularies outside of the
standard CBV values defined for bizStep. The second alternative uses "enum" to enumerate a set of bare string values (such as "arriving") corresponding
to the standard CBV values defined for bizStep; the standard JSON-LD context for EPCIS/CBV 2.0 then expands these bare string values to the
corresponding URIs such as <https://ref.gs1.org/cbv/BizStep-arriving>.

In SHACL, the equivalent to specifying minOccurs="0" is to declare a constraint sh:minCount of 0, although this is the default value for sh:minCount, so
it is acceptable to omit sh:minCount for optional fields, since the default value (0) is assumed. For mandatory fields, it is necessary to assert sh:minCount
1 whereas in XSD, minOccurs="1" is the default and assumed if the minOccurs attribute is not specified. Note that for fields that expect a URI value,
instead of using sh:datatype, the validation rule uses sh:nodeKind sh:IRI.

10.2.3 Validation of fields (e.g. 'action') that expect a string value from an enumerated list

The action field is present within ObjectEvent, AggregationEvent, TransactionEvent and AssociationEvent but absent from TransformationEvent. Its value is
a string from an enumerated list consisting of three options, "ADD", "OBSERVE", "DELETE".

The table below shows how to specify validation rules for the permitted enumerated values of the action field in XSD, JSON Schema and SHACL.

Format EPCIS 2.0 validation example for action

XSD <xsd:element name="action" type="epcis:ActionType"/>

 <xsd:simpleType name="ActionType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="ADD"/>

 <xsd:enumeration value="OBSERVE"/>

 <xsd:enumeration value="DELETE"/>

 </xsd:restriction>

JSON Schema "action": {

 "type": "string",

 "enum": ["ADD","OBSERVE","DELETE"]

 },

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 165 of 229

Format EPCIS 2.0 validation example for action

SHACL epcis:ActionShape

 a sh:PropertyShape ;

 sh:path epcis:action ;

 sh:name "action" ;

 sh:datatype xsd:string ;

 sh:in ("ADD" "OBSERVE" "DELETE") ;

 sh:minCount 1 ;

 sh:maxCount 1 ;

 sh:message "Within ObjectEvent, AggregationEvent, TransactionEvent, AssociationEvent, action is mandatory, and must be a
string value, one of either 'ADD', 'OBSERVE' or 'DELETE'" ;

.

In XSD, enumerated strings are expressed via xsd:enumeration elements within xsd:simpleType with an xsd:restriction base attribute value of
xsd:string.

In JSON Schema, the same enumerated strings are the list values of the "enum" property.

In SHACL, the same enumerated strings are within the list values of the "sh:in" property.

10.2.4 Expressing simple lists of values
Some EPCIS event fields (such as epcList, childEPCs) expect a list of zero or more values. In XML, each element of the list is enclosed within an
<epc> or <id> element (or the <set> and <unset> elements within <persistentDisposition>), which appear nested within the XML element that
expects a list of values, as shown in the table below.

In the JSON/JSON-LD data format, a list is natively supported using the square bracket notation to indicate a list of comma-separated values, so in
JSON/JSON-LD, there is usually no need for anything equivalent to the wrapper element for each element of the list. The exception to this is for child
elements in a list in which an inline attribute is permitted in XML. This is discussed in section 10.2.6.

Format EPCIS 2.0 example for epcList

XML <epcList>

 <epc>urn:epc:id:sgtin:9521321.007346.2017</epc>

 <epc>urn:epc:id:sgtin:9521321.007346.2018</epc>

</epcList>

JSON {"epcList": ["urn:epc:id:sgtin:9521321.007346.2017","urn:epc:id:sgtin:9521321.007346.2018"]}

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 166 of 229

Format EPCIS 2.0 example for epcList

JSON-LD Within JSON-LD context resource, "epcList": {"@id":"epcis:epcList", "@type":"@id", "@container":"@set"}
because the EPC values are URIs (indicated by "@type":"@id") within an unorderd list (set) (indicated by "@container":"@set").

10.2.5 Validating lists of values

Format EPCIS 2.0 validation example for epcList

XSD <xsd:element name="epcList" type="epcis:EPCListType"/>

<xsd:complexType name="EPCListType">

 <xsd:sequence>

 <xsd:element name="epc" type="epcglobal:EPC" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

JSON Schema "definitions": {
 "uri": {"type": "string","format": "uri" }
 …
}

"properties" : [

 "epcList": {"type": "array", "items": { "$ref": "#/definitions/uri" },
 …

]

SHACL epcis:EPCListShape

 a sh:PropertyShape ;

 sh:path epcis:epcList ;

 sh:name "epcList" ;

 sh:nodeKind sh:IRI ;

 sh:pattern "^(.+?):(.+)$" ;

 sh:message "Any values within epcList must be IRIs/URIs" ;

.

In JSON Schema, the field is declared to be of "type":"array", while the structure of the elements of the array is specified via the "items" keyword,
which in this case uses "$ref" to reference a definition for a reference named "uri" that specifies a value of "type": "string" and "format":
"uri".

In SHACL, there is no need to declare that a list of values is expected. sh:nodeKind sh:IRI indicates that the values are expected to be IRIs or URIs.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 167 of 229

10.2.6 Expressing lists of elements with inline attributes expressing type
In XML, <bizTransactionList> contains repeated child elements named <bizTransaction>, each having an inline type attribute. <sourceList>
and <destinationList> share a similar structure, in which there may be repeated child elements named <source> or <destination>, each having
an optional inline type attribute.

In JSON/JSON-LD, bizTransactionList expects a list of objects, each having a bizTransaction field and a type field. There is no concept of an
inline attribute within JSON/JSON-LD, so what appear in XML as elements containing bare child string values and inline attributes are treated equally. In
JSON/JSON-LD, this results in a JSON data object with two or more key:value pairs. As shown in the example below, one pair (such as "type" : "po")
is formed from each XML inline attribute, while the final pair (e.g. "bizTransaction": "http://transaction.acme.com/po/12345678") is
formed by setting the key to the name of the XML element that contains a bare child string value (e.g. setting a JSON key of "bizTransaction" from
the XML element <bizTransaction>) and setting its value to the bare child string value that was enclosed within the XML element. Note that for
standard CBV code list values, the JSON/JSON-LD format for EPCIS/CBV 2.0 uses bare words such as "po", "shipping" etc. and relies upon mappings
defined within protected scoped contexts that are appropriate for the corresponding property/field, as explained in section 10.2.1.

Format EPCIS 2.0 example for bizTransactionList

XML <bizTransactionList>

 <bizTransaction type="urn:epcglobal:cbv:btt:po">
 http://transaction.acme.com/po/12345678
 </bizTransaction>

 <bizTransaction type="urn:epcglobal:cbv:btt:desadv">
 urn:epcglobal:cbv:bt:9521321073467:1152
 </bizTransaction>

</bizTransactionList>

JSON {"bizTransactionList": [

 {"type": "po",
 "bizTransaction": "http://transaction.acme.com/po/12345678" },

{"type": "desadv",
 "bizTransaction": "urn:epcglobal:cbv:bt:9521321073467:1152" }

]}

JSON-LD

http://transaction.acme.com/po/12345678

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 168 of 229

Within the standard JSON-LD context resource for EPCIS/CBV 2.0, the following entry appears for "bizTransactionList":

 "bizTransactionList": {

 "@id": "epcis:bizTransactionList",

 "@container": "@set",

 "@context": [

 {

 "@protected": true,

 "@version": 1.1,

 "cbv": "https://ref.gs1.org/cbv/",

 "bol": "cbv:BTT-bol",

 …

 "desadv": "cbv:BTT-desadv",

 …

 "po": "cbv:BTT-po",

 …

 "upevt": "cbv:BTT-upevt"

 },

 {

 "@protected": true,

 "epcis": "https://ref.gs1.org/epcis/",

 "bizTransaction": {

 "@id": "@id",

 "@type": "@id"

 },

 "type": {

 "@id": "epcis:bizTransactionType",

 "@type": "@vocab"

 }

 }

]

 }

"@container": "@set" indicates that the value of bizTransactionList is an unordered set of items. A protected "@context" within the scope of
bizTransactionList defines that the bizTransaction field is an IRI/URI ("@type": "@id") and that it represents the Subject of an RDF triple
("@id": "@id"), while within the local context of bizTransactionList the type field is mapped to the property epcis:bizTransactionType
("@id": "epcis:bizTransactionType") and its value is a URI from a controlled vocabulary ("@type": "@vocab") that is enumerated within the

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 169 of 229

Format EPCIS 2.0 example for bizTransactionList
same protected scoped context that expresses mappings such as "desadv": "cbv:BTT-desadv" (= https://ref.gs1.org/cbv/BTT-desadv)
and
"po": "cbv:BTT-po" (= https://ref.gs1.org/cbv/BTT-po).
Within the ontology file for EPCIS, the Linked Data property epcis:bizTransactionType corresponds to type within bizTransactionList.
Similarly, the Linked Data property epcis:sourceOrDestinationType corresponds to source within sourceList and to destination within
destinationList. Likewise, the Linked Data property epcis:measurementType corresponds to type within sensorReport. These JSON labels
('type','source','destination') are noted within the EPCIS ontology via the annotation property epcis:jsonldLabel from the properties that
use them.

bizTransaction, source and destination are not defined as properties within the EPCIS ontology. Instead, they are considered as JSON aliases
of the special "@id" keyword in JSON-LD because their value is a URI that is the RDF Subject of a triple that expresses the type, which is mapped
via the standard JSON-LD context file for EPCIS to the properties epcis:bizTransactionType or epcis:sourceOrDestinationType depending
on the scope in which they are used. That is why the standard JSON-LD context resource for EPCIS/CBV 2.0 includes within scoped contexts
mappings such as:
"bizTransaction": { "@id": "@id", "@type": "@id"}

10.2.7 Modelling and validating subclasses of EPCIS event

The UML class diagram for EPCIS shows an abstract class EPCISEvent and four subclasses (event types) already defined in v1.2, namely ObjectEvent,
AggregationEvent, TransactionEvent and TransformationEvent. Version 2.0 of EPCIS introduces a fifth subclass or event type,
AssociationEvent, which is structurally similar to an AggregationEvent but has different semantics; associations are not disassociated when a
disaggregation occurs.

In XML, each of these event types or subclasses of EPCISEvent has its own designated element, <ObjectEvent>, <AggregationEvent>,
<TransactionEvent>, <TransformationEvent> and now also <AssociationEvent>.

XSD schema bind each of these named elements to a defined type (a reference to a defined structure) through declarations such as:

<xsd:element name="ObjectEvent" type="epcis:ObjectEventType" minOccurs="0" maxOccurs="unbounded"/>

XSD also support class inheritance via xsd:extension that specifies the base (superclass or abstract event type), e.g.

<xsd:complexType name="AggregationEventType">

 <xsd:complexContent>

 <xsd:extension base="epcis:EPCISEventType">

 <xsd:sequence>

 <xsd:element name="parentID" type="epcis:ParentIDType" minOccurs="0"/>

 <xsd:element name="childEPCs" type="epcis:EPCListType"/>

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 170 of 229

 …

 </xsd:sequence>

 …

 </xsd:complexContent>

</xsd:complexType>

JSON has no named elements nor any special syntax to declare that a class or data object is of a specific type.

JSON-LD uses a special keyword, "@type" to declare that a class or data object is of a specific type. In JSON-LD, "@type" corresponds to the Linked
Data predicate rdf:type.

The standard context resource for EPCIS/CBV 2.0 defines an alias of the special JSON-LD keyword "@type" named "type" as part of the effort to hide
the JSON-LD special keywords from those users and applications who are primarily interested in processing EPCIS event data as JSON. However, within
bizTransactionList, sourceList, destinationList and sensorReport, "type" SHOULD NOT be mapped to the special JSON-LD keyword
"@type" that corresponds to the Linked Data predicate rdf:type; instead, the standard context resource for EPCIS/CBV 2.0 defines protected scoped
contexts for bizTransactionList, sourceList, destinationList and sensorReport in which "type" is instead mapped via "@id" to properties
defined within the EPCIS 2.0 ontology, namely epcis:bizTransactionType , epcis:sourceOrDestinationType (within sourceList or
destinationList) or epcis:measurementType (within sensorReport).

JSON Schema structures have been defined for the superclass EPCISEvent and for each of the subclasses (event types such as ObjectEvent,
AggregationEvent), which reference the validation rules for the superclass EPCISEvent and add their own specific validation rules.

Because JSON has no special way of declaring that a data object is of a specific type, extra care is needed when writing validation rules in JSON Schema
to ensure that each set of validating rules will only be tested against the corresponding event type and to indicate that the "type" (rdf:type /
@type) field is more important than other fields for validation purposes, in order to select the appropriate validation rules for each EPCIS event type.

By using the if/then/else feature introduced in v7 of JSON Schema, it is possible to use the "if" clause to require a match on the value of "type"
and use the "then" clause to reference the validation rule structure defined for that event type.

This approach ensures that each event type is correctly validated without resulting in spurious validation errors for all other EPCIS event types.

Shape Constraint Language (SHACL) is used to validate the JSON-LD representation. SHACL does support inheritance if the data being validated expresses
rdfs:subClassOf relationships explicitly. However, in EPCIS 2.0 event data, there are no such declarations within the EPCIS data that an epcis:ObjectEvent
is a rdfs:subClassOf epcis:Event , nor can this subclass relationship be defined within the JSON-LD context resource.

Instead, the SHACL validation file for EPCIS 2.0 uses sh:targetClass to specify the class to which the validation rules apply, e.g.
epcis:AggregationEventShape

 a sh:NodeShape ;

 sh:targetClass epcis:AggregationEvent ;

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 171 of 229

The validation rules from the base class EPCISEvent that are inherited by each subclass event type are simply referenced from within the SHACL shape
that is defined for each event type / subclass and such validation rules on core fields of EPCISEvent are simply replicated for each EPCIS event type /
subclass.

In SHACL, a node shape (sh:NodeShape) constrains the structure of a class or data object. The SHACL validation file for EPCIS 2.0 contains some node
shapes that reference other node shapes. For example, the node shape epcis:SensorElementShape references node shapes
epcis:SensorMetadataShape and epcis:SensorReportShape. It does so by using sh:property to reference these two node shapes. Within each
referenced node shape (e.g. epcis:SensorMetadataShape and epcis:SensorReportShape), sh:path is used to match the property (e.g.
epcis:sensorMetadata or epcis:sensorReport) whose value is constrained by that node shape.

10.2.8 Comparison of how validation rules are expressed in XSD, JSON Schema and SHACL

Validation Rule XSD JSON Schema SHACL

Applies to named
field

name="fieldname" type="defined_type" Fieldname appears within list of
"properties"

sh:path fieldname

Mandatory Field minOccurs="1"

(may be omitted since default values of
minOccurs="1")

Include fieldname within the
list of "required" properties

sh:minCount 1

(must be asserted since default value of sh:minCount=0)

Note on default
values for
minOccurs,
maxOccurs and
sh:minCount,
sh:maxCount

default of XSD minOccurs = 1, maxOccurs
= 1)

Only properties specified within
"required" are considered
mandatory

default of sh:minCount = 0, default of sh:maxCount = unbounded

Optional Field minOccurs="0"

(must be asserted since default value of
minOccurs="1")

Include fieldname within the
list of "properties" but omit
from list of "required"
properties

sh:minCount 0

(may be omitted since default value of sh:minCount=0)

Field expects a
string

type="xsd:string" "type":"string" sh:datatype xsd:string

Field expects a
dateTimeStamp

type="xsd:dateTimeStamp" "type":"string",
"format":"date-time"

sh:datatype xsd:dateTimeStamp

Field expects an
integer

type="xsd:int" "type":"integer" sh:datatype xsd:int

Field expects a
decimal value

type="xsd:decimal" "type":"number" sh:datatype xsd:decimal

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 172 of 229

Validation Rule XSD JSON Schema SHACL

Field expects a
double-precision
floating-point
value

type="xsd:double" "type":"number" sh:datatype xsd:double

Field expects a
string from a
restricted list of
enumerated
values

references an xsd:simpleType with an
xsd:restriction
base="xsd:string" containing
xsd:enumeration child elements that
express the permitted values

e.g.
 <xsd:simpleType name="ActionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ADD"/>
 <xsd:enumeration
value="OBSERVE"/>
 <xsd:enumeration value="DELETE"/>
 </xsd:restriction>
 </xsd:simpleType>

"type":"string",
"enum":[…]

e.g.
"type":"string",
"enum":[

"ADD",
"OBSERVE",

"DELETE"

]

sh:datatype xsd:string
sh:in ("ADD" "OBSERVE" "DELETE")

e.g.
epcis:ActionShape

 a sh:PropertyShape ;

 sh:path epcis:action ;

 sh:name "action" ;

 sh:datatype xsd:string ;

 sh:in ("ADD" "OBSERVE" "DELETE") ;

 sh:minCount 1 ;

 sh:maxCount 1 ;

 sh:message "Within ObjectEvent, AggregationEvent,
TransactionEvent, AssociationEvent, action is mandatory,
and must be a string value, one of either 'ADD', 'OBSERVE'
or 'DELETE'" ;

Field expects a
URI
(in situations
where CBV 2.0
does not define a
code list)

type="xsd:anyURI"
or references an xsd:simpleType with an
xsd:restriction
base="xsd:anyURI"

"type":"string",
"format":"uri"

sh:nodeKind sh:IRI

sh:pattern "^(.+?):(.+)$"

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 173 of 229

Validation Rule XSD JSON Schema SHACL

Field expects a
URI
(in situations
where CBV 2.0
defines a code
list for standard
values but
custom URI
values are also
permitted)

type="xsd:anyURI"
or references an xsd:simpleType with an
xsd:restriction
base="xsd:anyURI"

"anyOf": [

 {

 "type":"string",
 "format":"uri"
 },

 {

 "enum": [

 "accepting",

 "arriving",

 …

 "void_shipping"

]

 }

]

sh:nodeKind sh:IRI

sh:pattern "^(.+?):(.+)$"

10.2.9 Mapping core SBDH fields to the JSON/JSON-LD data format for EPCIS
Section 9.2 explains the optional use of the Standard Business Document Header [SBDH] within the XML representation of an EPCISDocument. A
JSON/JSON-LD format of SBDH has not been defined by UN CEFACT or by any other standards organisation. In order to support existing XML users of
SBDH within EPCISDocument, three optional properties have been defined for use within the root level of an EPCISDocument in JSON/JSON-LD format.
These are shown in the table below.

Optional property within JSON/JSON-LD format at root level
within an EPCISDocument

Expected data type Corresponding XML element in SBDH

epcis:sender xsd:string sbdh:Sender

epcis:receiver xsd:string sbdh:Receiver

epcis:instanceIdentifier xsd:string sbdh:InstanceIdentifier

The mandatory property within EPCISDocument 'creationDate' expresses the date and time of creation of the EPCISDocument as an
xsd:dateTimeStamp value, equivalent to the SBDH element sbdh:CreationDateAndTime.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 174 of 229

10.2.10 Online validation tools for JSON Schema and SHACL
Online tools currently available for validation using JSON Schema include:

■ https://www.jsonschemavalidator.net/

■ https://json-schema-validator.herokuapp.com/

■ https://www.liquid-technologies.com/online-json-schema-validator

■ https://jsonschemalint.com/

Online tools currently available for validation using SHACL include:

■ https://shacl-playground.zazuko.com/

■ http://rdfshape.herokuapp.com/

10.2.11 Libraries and toolkits providing JSON-LD support

A number of libraries and toolkits are now available to support JSON-LD in various programming and scripting languages. A list of these is currently
provided at https://json-ld.org/#developers.

10.3 Validation schema (references to normative content)
The JSON representation of EPCIS 2.0 data SHALL validate against the JSON Schema, published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-json-
schema.json.

The JSON-LD representation of EPCIS 2.0 data SHALL validate against the SHACL file, published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-
shacl.ttl.

Section 10.2 provides detailed explanation of the structure of these validation files and how validation rules expressed only previously in XSD are now also
expressed within JSON Schema and SHACL.

Note that both the JSON Schema and SHACL validation files take an open shape approach to validation, unlike the closed shape approach taken in XSD
validation of the XML data format. This means that additional terms from other namespaces may be used within the JSON/JSON-LD representation of
EPCIS 2.0 data and will simply be ignored by the validation files. While XML, JSON and JSON-LD all support the serialisation or expression of hierarchical
data structures, XML takes a document-centric approach placing great emphasis on the sequence in which elements appear. JSON and JSON-LD express
graph data structures in which the sequence of appearance is insignificant for any two fields / keys at the same level of hierarchy within a JSON object /
dictionary.

The EPCIS 2.0 JSON-LD context file is published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-context.jsonld.

https://www.jsonschemavalidator.net/
https://json-schema-validator.herokuapp.com/
https://www.liquid-technologies.com/online-json-schema-validator
https://jsonschemalint.com/
https://shacl-playground.zazuko.com/
http://rdfshape.herokuapp.com/
https://json-ld.org/#developers
https://ref.gs1.org/standards/epcis/2.0.0/epcis-json-schema.json
https://ref.gs1.org/standards/epcis/2.0.0/epcis-json-schema.json
https://ref.gs1.org/standards/epcis/2.0.0/epcis-shacl.ttl
https://ref.gs1.org/standards/epcis/2.0.0/epcis-shacl.ttl
https://ref.gs1.org/standards/epcis/2.0.0/epcis-context.jsonld

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 175 of 229

10.4 Non-normative examples in JSON and JSON-LD
JSON and JSON-LD examples are published at https://ref.gs1.org/docs/epcis/examples/.

11 Bindings for core capture operations module
This section defines bindings for the Core Capture Operations Module. All bindings specified here are based on the XML representation of events defined in
section 9.5. An implementation of EPCIS MAY provide support for one or more Core Capture Operations Module bindings as specified below.

11.1 Message queue binding
This section defines a binding of the Core Capture Operations Module to a message queue system, as commonly deployed within large enterprises. A
message queue system is defined for the purpose of this section as any system which allows one application to send a message to another application.
Message queue systems commonly support both point-to-point message delivery and publish/subscribe message delivery. Message queue systems often
include features for guaranteed reliable delivery and other quality-of-service (QoS) guarantees.

Because there is no universally accepted industry standard message queue system, this specification is designed to apply to any such system. Many
implementation details, therefore, necessarily fall outside the scope of this specification. Such details include message queue system to use, addressing,
protocols, use of QoS or other system-specific parameters, and so on.

An EPCIS implementation MAY provide a message queue binding of the Core Capture Operations Module in the following manner. For the purposes of this
binding, a “capture client” is an EPCIS Capture Application that wishes to deliver an EPCIS event through the EPCIS Capture Interface, and a “capture
server” is an EPCIS Repository or EPCIS Accessing Application that receives an event from a capture client.

A capture server SHALL provide one or more message queue endpoints through which a capture client may deliver one or more EPCIS events. Each
message queue endpoint MAY be a point-to-point queue, a publish/subscribe topic, or some other appropriate addressable channel provided by the
message queue system; the specifics are outside the scope of this specification.

A capture client SHALL exercise the capture operation defined in section 8.1.2 by delivering a message to the endpoint provided by the capture server.
The message SHALL be one of the following:

■ an XML document whose root element conforms to the EPCISDocument element as defined by the schema of section 9.5; or

■ an XML document whose root element conforms to the EPCISQueryDocument element as defined by the schema of section 13.1, where the element
immediately nested within the EPCISBody element is a QueryResults element, and where the resultsBody element within the QueryResults
element contains an EventList element.

JSON/JSON-LD equivalents can be validated by their respective schema.

https://ref.gs1.org/docs/epcis/examples

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 176 of 229

An implementation of the capture interface SHALL accept the EPCISDocument form and SHOULD accept the EPCISQueryDocument form. An
implementation of the capture interface SHALL NOT accept documents that are not valid as defined above. Successful acceptance of this message by the
server SHALL constitute capture of all EPCIS events included in the message.

Message queue systems vary in their ability to provide positive and negative acknowledgements to message senders. When a positive acknowledgement
feature is available from the message queue system, a positive acknowledgement MAY be used to indicate successful capture by the capture server. When
a negative acknowledgement feature is available from the message queue system, a negative acknowledgement MAY be used to indicate a failure to
complete the capture operation. Failure may be due to an invalid document, an authorisation failure as described in section 8.1.1, or for some other
reason. The specific circumstances under which a positive or negative acknowledgement are indicated is implementation-dependent. All implementations,
however, SHALL either accept all events in the message or reject all events.

11.2 HTTP binding
This section defines a binding of the Core Capture Operations Module to HTTP [RFC2616].

An EPCIS implementation MAY provide an HTTP binding of the Core Capture Operations Module in the following manner. For the purposes of this binding, a
“capture client” is an EPCIS Capture Application that wishes to deliver an EPCIS event through the EPCIS Capture Interface, and a “capture server” is an
EPCIS Repository or EPCIS Accessing Application that receives an event from a capture client.

A capture server SHALL provide an HTTP URL through which a capture client may deliver one or more EPCIS events.

A capture client SHALL exercise the capture operation defined in section 8.1.2 by invoking an HTTP POST operation on the URL provided by the capture
server. The message payload SHALL be one of the following:

■ an XML document whose root element conforms to the EPCISDocument element as defined by the schema of section 9.5; or

■ an XML document whose root element conforms to the EPCISQueryDocument element as defined by the schema of section 13.1, where the element
immediately nested within the EPCISBody element is a QueryResults element, and where the resultsBody element within the QueryResults
element contains an EventList element.

An implementation of the capture interface SHALL accept the EPCISDocument form and SHOULD accept the EPCISQueryDocument form. An
implementation of the capture interface SHALL NOT accept documents that are not valid as defined above. Successful acceptance of this message by the
server SHALL constitute capture of all EPCIS events included in the message.

Status codes returned by the capture server SHALL conform to [RFC2616], section 10. In particular, the capture server SHALL return status code 200 to
indicate successful completion of the capture operation, and any status code 3xx, 4xx, or 5xx SHALL indicate that the capture operation was not
successfully completed. The specific circumstances under which a success or failure code is returned are implementation-dependent. All implementations,
however, SHALL either accept all events in the message or reject all events.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 177 of 229

12 REST Bindings

12.1 Code conventions
Complete API specification: The complete specification corresponding to the REST Bindings using the OpenAPI syntax is published at
https://ref.gs1.org/standards/epcis/2.0.0/openapi.json

Media types: To avoid overloading examples with repetitive content descriptions, examples only use the media type application/json instead of the
complete list application/json, application/ld+json and application/xml.

12.2 Introduction to REST
EPCIS 1.x was built on SOAP, a stateful XML-based messaging protocol for distributed enterprise environments.

EPCIS 2.0 adds a RESTful protocol, optimising the web-based capture and query of EPCIS events. With EPCIS 2.0, the Web becomes a platform for a
frictionless integration of business processes in complex supply chain information systems, as well as consumer-facing applications.

The EPCIS REST bindings provide an interface based on Representational State Transfer (REST) architecture style [REST]. REST is the architectural
principle that lies at the heart of the Web. It shares a similar goal with SOAP [SOAP] interfaces already defined in the EPCIS standard, which is to increase
interoperability for a looser coupling between the parts of distributed applications. However, the goal of REST is to achieve this in a more lightweight and
simpler manner, focussing on resources rather than on functions (as is the case with SOAP Web services). In particular, REST uses the Web as an
application platform and fully leverages all the features inherent to HTTP such as authentication, authorisation, encryption, compression, and caching. This
way, REST brings services to the browser and modern Web languages: resources can be queried, linked and bookmarked and the results are visible with
any Web browser or Web tool with no need to generate complex source code out of WSDL files to be able to interact with the service. The EPCIS RESTful
interface uses the stateless HTTP [HTTP] protocol. In REST, URIs not only address individual resources, such as Web pages, but also collections that can
be accessed via the Web using a small number of simple HTTP verbs such as GET, POST, PUT, DELETE. This means REST URIs in EPCIS 2.0 refer to
individual EPCIS events, EPCIS event types and collections of EPCIS events.

This interface is an alternative to the SOAP query control interface already defined in the EPCIS standard. REST complements the SOAP interface and is
meant to foster use cases where modern Web technologies (e.g., Javascript clients or mobile applications) are used to interact with an EPCIS repository,
with the ability to retrieve EPCIS event data via simple Web requests. A new endpoint exposes EPCIS events types and individual events as REST
resources. Furthermore, queries can also be treated as resources in their own right, each described by its URL [URL].

To summarise, the EPCIS 2.0 REST bindings offer:

■ Bulk capturing of events through the /capture interface

■ Complex queries with the possibility to define query trigger rules (i.e., for a streaming query) and subscriptions

■ Events endpoints

■ Top-level resources endpoints

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 178 of 229

all through a RESTful interface.

Table 12-1 Overview of EPCIS 2.0 endpoints
Endpoint OPTIONS GET POST DELETE Equivalent SimpleEventQuery parameter

(section 8.2.7), where applicable
/ X
/capture X X X
/capture/{captureID} X X
/events X X X
/events/{eventID} X X
/eventTypes X X
/eventTypes/{eventType} X X eventType
/eventTypes/{eventType}/events X X
/epcs X X
/epcs/{epc} X X
/epcs/{epc}/events X X
/bizSteps X X
/bizSteps/{bizStep} X X
/bizSteps/{bizStep}/events X X EQ_bizStep
/bizLocations X X
/bizLocations/{bizLocation} X X
/bizLocations/{bizLocation}/events X X EQ_bizLocation
/readPoints X X
/readPoints/{readPoint} X X
/readPoints/{readPoint}/events X X EQ_readPoint
/dispositions X X
/dispositions/{disposition} X X
/dispositions/{disposition}/events X X EQ_disposition
/queries X X X
/queries/{queryName} X X X
/queries/{queryName}/subscriptions X X X
/queries/{queryName}/subscriptions/{subscriptionID} X X X
/queries/{queryName}/events X X
/nextPageToken/{token} X

Each endpoint, shown in the table above, will be described in a machine-readable way using the Open API 3 [OpenAPI] API description format. The
OpenAPI interface description for EPCIS will be a formal artefact of the EPCIS 2.0 standard and linked from the EPCIS landing page at
https://www.gs1.org/epcis. It plays a similar logical role to the WSDL interface described in section 13.

https://www.gs1.org/epcis

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 179 of 229

Note that /events is the simplest REST endpoint through which a SimpleEventQuery can be performed.

The RESTful API for EPCIS has been designed for easy discoverability of related endpoints, by aligning with the principles of Hypertext As The Engine Of
Application State [HATEOAS]. For example, the following are examples of endpoints that do not return data – they simply point to one or more related
endpoints (that further extend the URI path information) that do provide data, such as collections of events:

■ /eventTypes/{eventType} points to /eventTypes/{eventType}/events

■ /eventTypes/{eventType} points to /eventTypes/{eventType}/events

■ /bizSteps/{bizStep} points to /bizSteps/{bizStep}/events

So just as a human can read a Web page and follow hyperlinks to related resources, software interacting with a RESTful API that supports HATEOAS can
start at any endpoint and may be able to iteratively discover additional endpoints that may be of interest.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 180 of 229

12.3 Content negotiation, service discovery and custom headers for EPCIS
Each endpoint SHALL support HTTP content negotiation [HTTPSemanticsContent] for at least JSON [JSON] and JSON-LD [JSONLD], MAY support XML
[XML] and MAY support HTML [HTML] and any other formats. This is done by setting the value of the Accept header, e.g., to application/json,
application/ld+json, application/xml or text/html [RFC7231, RFC7303]. All responses SHALL return a full EPCIS Document containing the list of
events within the EPCIS Body. If the client requests a media type that the server does not support, the server SHALL reply with HTTP status code 406 Not
Acceptable.

EPCIS 2.0 specifies custom headers for client and server to agree on the EPCIS version, vendor version and EPCIS and CBV extensions and the version of
related resources. For all endpoints, an EPCIS server SHALL support GS1-CBV-Version, GS1-EPC-Format, GS1-CBV-Format, GS1-EPCIS-Version, GS1-
EPCIS-Min, GS1-EPCIS-Max and GS1-Extensions. By convention, if a client omits the EPCIS version or EPCIS version min/max range, the server SHALL
use the EPCIS version defined by the GS1-EPCIS-Version header. A server MAY support GS1-Extensions and GS1-Vendor-Version. For the /capture
endpoint, the server SHALL additionally support GS1-EPCIS-Capture-Limit, to specify the maximum number of events that can be captured per call and
SHALL support GS1-EPCIS-Capture-File-Size-Limit to specify the EPCIS document size in bytes / octets. A server SHALL support GS1-Capture-Error-
Behaviour to declare the error behaviour of the capture interface. The default value of GS1-Capture-Error-Behaviour SHALL be rollback. Each custom
header is described in the table below.

Table 12-2 EPCIS and CBV headers

Header Description Examples Request Response

GS1-EPCIS-Version The EPCIS version 1.0.0, 1.1.0, 1.2.0, 2.0.0 X X

GS1-EPCIS-Min The lowest EPCIS version supported >=1.0.0 X X

GS1-EPCIS-Max The highest EPCIS version supported 1.0.0, 1.1.0, 1.2.0, 2.0.0 X X

GS1-CBV-Version The core business vocabulary version 1.2.2, 2.0.0 X X

GS1-EPC-Format Request or response header to indicate whether EPCs
are expressed as GS1 Digital Link URIs or as EPC
URNs.

Always_DL

X X

GS1-CBV-XML-Format Request or response header to indicate whether CBV
URI fields are expressed in XML as URLs or URNs.

Always_URL

X X

GS1-Extensions Specific extensions supported (e.g. for FIT) such as
CBV or EPCIS extensions.

“example-epc-ext”:”http://example.com/epcis/” X X

GS1-Vendor-Version A versioning scheme that can be freely chosen by the
vendor

example-version-1.0 X X

GS1-EPCIS-Capture-Limit The maximum number of EPCIS events that can be
captured per call

500 X

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 181 of 229

Header Description Examples Request Response

GS1-EPCIS-Capture-File-Size-
Limit

The maximum event document length in octets (8-bit
bytes)

1024 X

GS1-Query-Min-Record-Time An optional header to specify the smallest possible
record time for EPCIS events in a query subscription.

2020-04-04T20:33:31.116-06:00 X

GS1-Capture-Error-Behaviour A header to control how the capture interface will
behave in case of an error:
 rollback: "All or nothing". Either the capture job is

entirely successful or all EPCIS events are rejected.
 proceed: "Greedy capture". The capture interface

tries to capture as many EPCIS events as possible,
even if there are errors.

The default behaviour is rollback, as in EPCIS 1.2.

rollback X X

GS1-Next-Page-Token-Expires The expiry time for nextPageToken. This header is
optional.

2021-12-08T14:58:56.591Z X

GS1-Signature The signature for event pushed via Webhook
subscriptions is contained in the GS1-
Signature HTTP header of the server request.

Each endpoint SHALL respond to the OPTIONS verb by returning the list of allowed HTTP verbs as well as supported headers for a resource and their
default values. This feature was added to provide service discovery and make EPCIS 2.0 future proof by supporting granular versions of EPCIS, CBV and
extensions.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 182 of 229

Figure 12-1 Client first uses OPTIONS to discover which versions are supported and making GET request

The server SHALL support the OPTIONS method for each endpoint and SHALL provide default header values for each custom EPCIS header it supports.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 183 of 229

12.4 Authentication and Authorization

Figure 12-2 Authentication and authorisation

EPCIS clients SHALL authenticate themselves for every API call. An EPCIS server SHOULD implement an authentication mechanism using the Authorization
header. If the authentication fails, the server SHALL respond with HTTP status code 401 [RFC7235].

Authorized

Request:

GET /eventTypes/ObjectEvent/events HTTP/1.1
Host: example.com
Authorization: MyValidSecretAPIKey

Response:

HTTP/1.1 200 OK

Unauthorized

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 184 of 229

Request:

GET /eventTypes/ObjectEvent/events HTTP/1.1
Host: example.com
Authorization: MyInvalidSecretAPIKey

Response:

HTTP/1.1 401 Unauthorized

If a client is authenticated but is not authorised to perform an operation, the server SHALL respond with HTTP status code 403 Forbidden [RFC7235].

12.5 Pagination
An EPCIS repository SHALL implement pagination, to return data in manageable chunks. A client MAY request the number of items that are returned at
once, using the perPage query string parameter. If the client does not specify the perPage value, the server SHALL use the default value of 30.

Pages SHALL form a linked list, using the Web link model [RFC8288]. A server SHALL include the quoted URL of the next page in the Link response
header. A link MAY contain a rel annotation. The value next indicates to the client that there are more pages to be accessed. The absence of the next page
means the client has received the URL of the final page.

Events SHALL be returned atomically; events SHALL NOT be split using pagination.

Example: Pagination

Request

GET /events?perPage=50 HTTP/1.1
Host: example.com

Response

HTTP/1.1 200 OK
link: <https://example.com/events?perPage=50&nextPageToken=t%3A1550673874978%2Ci%3AU6D7DENAKwM2gQRRwGrataeq>;
rel=”next”

A server MAY optionally collaborate with clients on resource management by declaring how long a pagination token will remain valid in the optional GS1-
Next-Page-Token-Expires and the server MAY optionally also allow clients to free allocated tokens through a DELETE on the nextPageToken endpoint.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 185 of 229

12.6 Capturing EPCIS Events
This section defines the RESTful capture endpoints for EPCIS 2.0. The /events endpoint support synchonous capture of a single bare event (not wrapped in
an EPCISDocument). The /capture endpoint in EPCIS 2.0 expects to receive an EPCISDocument containing one or more events, and is asynchronous to
allow better scalability for larger sets of events.

Endpoint GET POST

/capture Returns IDs of capture
Jobs

Captures one or several EPCIS events. The server may either accept
or reject all events if value of GS1-Capture-Error-Behaviour header
is rollback (this is default behaviour). The server may accept all valid
events if value of GS1-Capture-Error-Behaviour is proceed.

/capture/{captureID} Returns the state of the
capture job.

Not supported.

/events Returns all events Supports synchronous capture of a single bare event, not wrapped
within an EPCISDocument.

12.6.1 Capture Interface
Client calls the capture interface to send one or more EPCIS events in the JSON or JSON-LD format. If the event syntax is XML, events SHALL conform to
the XML event specifications specified in EPCIS 2.0 [EPCIS2.0]. If the event syntax is JSON/JSON-LD, events SHALL conform to the JSON/JSON-LD data
format specified in section 10.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 186 of 229

Figure 12-3 Endpoint: Capture Interface workflow

If GS1-Capture-Error-Behaviour is rollback, the server SHALL guarantee that either all events are captured, or all events are rejected. If GS1-Capture-
Error-Behaviour is proceed, the server SHALL try to capture as many EPCIS events as possible. If events were successfully accepted, /capture SHALL
respond with 202 Accepted and a captureID. Upon capture, a server MAY populate the unique eventID field within each event. If unique eventIDs are
populated, these SHALL use one of the two eventID formats specified in the section of the CBV that specifies Event Identifiers.

Implementations that specify a file size limit may wish to check content length in order to avoid validating files which exceed this limit; this also provides a
safeguard against denial-of-service attacks.

If the client sends a payload that exceeds the number of events permitted according to GS1-EPCIS-Capture-Limit or the content length exceeds GS1-
EPCIS-Capture-File-Size-Limit, the server MAY respond with 413 Payload Too Large and include the most restrictive capture limit constraint. In other cases
of failures, /capture SHALL indicate why the operation was unsuccessful by returning a HTTP status code in the range 4xx.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 187 of 229

12.6.2 Capture Jobs Interface
When EPCIS events are added through the capture interface, the capture process runs asynchronously. If the payload is syntactically correct and the client
is allowed to call /capture, the server returns a 202 Accepted. This does not guarantee successful storage of all EPCIS events. The capture job
endpoint, /capture/{captureID}, SHALL expose the state of the capture job to the client.

A capture job document has at least the following properties:

■ running: whether or not the capture job is still active

■ success: whether or not at least one error occurred,

■ errors or errorFile: with the errors if success is false. Note that errorFile should contain a URL pointing to an error log file.

■ captureErrorBehaviour: one of proceed or rollback (but NEVER all)

■ createdAt: with the time of creation

■ finishedAt: with the time of completion

Only if not a single error occurred, success is true. If success is false, there was at least one error. If the GS1-Capture-Error-Behaviour header
is rollback, a success value of false aborts the capture job and rejects all EPCIS events related to the job. If GS1-Capture-Error-Behaviour header
is proceed, some EPCIS events might still be captured, even if success is false.

Table 12-3 GS1-Capture-Error-Behaviour header value is rollback

Capture job running Capture job success Capture job outcome

true true Still capturing EPCIS events. No errors occurred so far.

true false At least one error occurred. Rollback is in progress.

false true All EPCIS events are captured.

false false All EPCIS events rejected.

Table 12-4 GS1-Capture-Error-Behaviour header value is proceed

Capture job running Capture job success Capture job outcome

true true Still capturing EPCIS events. No errors occurred so far.

true false At least one error occurred but more EPCIS events are currently being captured.

false true All EPCIS events were captured without an error.

false false Some EPCIS events were captured but errors occurred.

If success is false, check the errors or errorFile property for details.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 188 of 229

12.7 Events interface
This section defines the events endpoints, which provides a RESTful interface to EPCIS events. EPCIS events can be “viewed” from four different aspects:

■ EPCIS event type: EPCIS events can be accessed through their EPCIS event type via /eventTypes/{eventType}/events

■ Top-level resources: EPCIS events can be accessed based on their context, for example, all EPCIS events at a given location can be accessed through
the /bizLocation/events endpoint.

■ /events resource: EPCIS events can be accessed through the /events endpoint. A specific individual event can be retrieved using the
/events/{eventID} endpoint.

■ Query result: EPCIS events can be part of a result of an EPCIS query.

Table 12-5 Overview of EPCIS 2.0 events related endpoints

Endpoint Functionality

/events Returns all EPCIS events.
Note that /events is the simplest REST endpoint through which a SimpleEventQuery (see section 8.2.7.1) can be
performed.

/events/{eventID} Returns a single event identified by eventID.

/eventTypes/{eventType}/events Returns all EPCIS events of a specific type
Returns EPCIS event(s) related to the given eventType only.

/epcs/{epc}/events Returns all EPCIS events corresponding to the given epc with a specific top-level resource.

/bizSteps/{bizStep}/events Returns EPCIS event(s) related to the given bizStep.

/bizLocations/{bizLocation}/events Returns EPCIS event(s) related to the given bizLocation.

/readPoints/{readPoint}/events Returns EPCIS event(s) related to the given readPoint.

/dispositions/{disposition}/events Returns EPCIS event(s) related to the given disposition.

/queries/{queryName}/events Returns EPCIS events that match the query.

The /events endpoint as well as all the */events endpoints support additional filtering using the EPCIS query language.

12.7.1 EPCIS events collections
When calling the GET method on the /eventTypes endpoint, it SHALL return a list of all EPCIS event types that are present in that repository. Furthermore,
calling the GET method on /events SHALL return all the EPCIS events present in the repository (subject to pagination and refinement via the EPCIS query
language).

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 189 of 229

EPCIS 2.0 supports a number of optional top-level resources (see section 12.7.4). By definition, top-level resources SHALL NOT be nested. For example,
/eventTypes/ObjectEvent/events and /readPoints/urn:epc:id:sgln:9521321.00777.0/events are valid paths.
/readPoints/urn:epc:id:sgln:9521321.00777.0/bizSteps/shipping/events is an invalid path because top-level resource nesting is currently not supported.

12.7.2 EPCIS events endpoints
Each EPCIS event type URL SHALL be identified by a unique URL, such as https://example.com/eventTypes/ObjectEvent/events for the collection of object
events. Furthermore, for the /events/{eventID} endpoint, if the eventID is populated, then each event SHALL use one of the Event IDs syntax specified in
section 8.9 of the CBV.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 190 of 229

12.7.3 Event filtering with the EPCIS query language

Figure 12-4 EPCIS query as URL query parameters

EPCIS defines a domain-specific query language, described in section 8.2, as well as dedicated endpoints for queries, described in section 13. That
section describes how to filter events using the EPCIS query language in the URL.

EPCIS query as URL query parameters

https://example.com/eventTypes/ObjectEvent/events?EQ_bizStep=shipping

URLs MAY be percent-encoded where appropriate, as defined in [RFC3986]. However, when the characters / ? = and & are used with their special
meanings to delimit the structural components of a URL or URL query string, such characters SHALL NOT be percent encoded.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 191 of 229

Accessing collection of EPCIS events using EPCIS query or path values

Please note that some queries can also be expressed without query string parameters as a simpler EPCIS 2.0 REST resource. For example
https://example.com/events?EQ_bizStep=shipping
is functionally equivalent to
https://example.com/bizSteps/shipping/events
Expression of query parameters within the URL query string is more suitable for complex queries.

12.7.4 Top-level resources
EPCIS 2.0 REST bindings aim to provide an intuitive interface for a variety of use cases and industries, while keeping the API lean and straightforward.
This section discusses the mandatory top-level resources and how Core Business Vocabulary [CBV] extensions can be used to explore existing resources
and to address EPCIS events. An EPCIS 2.0 server MAY provide additional endpoints to describe the context of an EPCIS event.

An EPCIS server SHALL support the top-level resources /epcs and /events , and MAY support /eventTypes, /bizLocations, /bizSteps,
/readPoints and /dispositions.

One good reason to support this would be (for example) a situation in which a customer wishes to receive events from its supplier, but does not know
SSCC EPCs in advance, and could instead specify its own SGLN as destination.
The recommended additional top-level resources are:

Table 12-6 Top-level resources endpoints

Top-level resource As RESTful resource Description

(root) / Used with OPTIONS to discover server capabilities.

Events /events Returns a list of all events, potentially constrained by
parameters expressed in the query string.

Event ID /events/{eventID} Returns event(s) matching this eventID.
Note that this may return more than one event if the
eventID is present in subsequent events that include an
ErrorDeclaration to indicate that the original event was
in error.

Electronic product code /epcs Returns all electronic product codes that populate the
fields in the WHAT dimension.

/epcs/{epc} Returns the sub-resource "events".

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 192 of 229

Top-level resource As RESTful resource Description

/epcs/{epc}/events Returns all EPCIS events for the electronic product code.
Note that the response is subject to the redaction
provisions described in section 8.2.2 , as well as
QueryTooLarge and 403 Payload Too Large exceptions.

Business location /bizLocations Returns all business locations.

/bizLocations/{bizLocation} Returns the sub-resource "events".

/bizLocations/{bizLocation}/events Returns all EPCIS events in a given business location.

Business step /bizSteps Returns all business steps.

/bizSteps/{bizStep} Returns the sub-resource "events".

/bizSteps/{bizStep}/events Returns all EPCIS events associated with the business
step.

Read point /readPoints Returns all read points.

/readPoints/{readPoint} Returns the sub-resource "events".

/readPoints/{readPoint}/events Returns all EPCIS events associated with the read point.

Disposition /dispositions Returns all dispositions.

/dispositions/{disposition} Returns the sub-resource "events".

/dispositions/{disposition}/events Returns all EPCIS events with the disposition.

By default, when a value of {bizLocation}, {bizStep}, {readPoint} or {disposition} is expressed without a namespace qualifier within an endpoint URL, the
value SHALL be considered to be using the GS1 Core Business Vocabulary (CBV). If a value is not using the CBV, the URI of the vocabulary SHALL be
specified in the GS1-Extensions header as a mapping to a Compact URI Expression [CURIE] prefix and the value itself SHALL be expressed as a Compact
URI Expression [CURIE]. If GS1-Extensions contains more than one vocabulary, each vocabulary SHALL be separated by a “,”. The motivation for
introducing the GS1-Extensions header was to provide for simpler URLs while maintaining the flexibility to use custom vocabularies. If the GS1-Extensions
header is set and the complete resource address is set, specifying the complete resource address for top-level resources SHALL take precedence over the
vocabulary specified in the GS1-Extensions header.

Example: GS1-Extensions header omitted

Path: /bizSteps/shipping/events

Expands to urn:epcglobal:cbv:bizstep:shipping because no vocabulary was specified in the header.

Example: "GS1-Extensions" : {"ex1" : "<https://example.com/vendor1#>"}

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 193 of 229

Path: /bizSteps/shipping/events

Expands to urn:epcglobal:cbv:bizstep:shipping because the CBV namespace was defined, even though GS1-Extensions points to a different vocabulary.

Example: "GS1-Extensions" : {"ex1": "<https://example.com/vendor1#>"}

Path: /bizSteps/ex1:qualityCheck/events

Expands to: https://example.com/vendor1#qualityCheck because ex1 is a prefix defined in GS1-Extensions.

Example: "GS1-Extensions" : "ex1 : <https://example.com/vendor1#, vendor2:<https://example.org/defs#> "

Path: /bizSteps/vendor2:QA/events

Expands to: https://example.org/defs#QA because vendor2 is one of two vocabulary prefixes defined in GS1-Extensions.

12.8 Query control interface
EPCIS SHALL support named queries through the /queries endpoint. The EPCIS query language is defined in section 12.8.4.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 194 of 229

Figure 12-5 Endpoint: Named queries workflow

A named query resembles a stored procedure. It consists of a human-readable name and a query definition. The name SHALL be unique, as it is part of a
query’s URL. The query SHALL be defined on creation time and transmitted in the request body.

Table 12-7 EPCIS query endpoints

Endpoint Verb

GET POST DELETE

/queries Returns all named
queries.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 195 of 229

/queries/{queryName} Returns the named query Creates and executes a
named EPCIS events
query and returns
results with the option
to use pagination if
needed.

Removes a named query and
forcibly unsubscribes all
active subscriptions, whether
by WebSockets or
WebHooks.

/queries/{queryName}/events Returns all EPCIS events
that match the query or
creates a new Websocket
subscriptions.

/queries/{queryName}/subscriptions Returns active Webhook
subscriptions with the
option to use pagination
if needed.

Creates a new query
subscription

/queries/{queryName}/subscriptions/{subscriptionID} Information about a
Webhook subscription

 Unsubscribes the client.

12.8.1 Creating and using named queries

A named query creates a virtual collection of events (i.e., a view). It has a human-readable name and a query defined using the EPCIS query language.
The result set of an EPCIS events query has the following URL pattern: /queries/{queryName}/events.

A named query is created by specifying the query name, the type of query (EPCIS events or master data) and the query body. The client can use the Link
header to obtain the matching resources using pagination. If the query is for EPCIS events, the query results endpoint is events. The client can also fetch
all events that match the query description using these endpoints.

Once a query is created, clients can always retrieve the current set of resources that match the query description.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 196 of 229

Figure 12-6 Client creates a named query for EPCIS events and uses pagination to retrieve all EPCIS events.

12.8.2 Deleting named queries
A named query can be deleted by calling the DELETE method on its URL. Deleting a named query also deletes all query subscriptions and disconnects all
clients that are subscribed to query subscriptions.

12.8.3 Subscribing to named queries
A named EPCIS events query SHALL support subscription using HTTP callbacks (aka Webhooks) and MAY support subscription using WebSockets. The
server should guarantee that clients only receive events they are authorised to receive. When connecting to a query subscription, the client SHALL have

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 197 of 229

the option to specify from when onwards the query applies with the initial record time (initialRecordTime parameter). If the initial record time is omitted, it
defaults to the time at which the subscription was created.

By default, a client SHALL only receive a query result when the query result is not empty. The client can overwrite this behaviour by setting the report if
empty (reportIfEmpty parameter) to true. This means that the client will receive an empty query result set when the query does not match any events.
The server MAY implement the minimum record time (minRecordTime parameter), which specifies the lower bound (in time) of EPCIS events that are
contained in the result set. If the server implements support for minimum record time, the value should be set to the most recent execution time of the
query subscription.

To ensure that clients receive EPCIS events when the connection between client and server is temporarily lost, the server MAY provide a quality of service
that guarantees a message is delivered at least one time to the receiver. If the server provides quality of service and the minimum record time is set, the
server SHOULD return all EPCIS events starting from the minimum record time.

If the subscription contains an error, the server SHALL respond with HTTP status code 400 and indicate the error as SubscriptionControlsException.

Table 12-8 Query endpoint usage overview

 How to... Webhooks (HTTP Callbacks) - SHALL Websockets - MAY

Create a new query POST /queries/{queryName} POST /queries/{queryName}

Fetch events synchronously (via HTTP) GET /queries/{queryName}/events GET /queries/{queryName}/events

Subscribe to query POST /queries/{queryName}/subscriptions 1. GET /queries/{queryName}/events
2. Upgrade to Websocket protocol

Configure the subscription As properties subscription request payload. As URL query string parameters in the subscription
request.

Notify subscriber even if the query result
is empty

reportIfEmpty is true in the subscription request payload. reportIfEmpty is true in the URL query string parameter of
the subscription request.

Overwrite the initial record time for a
query subscription

Assign a timestamp to the initialRecordTime property in the
subscription request payload.

Assign a timestamp to the initialRecordTime URL query
string parameter in the subscription request.

Track the minimum record time for
quality of service

Server maintains the timestamp of the most recent client
notification in the minRecordTime property of the subscription
resource.

Server maintains the timestamp of the most recent client
notification in the GS1-Query-Min-Record-Time header.

Secure the subscription signatureToken must be generated by the client and is used by
the server to authenticate itself and sign messages when
sending events. The signature must be contained on the GS1-
Signature HTTP header of the server request.

No additional step is needed.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 198 of 229

 How to... Webhooks (HTTP Callbacks) - SHALL Websockets - MAY

Publish query results
(Server to client)

POST https://client.com/callbackDest EPCISQueryDocument... WebSocket.send(EPCISQueryDocument)

Unsubscribe DELETE /queries/{queryName}/subscriptions/s123 WebSocket.close()

12.8.3.1 Scheduled queries

Scheduled queries are cron-like [CRON] queries that are executed in predefined time intervals. A scheduled query SHOULD push a list of events that
match the query description to all subscribed clients. A scheduled query is not defined by the query name but by the schedule, which is specified in
subscription payload (Webhook) or query parameters (Websocket). The REST API schedule uses the same query schedule parameters and meanings as
section 8.2.5.3.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 199 of 229

Figure 12-7 Scheduled query workflow

12.8.3.2 Streaming queries

If no query schedule is specified, the client must explicitly set stream to true. This restriction is to prevent clients from accidentally subscribing to EPCIS
event streams. Whenever a captured EPCIS event matches the query criteria, the client is notified. The query SHALL only execute if a new event matches
the query in full. Upon execution, all subscribed clients SHOULD receive the list of events.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 200 of 229

Figure 12-8 Event streaming query workflow

Scheduled query conditions and stream flag SHALL be mutually exclusive.

12.8.3.3 Webhook (HTTP Callback) for query subscription

Creating query subscription using Webhooks requires the client to provide a single endpoint to which the server will send events and a subscription secret
that the client needs to authenticate itself when sending events. The subscription secret must be generated by the client. When the client subscribes to a

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 201 of 229

query, it must either set stream to true, to be notified whenever a new EPCIS event matches the query, or the client must define a query schedule. If
these are missing the query subscription is invalid because the server won't know when to notify a client.

Figure 12-9 Query subscription with Webhook (HTTP Callback)

12.8.3.4 WebSocket for query subscription

In addition to Webhooks, EPCIS 2.0 adds the WebSocket protocol, which maintains a persistent connection without requiring the client to run a Web
server. An EPCIS server MAY support query subscription based on the WebSocket protocol for scheduled queries and for streaming queries. Websocket
support is provided through the /queries/{namedQueries}/events endpoints. Unlike Webhook subscriptions, Websocket query subscription parameters are
specified as URL query string parameters.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 202 of 229

Figure 12-10 Query subscription with a WebSocket

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 203 of 229

12.8.4 EPCIS query language
EPCIS queries are constructed using an EPCIS specific query language. The simplest query consists of an operand name followed by an underscore “_” and
an EPCIS resource property name (e.g., GE_eventTime(“2005-07-11T11:30:47.0Z”)). A compound query can specify conditions for more than one
property. Implicitly, a logical “AND” conjunction connects the clauses in a compound query, e.g., GE_eventTime(“2005-07-11T11:30:47.0Z”),
eventTypes(‘ObjectEvent’).

EPCIS queries can be expressed as query string parameters or as an EPCIS JSON query document. An EPCIS 2.0 server SHALL support the URL query
string parameters syntax and SHOULD support the JSON EPCIS query document syntax. The EPCIS JSON query document syntax is recommended when
the URL length exceeds 2000 character

NOTE:

Using the REST interface, it is possible to express EPCIS query parameters within a JSON object or via the URI query string. Also, endpoints such as
/bizSteps/{bizStep}/events effectively also express an EPCIS query parameter with a single value, in this case {bizStep} is equivalent to specifying
EQ_bizStep={bizStep} in the URI query string.

Clearly this flexibility could lead to situations where conflicting values are specified for a parameter via more than one of these three methods (URI path
information / endpoint template, URI query string, JSON object expressing a query).

In order to avoid such conflicts, a QueryParameterException SHALL be thrown if the same query parameter (or implied parameter) is specified via more
than one of these mechanisms.

As an illustrative example, if {bizStep} is specified in the URI path info of the endpoint, a QueryParameterException is thrown if EQ_bizStep is also
specified via the URI query string

Certain fields (e.g. parentID, childEPClist, inputEPClist , outputEPClist , etc.) are only valid within specific event types. The consequences are that:

1. Events of a type incompatible with the field specified in a query parameter will not be returned.

2. There is potential conflict if eventType query parameter specifies an event type that does not support a field that is specified in another query
parameter.

12.8.5 EPCIS query in the URL
The URL length SHALL be limited to 2000 characters. This limitation is to guarantee support for most browsers and Web servers. An EPCIS query in the
URL SHALL be percent-encoded (see [RFC3986]) and inserted in the URL following “?”. The “=” infix operator SHALL have the query parameter on the left
and value on the right. If the EPCIS query parameter supports an array of values, each value SHALL be separated by a vertical pipe “|”. Each clause within
the URL query string SHALL be connected by an “&”.

Example EPCIS query as escaped query parameters

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 204 of 229

https://example.com/epcs/urn:epc:id:sgtin:9521321.107346.2018?EQ_bizStep=shipping%7Cdecommissioning&GE_eventTime=2015-03-
15T00%3A00%3A00.000-04%3A00

1.1.1. Query body syntax

The REST interface does not support XML format epcis:QueryDocument to formulate queries. An EPCIS 2.0 query body using the REST interface SHALL be
serialised as a JSON object. The value of the query key within that JSON object SHALL validate against the schema defined at:

https://ref.gs1.org/standards/epcis/2.0.0/query-schema.json

POST /queries/{queryName} endpoint SHALL accept a request body in application/ld+json (JSON-LD) or application/json (JSON) format. When the
request body is in application/ld+json (JSON-LD) format, it MAY contain an @context field to specify namespace information for user extension query
parameters. These endpoints also support the GS1-Extensions request header, which serves the same purpose to allow users to provide namespace
information as comma-separated values. If the user provides data in both request header GS1-Extensions and field @context then the combined effect of
both MUST be taken into final consideration. In case of conflicts in which a CURIE prefix is mapped to more than one namespace or URI stem or a JSON
key is mapped to more than one URI, the client must be notified with HTTP status code 400 with the reason mentioning the conflicting mappings of keys
or namespace prefixes.

EPCIS 2.0 defines a standard context resource for the JSON-LD format of EPCIS data and any user-defined mappings SHALL NOT conflict with those.

Example:

Example EPCIS 2.0 query body

{

 "name": "UniqueQueryName",

 "query": {

 "eventType": [

 "ObjectEvent"

],

 "EQ_bizStep": [

 "shipping",

 "receiving"

]

https://ref.gs1.org/standards/epcis/2.0.0/
https://github.com/context

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 205 of 229

 }

}

12.9 Backward Compatibility of REST bindings with EPCIS 1.2
The EPCIS 2.0 REST bindings maintains backward semantic compatibility with EPCIS 1.2. This means that legacy EPCIS repositories and clients will be
able to seamlessly interface with EPCIS 2.0 REST bindings through a proxy or adapter which maps between EPCIS 1.2 SOAP endpoints to EPCIS 2.0 REST
endpoints. In addition to defining a backwards compatible EPCIS RESTful API, EPCIS 2.0 extends EPCIS 1.2 with characteristics that can be expected from
a RESTful webservice.

12.10 EPCIS Error Conditions and HTTP Status Code Mapping
EPCIS 1.2 defined a number of error conditions and their underlying causes that an EPCIS server returns [EPCIS1.2]. This section maps error conditions,
as originally defined in [EPCIS1.2], to HTTP status codes. Error responses SHALL be formatted using the “Problem Details for HTTP APIs” [RFC7807]
format.

The following table maps HTTP status codes to EPCIS exceptions. An EPCIS 2.0 server SHALL return HTTP status codes and SHALL include the exceptions
in the body and MAY provide additional information regarding the exception.

Table 12-9 EPCIS exceptions and HTTP status codes

EPCIS Exceptions HTTP Status Codes

epcisException:ValidationException 400

epcisException:QueryValidationException 400

epcisException:QueryParameterException 400

epcisException:SubscriptionControlsException 400

epcisException:SecurityException 403, 401

epcisException:NoSuchResourceException1 404

epcisException:NotAcceptableException 406

epcisException:ResourceAlreadyExistsException 409

epcisException:CaptureLimitExceededException 413

1 Examples of resources that cannot be found could include (but are not limited to) readPoint, eventID, epc, etc.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 206 of 229

EPCIS Exceptions HTTP Status Codes

epcisException:QueryTooLargeException 413

epcisException:QueryTooComplexException 413

epcisException:URITooLongException 414

epcisException:UnsupportedMediaTypeException 415

epcisException:ImplementationException 501, 500

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 207 of 229

The type field of a problem response body expects a URI. The server MAY use the Compact URI Expression with epcisExceptions as namespace. For
example, if the server encounters a SecurityException, it will respond with:

Example: Client lacks valid authentication to access /events

{

 "type": "epcisExceptions:SecurityException",

 "title": "Access denied",

 "status": 401,

 "detail": "User is not permitted to access /events"

}

If the client’s preference cannot be satisfied by the server’s declared capabilities, then an HTTP 406 response (epcisException:NotAcceptableException)
may result.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 208 of 229

13 Bindings for core query operations module
This section defines bindings for the Core Query Operations Module, as follows:

Interface Binding Document section

Query
Control
Interface

SOAP over HTTP (WSDL) Section 13.2

XML over AS2 Section 13.3

Query
Callback
Interface

XML over HTTP Section 13.3

XML over HTTP+TLS (HTTPS) Section 13.3

XML over AS2 Section 13.3

All of these bindings share a common XML syntax, specified in section 13.1. The XML schema has the following ingredients:

■ XML elements for the argument and return signature of each method in the Query Control Interface as defined in section 8.2.5

■ XML types for each of the datatypes used in those argument and return signatures

■ XML elements for each of the exceptions defined in section 8.2.6

■ XML elements for the Query Callback Interface as defined in section 8.2.8. (These are actually just a subset of the previous three bullets.)

■ An EPCISQueryDocument element, which is used as an “envelope” by bindings whose underlying technology does not provide its own envelope or
header mechanism (specifically, all bindings except for the SOAP binding). The AS2 binding uses this to provide a header to match requests and
responses. The EPCISQueryDocument element shares the EPCISHeader type defined in section 9.5. Each binding specifies its own rules for using this
header, if applicable.

13.1 XML schema for core query operations module
The XML schema for the core query operations module, published at https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-query-2_0.xsd , defines
XML representations of data types, requests, responses, and exceptions used by the EPCIS Query Control Interface and EPCIS Query Callback Interface in
the Core Query Operations Module. This schema is incorporated by reference into all of the bindings for these two interfaces specified in the remainder of
this section 12. This schema SHOULD be used by any new binding of any interface within the Core Query Operations Module that uses XML as the
underlying message format.

The QueryParam type defined in the schema is used to represent a query parameter as used by the poll and subscribe methods of the query interface
defined in section 8.2.5. A query parameter consists of a name and a value. The XML schema specifies xsd:anyType for the value, so that a parameter

https://ref.gs1.org/standards/epcis/2.0.0/

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 209 of 229

value of any type can be represented. When creating a document instance, the actual value SHALL conform to a type appropriate for the query parameter,
as defined in the following table:

Parameter type XML type for value element

AnyURI xsd:anyURI

Boolean xsd:boolean

Date xsd:date

Decimal xsd:decimal

Double xsd:double

HexBinary xsd:hexBinary

Int xsd:integer

Float xsd:float

DateTimeStamp xsd:dateTimeStamp

String xsd:string

List of String epcisq:ArrayOfString

Void epcisq:VoidHolder

In particular, the table above SHALL be used to map the parameter types specified for the predefined queries of section 8.2.7 into the corresponding XML
types.

Each <value> element specifying a query parameter value in an instance document MAY include an xsi:type attribute as specified in [XSD1]. The following
rules specify how query parameter values are processed:

■ When a <value> element does not include an xsi:type attribute, the subscribe or poll method of the Query Control Interface SHALL raise a
QueryParameterException if the specified value is not valid syntax for the type required by the query parameter.

■ When a <value> element does include an xsi:type attribute, the following rules apply:

1. If the body of the <value> element is not valid syntax for the type specified by the xsi:type attribute, the EPCISQueryDocument or SOAP request
MAY be rejected by the implementation’s XML parser.

2. If the value of the xsi:type attribute is not the correct type for that query parameter as specified in the second column of the table above, the
subscribe or poll method of the Query Control Interface MAY raise a QueryParameterException, even if the body of the <value> element is valid
syntax for the type required by the query parameter.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 210 of 229

3. If the body of the <value> element is not valid syntax for the type required by the query parameter, the subscribe or poll method of the Query
Control Interface SHALL raise a QueryParameterException unless the EPCISQueryDocument or SOAP request was rejected by the implementation’s
XML parser according to the rule above.

This schema imports additional schemas as shown in the following table:

Namespace Location reference Source

urn:epcglobal:xsd:2 epcglobal.xsd Section 9.3

http://www.unece.org/cefact/namespaces
/StandardBusinessDocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT web site; see
section 9.2

urn:epcglobal:epcis:xsd:2 epcglobal-epcis-2_0.xsd Section 9.5

In addition to the constraints implied by the schema, any value of type xsd:dateTimeStamp in an instance document SHALL include a time zone specifier
(either “Z” for UTC or an explicit offset from UTC).

For any XML element of type xsd:anyURI or xsd:string that specifies minOccurs="0", an EPCIS implementation SHALL treat an instance having the empty
string as its value in exactly the same way as it would if the element were omitted altogether.

The schema for the Core Query Operations Module is published at https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-query-2_0.xsd.

13.2 SOAP/HTTP binding for the query control interface
The Web Service Description Language (WSDL) 1.1 [WSDL1.1] specification published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-query-2_0.wsdl
defines the standard SOAP/HTTP binding of the EPCIS Query Control Interface. An EPCIS implementation MAY provide a SOAP/HTTP binding of the EPCIS
Query Control Interface; if a SOAP/HTTP binding is provided, it SHALL conform to the following WSDL. This SOAP/HTTP binding is compliant with the WS-I
Basic Profile Version 1.0 [WSI]. This binding builds upon the schema defined in section 13.1.

If an EPCIS implementation providing the SOAP binding receives an input that is syntactically invalid according to this WSDL, the implementation SHALL
indicate this in one of the two following ways: the implementation MAY raise a ValidationException, or it MAY raise a more generic exception provided by
the SOAP processor being used.

13.3 AS2 Binding for the query control interface
This section defines a binding of the EPCIS Query Control Interface to AS2 [RFC4130]. An EPCIS implementation MAY provide an AS2 binding of the EPCIS
Query Control Interface; if an AS2 binding is provided it SHALL conform to the provisions of this section. For the purposes of this binding, a “query client”
is an EPCIS Accessing Application that wishes to issue EPCIS query operations as defined in section 8.2.5, and a “query server” is an EPCIS Repository or
other system that carries out such operations on behalf of the query client.

https://ref.gs1.org/standards/epcis/2.0.0/epcglobal-epcis-query-2_0.xsd
https://ref.gs1.org/standards/epcis/2.0.0/epcis-query-2_0.wsdl

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 211 of 229

A query server SHALL provide an HTTP URL through which it receives messages from a query client in accordance with [RFC4130]. A message sent by a
query client to a query server SHALL be an XML document whose root element conforms to the EPCISQueryDocument element as defined by the schema
in section 13.1. The element immediately nested within the EPCISBody element SHALL be one of the elements corresponding to an EPCIS Query Control
Interface method request (i.e., one of Subscribe, Unsubscribe, Poll, etc.). The permitted elements are listed in the table below. If the message sent by the
query client fails to conform to the above requirements, the query server SHALL respond with a ValidationException (that is, return an
EPCISQueryDocument instance where the element immediately nested within the EPCISBody is a ValidationException).

The query client SHALL provide an HTTP URL that the query server will use to deliver a response message. This URL is typically exchanged out of band, as
part of setting up a bilateral trading partner agreement (see [RFC4130] section 5.1).

Both the query client and query server SHALL comply with the Requirements and SHOULD comply with the Recommendations listed in the GS1 document
“EDIINT AS1 and AS2 Transport Communications Guidelines” [EDICG]. For reference, the relevant portions of this document are reproduced below.

The query client SHALL include the Standard Business Document Header within the EPCISHeader element. The query client SHALL include within the
Standard Business Document Header a unique identifier as the value of the InstanceIdentifier element. The query client MAY include other elements within
the Standard Business Document Header as provided by the schema. The instance identifier provided by the query client SHOULD be unique with respect
to all other messages for which the query client has not yet received a corresponding response. As described below, the instance identifier is copied into
the response message, to assist the client in correlating responses with requests.

A query server SHALL respond to each message sent by a query client by delivering a response message to the URL provided by the query client, in
accordance with [RFC4130]. A response message sent by a query server SHALL be an XML document whose root element conforms to the
EPCISQueryDocument element as defined by the schema in section 13.1. The element immediately nested within the EPCISBody element SHALL be one of
the elements shown in the following table, according to the element that was provided in the corresponding request:

Request element Permitted return elements

GetQueryNames GetQueryNamesResult
SecurityException
ValidationException
ImplementationException

Subscribe SubscribeResult
NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 212 of 229

Request element Permitted return elements

Unsubscribe UnsubscribeResult
NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

GetSubscriptionIDs GetSubscriptionIDsResult
NoSuchNameException
SecurityException
ValidationException
ImplementationException

Poll QueryResults
QueryParameterException
QueryTooLargeException
QueryTooComplexException
NoSuchNameException
SecurityException
ValidationException
ImplementationException

GetStandardVersion GetStandardVersionResult
SecurityException
ValidationException
ImplementationException

GetVendorVersion GetVendorVersionResult
SecurityException
ValidationException
ImplementationException

The query server SHALL include the Standard Business Document Header within the EPCISHeader element. The query server SHALL include within the
Standard Business Document Header the BusinessScope element containing a Scope element containing a CorrelationInformation element containing a
RequestingDocumentInstanceIdentifier element; the value of the latter element SHALL be the value of the InstanceIdentifier element from the Standard
Business Document Header of the corresponding request. Within the Scope element, the Type subelement SHALL be set to EPCISQuery, and the
InstanceIdentifier element SHALL be set to EPCIS. The query server MAY include other elements within the Standard Business Document Header as
provided by the schema.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 213 of 229

13.3.1 GS1 AS2 guidelines (Non-Normative)

 As stated above, the query client and query server SHALL comply with the Requirements and SHOULD comply with the Recommendations listed in
the GS1 document “EDIINT AS1 and AS2 Transport Communications Guidelines” [EDICG] For reference, the relevant portions of this document are
reproduced below. This extract is marked non-normative; in the case of conflict between [EDICG] and what is written below, [EDICG] shall prevail.

Digital Certificate Requirements

Requirement 1

Payload data SHALL be encrypted and digitally signed using the S/MIME specification (see RFC 3851).

Requirement 2

The length of the one-time session (symmetric) key SHALL be 128 bits or greater.

Requirement 3

The length of the Public/Private Encryption key SHALL be 1024 bits or greater.

Requirement 4

The length of the Public/Private Signature key SHALL be 1024 bits or greater.

Requirement 5

The Signature Hash algorithm used SHALL be SHA1.

Configuration Requirement

Requirement 6

Digitally signed receipts (Signed Message Disposition Notifications (MDNs)) SHALL be requested by the Sender of Message.

Recommendations

Recommendation 1 – MDN Request Option

Either Asynchronous or Synchronous MDNs MAY be used with EDIINT AS2. There are potential issues with both synchronous and asynchronous MDNs, and
Trading Partners need to jointly determine which option is best based on their operational environments and message characteristics.

Recommendation 2 – MDN Delivery

Recipients SHOULD transmit the MDN as soon as technically possible to ensure that the message sender recognises that the message has been received
and processed by the receiving EDIINT software in a timely fashion. This applies equally to AS1 and AS2 as well as Asynchronous and Synchronous MDN
requests.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 214 of 229

Recommendation 3 – Delivery Retry with Asynchronous MDNs Requested

When a message has been successfully sent, but an asynchronous MDN has not been received in a timely manner, the Sender of Message SHOULD wait a
configurable amount of time and then automatically resend the original message with the same content and the same Message-ID value as the initial
message. The period of time to wait for a MDN and then automatically resend the original message is based on business and technical needs, but
generally SHOULD be not be less than one hour. There SHOULD be no more than two automatic resends of a message before personally contacting a
technical support contact at the Receiver of Message site.

Recommendation 4 – Delivery Retry for AS2

Delivery retry SHOULD take place when any HTTP response other than “200 OK” or "202 Accepted" is received (for example, 401, 500, 502, 503, timeout,
etc). This occurrence indicates that the actual transfer of data was not successful. A delivery retry of a message SHALL have the same content and the
same Message-ID value as the initial message. Retries SHOULD occur on a configurable schedule. Retrying SHALL cease when a message is successfully
sent (which is indicated by receiving a HTTP 200 range status code, e.g., "200 OK" or "202 Accepted"), or SHOULD cease when a retry limit is exceeded.

Recommendation 5 – Message Resubmission

If neither automated Delivery Retry nor automated Delivery Resend are successful, the Sender of Message MAY elect to resubmit the payload data in a
new message at a later time. The Receiver of Message MAY also request message resubmission if a message was lost subsequent to a successful receive.
If the message is resubmitted a new Message-ID MUST be used. Resubmission is normally a manual compensation.

Recommendation 6 – HTTP vs. HTTP/S (SSL)

For EDIINT AS2, the transport protocol HTTP SHOULD be used. However, if there is a need to secure the AS2-To and the AS2-From addresses and other
AS2 header information, HTTPS MAY be used in addition to the payload encryption provided by AS2. The encryption provided by HTTPS secures only the
point to point communications channel directly between the client and the server.

Recommendation 7 – AS2 Header

For EDIINT AS2, the values used in the AS2-From and AS2-To fields in the header SHOULD be GS1 Global Location Numbers (GLNs).

Recommendation 8 - SMTP

[not applicable]

Recommendation 9 - Compression

EDIINT compression MAY be used as an option, especially if message sizes are larger than 1MB. Although current versions of EDIINT software handle
compression automatically, this SHOULD be bilaterally agreed between the sender and the receiver.

Recommendation 10 – Digital Certificate Characteristics

Digital certificates MAY either be from a trusted third party or self-signed if bilaterally agreed between trading partners. If certificates from a third party
are used, the trust level SHOULD be at a minimum what is termed ‘Class 2’ which ensures that validation of the individual and the organisation has been
done.

Recommendation 11 – Common Digital Certificate for Encryption & Signature

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 215 of 229

A single digital certificate MAY be used for both encryption and signatures. However, if business processes dictate, two separate certificates MAY be used.
Although current versions of EDIINT software handle two certificates automatically, this SHOULD be bilaterally agreed between the sender and the
receiver.

Recommendation 12 – Digital Certificate Validity Period

The minimum validity period for a certificate SHOULD be 1 year. The maximum validity period SHOULD be 5 years.

Recommendation 13 – Digital Certificate – Automated Exchange

The method for certificate exchange SHALL be bilaterally agreed upon. When the “Certificate Exchange Messaging for EDIINT” specification is widely
implemented by software vendors, its use will be strongly recommended. This IETF specification will enable automated certificate exchange once the initial
trust relationship is established, and will significantly reduce the operational burden of manually exchanging certificates prior to their expiration.

Recommendation 14 – HTTP and HTTP/S Port Numbers for AS2

Receiving AS2 messages on a single port (for each protocol) significantly minimises operational complexities such as firewall set-up for both the sending
and receiving partner. Ideally, all AS2 partners would receive messages using the same port number. However, some AS2 partners have previously
standardised to use a different port number than others and changing to a new port number would add costs without commensurate benefits.

Therefore, AS2 partners MAY standardise on the use of port 4080 to receive HTTP messages and the use of port 5443 to receive HTTP/S (SSL) messages.

Recommendation 15 – Duplicate AS2 Messages

AS2 software implementations SHOULD use the ‘AS2 Message-ID’ value to detect duplicate messages and avoid sending the payload from the duplicate
message to internal business applications. The Receiver of Message SHALL return an appropriate MDN even when a message is detected as a duplicate.
Note: The Internet Engineering Task Force (IETF) is developing an “Operational Reliability for EDIINT AS2” specification which defines procedures to avoid
duplicates and ensure reliability.

Recommendation 15 – Technical Support

There SHOULD be a technical support contact for each Sender of Message and Receiver of Message. The contact information SHOULD include name, email
address and phone number. For 24x7x365 operation, a pager or help desk information SHOULD be also provided.

13.4 Bindings for query callback interface
This section specifies bindings for the Query Callback Interface. Each binding includes a specification for a URI that may be used as the dest parameter to
the subscribe method of section 8.2.5. Each subsection below specifies the conformance requirement (MAY, SHOULD, SHALL) for each binding.

Implementations MAY support additional bindings of the Query Callback Interface. Any additional binding SHALL NOT use a URI scheme already used by
one of the bindings specified herein.

All destination URIs, whether standardised as a part of this specification or not, SHALL conform to the general syntax for URIs as defined in [RFC3986].
Each binding of the Query Callback Interface may impose additional constraints upon syntax of URIs for use with that binding.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 216 of 229

13.4.1 General Considerations for all XML-based bindings
The following applies to all XML-based bindings of the Query Callback Interface, including the bindings specified in section 13.3, 13.3, and 13.3.

The payload delivered to the recipient SHALL be an XML document conforming to the schema specified in section 13.1. Specifically, the payload SHALL be
an EPCISQueryDocument instance whose EPCISBody element contains one of the three elements shown in the table below, according to the method of the
Query Callback Interface being invoked:

Query Callback Interface Method Payload Body Contents

callbackResults QueryResults

callbackQueryTooLargeException QueryTooLargeException

callbackImplementationException ImplementationException

In all cases, the queryName and subscriptionID fields of the payload body element SHALL contain the queryName and subscriptionID values, respectively,
that were supplied in the call to subscribe that created the standing query.

13.4.2 HTTP binding of the query callback interface

The HTTP binding provides for delivery of standing query results in XML via the HTTP protocol using the POST operation. Implementations MAY provide
support for this binding.

The syntax for HTTP destination URIs as used by EPCIS SHALL be as defined in [RFC2616], section 3.2.2. Informally, an HTTP URI has one of the two
following forms:

http://host:port/remainder-of-URL
http://host/remainder-of-URL

where

■ host is the DNS name or IP address of the host where the receiver is listening for incoming HTTP connections.

■ port is the TCP port on which the receiver is listening for incoming HTTP connections. The port and the preceding colon character may be omitted, in
which case the port SHALL default to 80.

■ remainder-of-URL is the URL to which an HTTP POST operation will be directed.

The EPCIS implementation SHALL deliver query results by sending an HTTP POST request to receiver designated in the URI, where remainder-of-URL is
included in the HTTP request-line (as defined in [RFC2616]), and where the payload is an XML document as specified in section 13.3.

The interpretation by the EPCIS implementation of the response code returned by the receiver is outside the scope of this specification; however, all
implementations SHALL interpret a response code 2xx (that is, any response code between 200 and 299, inclusive) as a normal response, not indicative of
any error.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 217 of 229

13.4.3 HTTPS binding of the query callback interface
The HTTPS binding provides for delivery of standing query results in XML via the HTTP protocol using the POST operation, secured via TLS.
Implementations MAY provide support for this binding.

The syntax for HTTPS destination URIs as used by EPCIS SHALL be as defined in [RFC2818], section 2.4, which in turn is identical to the syntax defined in
[RFC2616], section 3.2.2, with the substitution of https for http. Informally, an HTTPS URI has one of the two following forms:

https://host:port/remainder-of-URL
https://host/remainder-of-URL

where

■ host is the DNS name or IP address of the host where the receiver is listening for incoming HTTP connections.

■ port is the TCP port on which the receiver is listening for incoming HTTP connections. The port and the preceding colon character may be omitted, in
which case the port SHALL default to 443.

■ remainder-of-URL is the URL to which an HTTP POST operation will be directed.

The EPCIS implementation SHALL deliver query results by sending an HTTP POST request to receiver designated in the URI, where remainder-of-URL is
included in the HTTP request-line (as defined in [RFC2616]), and where the payload is an XML document as specified in section 13.3.

For the HTTPS binding, HTTP SHALL be used over TLS as defined in [RFC2818]. TLS for this purpose SHALL be implemented as defined in [RFC2246]
except that the mandatory cipher suite is TLS_RSA_WITH_AES_128_CBC_SHA, as defined in [RFC3268] with CompressionMethod.null. Implementations
MAY support additional cipher suites and compression algorithms as desired

The interpretation by the EPCIS implementation of the response code returned by the receiver is outside the scope of this specification; however, all
implementations SHALL interpret a response code 2xx (that is, any response code between 200 and 299, inclusive) as a normal response, not indicative of
any error.

13.4.4 AS2 Binding of the query callback interface
The AS2 binding provides for delivery of standing query results in XML via AS2 [RFC4130]. Implementations MAY provide support for this binding.

The syntax for AS2 destination URIs as used by EPCIS SHALL be as follows:

as2:remainder-of-URI

where

■ remainder-of-URI identifies a specific AS2 communication profile to be used by the EPCIS Service to deliver information to the subscriber. The syntax
of remainder-of-URI is specific to the particular EPCIS Service to which the subscription is made, subject to the constraint that the complete URI
SHALL conform to URI syntax as defined by [RFC3986].

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 218 of 229

Typically, the value of remainder-of-URI is a string naming a particular AS2 communication profile, where the profile implies such things as the HTTP URL
to which AS2 messages are to be delivered, the security certificates to use, etc. A client of the EPCIS Query Interface wishing to use AS2 for delivery of
standing query results must pre-arrange with the provider of the EPCIS Service the specific value of remainder-of-URI to use.

■ Non-Normative: Explanation: Use of AS2 typically requires pre-arrangement between communicating parties, for purposes of certificate exchange
and other out-of-band negotiation as part of a bilateral trading partner agreement (see [RFC4130] section 5.1). The remainder-of-URI part of the AS2
URI essentially is a name referring to the outcome of a particular pre-arrangement of this kind.

The EPCIS implementation SHALL deliver query results by sending an AS2 message in accordance with [RFC4130]. The AS2 message payload SHALL be
an XML document as specified in section 13.3.

Both the EPCIS Service and the recipient of standing query results SHALL comply with the Requirements and SHOULD comply with the Recommendations
listed in the GS1 document “EDIINT AS1 and AS2 Transport Communications Guidelines” [EDICG] For reference, the relevant portions of this document
are reproduced in section 13.3.

14 Conformance
The EPCIS standard defines both standard event data and standard interfaces between system components that communicate event data. Both the data
formats and the interfaces may be implemented by a variety of software and data components in any given system.

This section defines what it means to conform to the EPCIS standard. As there are many types of system components that have the potential to conform
to various parts of the EPCIS standard, they are enumerated below. In the text that follows, any reference to a section of the EPCIS standard should be
understood to refer to that section in its entirety, including subsections thereof.

14.1 Conformance of EPCIS XML data
An electronic document is in conformance to the EPCIS standard when all of the following are true:

■ The document is a well-formed XML document conforming to [XML1.0].

■ The document conforms to the XML schema for EPCISDocument specified in section 9.5 or the XML schema for EPCISQueryDocument specified in
section 13.1, as well as all additional constraints specified in the respective section.

■ All EPCIS event data within the document (if any) conforms to the definitions of EPCIS event data specified in section 7 and its subsections.

■ All master data within the document (if any) conforms to the constraints upon master data specified in section 6.1.1 and 9.4.

■ All uses of the extension mechanism (if any) conform to the constraints specified in section 9.1.

■ If a Standard Business Document Header is present, it conforms to the constraints specified in section 9.2.

Many applications of EPCIS will require, in addition to conformance to the EPCIS standard, that data conform to the EPCIS Core Business Vocabulary
[CBV2.0] standard. The CBV standard defines two conformance levels termed “CBV Compliant” and “CBV Compatible”. See the CBV standard for details.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 219 of 229

14.2 Conformance of EPCIS capture interface clients
A system is in conformance to the EPCIS standard as a capture interface client when all of the following are true:

■ The system conforms to all statements appearing in either section 11.1 or 11.2 that are indicated as pertaining to a “capture client.”

Such a system is said to conform to a particular binding of the capture interface (or more than one binding) depending on which subsection of Section 11
it conforms to.

14.3 Conformance of EPCIS capture interface servers
A system is in conformance to the EPCIS standard as a capture interface server when all of the following are true:

■ The system conforms to the statements appearing in section 8.1.

■ The system conforms to all statements appearing in either section 11.1 or 11.2 that are indicated as pertaining to a “capture server.”

■ The system processes the recordTime field in EPCIS events as specified in the table in section 7.4.1.

Such a system is said to conform to a particular binding of the capture interface (or more than one binding) depending on which subsection of section 11 it
conforms to.

14.4 Conformance of EPCIS query interface clients
A system is in conformance to the EPCIS standard as a query interface client when either or both of the following are true:

■ The system conforms to the definition of a “sender” as specified in [WSI] and sends messages in conformance to the WSDL specification in
section 13.2.

■ The system conforms to all statements appearing in section 13.3 that are indicated as pertaining to a “query client.”

Such a system is said to conform to a particular binding of the query interface (or more than one binding) depending on which subsection of section 12 it
conforms to.

14.5 Conformance of EPCIS query interface servers
A system is in conformance to the EPCIS standard as a query interface server when all of the following are true:

■ The system conforms to the statements appearing in section 8.2.

■ The system includes the recordTime field in all EPCIS events returned as query results, as specified in the table in section 7.4.1.

■ One or both of the following are true:

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 220 of 229

1. The system conforms to the definition of a “receiver” as specified in [WSI], receives messages in conformance to the WSDL specification in
section 11.2, and also conforms to the additional constraints specified in section 13.2.

2. The system conforms to all statements appearing in section 13.3 that are indicated as pertaining to a “query server.”

Such a system is said to conform to a particular binding of the query interface (or more than one binding) depending on which subsection of section 12 it
conforms to.

14.6 Conformance of EPCIS query callback interface implementations
A system is in conformance to the EPCIS standard as a query callback interface implementation when it conforms to the statements appearing in one or
more subsections of section 13.3. Such a system is said to conform to a particular binding of the query callback interface (or more than one binding)
depending on which subsection it conforms to.

14.7 Conformance of JSON/JSON-LD bindings
Per section 10.3:

1. The JSON representation of EPCIS 2.0 data SHALL validate against the JSON Schema, published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-
json-schema.json.

2. The JSON-LD representation of EPCIS 2.0 data SHALL validate against the SHACL file, published at https://ref.gs1.org/standards/epcis/2.0.0/epcis-
shacl.ttl.

14.8 Conformance of REST Interface for EPCIS 2.0 Servers
Per section 12.3:

1. An EPCIS server SHALL support named queries through the /queries endpoint.

□ Each endpoint SHALL support HTTP content negotiation [HTTPSemanticsContent] for at least JSON [JSON] and JSON-LD [JSONLD]. All responses
SHALL return a full EPCIS Document containing the list of events within the EPCIS Body.

□ If the client requests a media type that the server does not support, the server SHALL reply with HTTP status code 406 Not Acceptable.

□ For all endpoints, an EPCIS server SHALL support GS1-CBV-Version, GS1-EPC-Format, GS1-CBV-Format, GS1-EPCIS-Version, GS1-EPCIS-Min,
GS1-EPCIS-Max and GS1-Extensions.

□ if a client omits the EPCIS version or EPCIS version min/max range, the server SHALL use the EPCIS version defined by the GS1-EPCIS-Version
header.

https://ref.gs1.org/standards/epcis/2.0.0/epcis-json-schema.json
https://ref.gs1.org/standards/epcis/2.0.0/epcis-json-schema.json
https://ref.gs1.org/standards/epcis/2.0.0/epcis-shacl.ttl
https://ref.gs1.org/standards/epcis/2.0.0/epcis-shacl.ttl

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 221 of 229

□ For the /capture endpoint, the server SHALL additionally support GS1-EPCIS-Capture-Limit, to specify the maximum number of events that can be
captured per call and SHALL support GS1-EPCIS-Capture-File-Size-Limit to specify the EPCIS document size in bytes / octets.

□ A server SHALL support GS1-Capture-Error-Behaviour to declare the error behaviour of the capture interface.

□ The default value of GS1-Capture-Error-Behaviour SHALL be rollback.

□ Each endpoint SHALL respond to the OPTIONS verb by returning the list of allowed HTTP verbs as well as supported headers for a resource and
their default values.

□ The server SHALL support the OPTIONS method for each endpoint and SHALL provide default header values for each custom EPCIS header it
supports.

Per section 12.4:

■ EPCIS clients SHALL authenticate themselves for every API call.

■ If the authentication fails, the server SHALL respond with HTTP status code 401 [RFC7235].

■ If a client is authenticated but is not authorised to perform an operation, the server SHALL respond with HTTP status code 403 Forbidden [RFC7235].

Per section 12.5:

■ An EPCIS repository SHALL implement pagination, to return events in manageable chunks.

■ If the client does not specify the perPage value, the server SHALL use the default value of 30.

■ Pages SHALL form a linked list, using the Web link model [RFC8288].

■ A server SHALL include the quoted URL of the next page in the Link response header.

■ Events SHALL be returned atomically; events SHALL NOT be split using pagination.

Per section 12.6:

■ Client calls the capture interface to send one or more EPCIS events in the JSON or JSON-LD format. If the event syntax is XML, events SHALL conform
to the XML event specifications specified in EPCIS 2.0 [EPCIS2.0].

■ If the event syntax is JSON/JSON-LD, events SHALL conform to the JSON/JSON-LD data format specified in section 10.

■ If GS1-Capture-Error-Behaviour is rollback, the server SHALL guarantee that either all events are captured, or all events are rejected.

■ If GS1-Capture-Error-Behaviour is proceed, the server SHALL try to capture as many EPCIS events as possible.

■ If events were successfully accepted, /capture SHALL respond with 202 Accepted and a captureID.

■ If unique eventIDs are populated, these SHALL use one of the two eventID formats specified in section 8.9 of the CBV, which specifies Event
Identifiers.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 222 of 229

■ In cases of failures other than GS1-EPCIS-Capture-Limit or GS1-EPCIS-Capture-File-Size-Limit , /capture SHALL indicate why the operation was
unsuccessful by returning a HTTP status code in the range 4xx.

■ The capture job endpoint, /capture/{captureID}, SHALL expose the state of the capture job to the client.

Per section 12.7:

■ When calling the GET method on the /eventTypes endpoint, it SHALL return a list of all EPCIS event types that are present in that repository.

■ Calling the GET method on /events SHALL return all the EPCIS events present in the repository (subject to pagination and refinement via the EPCIS
query language).

■ By definition, top-level resources SHALL NOT be nested.

■ Each EPCIS event type URL SHALL be identified by a unique URL, such as https://example.com/eventTypes/ObjectEvent/events for the collection of
object events.

■ For the /events/{eventID} endpoint, if the eventID is populated, then each event SHALL use one of the Event IDs syntax specified in section 8.9 of
the CBV.

■ When the characters / ? = and & are used with their special meanings to delimit the structural components of a URL or URL query string, such
characters SHALL NOT be percent encoded.

■ An EPCIS server SHALL support the top-level resources /epcs and /events .

■ These resources SHALL comply with the following pattern:
/{top-level resource}s/{optional vocabulary prefix}:{resource identifier}/events

■ By default, when a value of {bizLocation}, {bizStep}, {readPoint} or {disposition} is expressed without a namespace qualifier within an endpoint URL,
the value SHALL be considered to be using the GS1 Core Business Vocabulary (CBV).

■ If a value is not using the CBV, the URI of the vocabulary SHALL be specified in the GS1-Extensions header as a mapping to a Compact URI
Expression [CURIE] prefix and the value itself SHALL be expressed as a Compact URI Expression [CURIE].

■ If GS1-Extensions contains more than one vocabulary, each vocabulary SHALL be separated by a “,”.

■ If the GS1-Extensions header is set and the complete resource address is set, specifying the complete resource address for top-level resources SHALL
take precedence over the vocabulary specified in the GS1-Extensions header.

Per section 12.8:

■ EPCIS SHALL support named queries through the /queries endpoint.

■ A named query resembles a stored procedure. It consists of a human-readable name and a query definition. The name SHALL be unique, as it is part
of a query’s URL.

■ The query SHALL be defined on creation time and transmitted in the request body.

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 223 of 229

■ A named EPCIS events query SHALL support subscription using HTTP callbacks (aka Webhooks).

■ When connecting to a query subscription, the client SHALL have the option to specify from when onwards the query applies with the initial record time
(initialRecordTime parameter).

■ By default, a client SHALL only receive a query result when the query result is not empty.

■ If the subscription contains an error, the server SHALL respond with HTTP status code 400 and indicate the error as SubscriptionControlsException.

■ The query SHALL only execute if a new event matches the query in full.

■ Scheduled query conditions and stream flag SHALL be mutually exclusive.

■ An EPCIS 2.0 server SHALL support the URL query string parameters syntax and SHOULD support the JSON EPCIS query document syntax.

■ For EPCIS queries in the URL, the URL length SHALL be limited to 2000 characters.

■ An EPCIS query in the URL SHALL be percent-encoded (see [RFC3986]) and inserted in the URL following “?”.

■ The “=” infix operator SHALL have the query parameter on the left and value on the right.

■ If the EPCIS query parameter supports an array of values, each value SHALL be separated by a vertical pipe “|”.

■ Each clause within the URL query string SHALL be connected by an “&”.

■ An EPCIS 2.0 query body using the REST interface SHALL be serialised as a JSON object. The value of the query key within that JSON object
SHALL validate against the schema defined at: https://ref.gs1.org/standards/epcis/2.0.0/query-schema.json

■ POST /queries/{queryName} endpoint SHALL accept a request body in application/ld+json (JSON-LD) or application/json (JSON) format.

■ EPCIS 2.0 defines a standard context resource for the JSON-LD format of EPCIS data and any user-defined mappings SHALL NOT conflict with those.

Per section 12.10:

■ Error responses SHALL be formatted using the “Problem Details for HTTP APIs” [RFC7807] standard.

An EPCIS 2.0 server SHALL return HTTP status codes and SHALL include the exceptions in the body.

15 UML Diagrams for SBDH
The XML data format for EPCIS uses the Standard Business Document Header (SBDH) declared within EPCISHeader.

This appendix includes UML class diagrams for SBDH; one is aligned with the text of the SBDH specification, the other aligned with the XSD contained
within the same SBDH specification.

These are not central to the EPCIS event data model, and therefore not included alongside the main UML class diagrams (see section 7.2.1).

https://ref.gs1.org/standards/epcis/2.0.0/

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 224 of 229

■ Note: The JSON/JSON-LD data format for EPCIS does not use SBDH, but the optional fields epcis:sender epcis:receiver, epcis:instanceIdentifier and
the mandatory field epcis:creationDate can together provide similar audit trail functionality if EPCIS data in JSON/JSON-LD format is sent as a
message.

15.1 UML aligned with text of SBDH specification

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 225 of 229

15.2 UML aligned with XSD of SBDH specification

16 References
[ALE] EPCglobal, “The Application Level Events (ALE) Specification,” EPCglobal Standard Specification, http://www.gs1.org/ale.

http://www.gs1.org/ale

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 226 of 229

[CBV2.0] GS1, “GS1 Core Business Vocabulary (CBV) Version 2.0 Standard,” GS1 standard, June 2022, http://www.gs1.org/epcis.

[CBV1.2.2] GS1, “GS1 Core Business Vocabulary (CBV) Version 1.2.2 Standard,” GS1 standard, October 2017, http://www.gs1.org/epcis.

[CBV CN 17-339] GS1, Core Business Vocabulary Change Notification (CBVCN), "Addition of tax ID to the CBV," March 2018, http://www.gs1.org/epcis.

[CBV CN 18-108] GS1, Core Business Vocabulary Change Notification (CBVCN), "Addition of attributes for fish traceability to the CBV," July 2018,
http://www.gs1.org/epcis.

[CBV] GS1, "Core Business Vocabulary (CBV)," GS1 standard, https://www.gs1.org/standards/epcis

[CEFACT20] United Nations Economic Commission for Europe, “Recommendation 20: Codes for Units of Measure Used in International Trade,”
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev7e_2010.zip.

[CRON] https://pubs.opengroup.org/onlinepubs/007904975/utilities/crontab.html

[CURIE] Compact URI Expressions, https://www.w3.org/TR/curie/

[DCTERMS] Dublin Core Metadata Inititative Terms, http://purl.org/dc/terms/

[EDICG] GS1, “EDIINT AS1 and AS2 Transport Communications Guidelines,” GS1 Technical Document, February 2006, http://www.gs1.org/gs1-
xml/guideline/ediint-as1-and-as2-transport-communication-guidelines.

[EPCIS1.2] https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf

[EPCISGuideline] GS1, “EPCIS and CBV Implementation Guideline,” GS1 Guideline, http://www.gs1.org/docs/epc/EPCIS_Guideline.pdf.

[GLNAR3.0] "GS1 GLN Allocation Rules Standard," GS1 standard, https://www.gs1.org/standards/gs1-gln-allocation-rules-standard/current-standard

[GS1Arch] “The GS1 System Architecture,” GS1 technical document,

http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf

[GS1UC] “Unit Converter UNECE Rec 20”, JavaScript library for converting quantitative values expressed using UN ECE Recommendation 20 unit codes,
https://ref.gs1.org/tools/UnitConverterUNECERec20

[GS1DL] GS1 Digital Link Standard: URI Syntax, https://www.gs1.org/standards/gs1-digital-link

[HTML] https://html.spec.whatwg.org/

[HTTP] https://tools.ietf.org/html/rfc2616

[HTTPHeaders] https://www.iana.org/assignments/message-headers/message-headers.xhtml

[HTTPSemanticsContent] https://datatracker.ietf.org/doc/html/rfc2616#section-12

IETF RFC 8259 [https://datatracker.ietf.org/html/rfc8259]

ISO/IEC 21778:2017

http://www.gs1.org/epcis
http://www.gs1.org/epcis
http://www.gs1.org/epcis
http://www.gs1.org/epcis
https://www.gs1.org/standards/epcis
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev7e_2010.zip
https://pubs.opengroup.org/onlinepubs/007904975/utilities/crontab.html
https://www.w3.org/TR/curie/
http://purl.org/dc/terms/
http://www.gs1.org/gs1-xml/guideline/ediint-as1-and-as2-transport-communication-guidelines
http://www.gs1.org/gs1-xml/guideline/ediint-as1-and-as2-transport-communication-guidelines
https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf
http://www.gs1.org/docs/epc/EPCIS_Guideline.pdf
https://www.gs1.org/standards/gs1-gln-allocation-rules-standard/current-standard
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf
https://ref.gs1.org/tools/UnitConverterUNECERec20
https://www.gs1.org/standards/gs1-digital-link
https://html.spec.whatwg.org/
https://tools.ietf.org/html/rfc2616
https://www.iana.org/assignments/message-headers/message-headers.xhtml
https://datatracker.ietf.org/doc/html/rfc2616#section-12
https://datatracker.ietf.org/html/rfc8259

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 227 of 229

[ISODir2] ISO, “Rules for the structure and drafting of International Standards (ISO/IEC Directives, Part 2, 2018, 8th edition),”
https://www.iso.org/sites/directives/current/part2/index.xhtml; specifically section 7, "Verbal forms for expressions of provisions",
https://www.iec.ch/standardsdev/resources/draftingpublications/directives/principles/verbal_forms.htm.

[JSON] JavaScript Object Notation, https://www.json.org

[JSON-LD] JSON for Linked Data v1.1, https://json-ld.org, https://www.w3.org/TR/json-ld11/

JSON Schema: https://json-schema.org/specification.html

[MQTT] https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html - _Toc3901236

[OpenAPI] https://spec.openapis.org/oas/latest.html

[OWL] Web Ontology Language (OWL), https://www.w3.org/TR/owl2-syntax/

[RDFa] RDFa 1.1 Primer, https://www.w3.org/TR/rdfa-primer/

[RDFS] RDF Schema (RDFS), https://www.w3.org/TR/rdf-schema/

[RDF/XML] RDF 1.1 XML Syntax, https://www.w3.org/TR/rdf-syntax-grammar/

[REST] https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

[RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, “Uniform Resource Locators (URL),” RFC 1738, December 1994,
https://datatracker.ietf.org/html/rfc1738.

[RFC8141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for Comments RFC-8141, May 1997,
https://datatracker.ietf.org/html/rfc8141.

[RFC2246] T. Dierks, C. Allen, “The TLS Protocol, Version 1.0,” RFC2246, January 1999, https://datatracker.ietf.org/html/rfc2246.

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC2616, June
1999, https://datatracker.ietf.org/html/rfc2616.

[RFC2818] E. Escorla, “HTTP Over TLS,” RFC2818, May 2000, https://datatracker.ietf.org/html/rfc2818.

[RFC3268] P. Chown, “Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS),” RFC3268, June 2002,
https://datatracker.ietf.org/html/rfc3268.

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” RFC3986, January 2005,
https://datatracker.ietf.org/html/rfc3986

[RFC4122] https://datatracker.ietf.org/html/rfc4122

[RFC4130] D. Moberg and R. Drummond, “MIME-Based Secure Peer-to-Peer Business Data Interchange Using HTTP, Applicability Statement 2 (AS2),”
RFC4130, July 2005, https://datatracker.ietf.org/html/rfc4130.

[RFC6455] https://datatracker.ietf.org/html/rfc6455

https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iec.ch/standardsdev/resources/draftingpublications/directives/principles/verbal_forms.htm
https://www.json.org/
https://www.w3.org/TR/json-ld11/
https://json-schema.org/specification.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901236
https://spec.openapis.org/oas/latest.html
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-syntax-grammar/
https://datatracker.ietf.org/html/rfc1738
https://datatracker.ietf.org/html/rfc8141
https://datatracker.ietf.org/html/rfc2246
https://datatracker.ietf.org/html/rfc2616
https://datatracker.ietf.org/html/rfc2818
https://datatracker.ietf.org/html/rfc3268
https://datatracker.ietf.org/html/rfc3986
https://datatracker.ietf.org/html/rfc4122
https://datatracker.ietf.org/html/rfc4130
https://datatracker.ietf.org/html/rfc6455

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 228 of 229

[RFC7231] https://datatracker.ietf.org/html/rfc7231

[RFC7235] https://datatracker.ietf.org/html/rfc7235

[RFC7303] https://datatracker.ietf.org/html/rfc7303

[RFC7807] https://datatracker.ietf.org/html/rfc7807

[RFC8288] https://datatracker.ietf.org/html/rfc8288

[SBDH] United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT), “Standard Business Document Header Technical Specification,
Version 1.3,” June 2004, http://www.gs1.org/services/gsmp/kc/ecom/xml/xml_sbdh.html

[SBDHGS1] GS1, "Standard Business Document Header (SBDH) Version 1.3 Technical Implementation Guide," July 2012,
https://www.gs1.org/sites/default/files/docs/xml/SBDH_v1_3_Technical_Implementation_Guide.pdf

[SHACL] Shapes Constraint Language (SHACL), W3C Recommendation of 20 July 2017, https://www.w3.org/TR/shacl/

[SKOS] Simple Knowledge Organization System, https://www.w3.org/TR/skos-primer/

[SOAP] https://www.w3.org/TR/soap/

[SPARQL] SPARQL Protocol and RDF Query Language, https://www.w3.org/TR/sparql11-query/

[SSN] Semantic Sensor Network Ontology, W3C Recommendation of 19 October 2017, https://www.w3.org/TR/vocab-ssn/

[TDS] GS1, “GS1 EPCglobal Tag Data Standard" (TDS), GS1 standard, http://www.gs1.org/epc/tag-data-standard

[Turtle] Terse RDF Triple Notation, https://www.w3.org/TR/turtle/

[URL] https://url.spec.whatwg.org/

[WebSocket] https://datatracker.ietf.org/html/rfc6455

[WSDL1.1] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services Description Language (WSDL) 1.1,” W3C Note, March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[WSI] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, “Basic Profile Version 1.0,” WS-i Final Material, April 2004, http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

[XML] https://www.w3.org/XML/

[XML1.0] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, “Extensible Markup Language (XML) 1.0 (Third Edition),” W3C
Recommendation, February 2004, http://www.w3.org/TR/2004/REC-xml-20040204/.

[XMLDR] “XML Design Rules for EAN.UCC, Version 2.0,” February 2004.

[XMLVersioning] D. Orchard, “Versioning XML Vocabularies,” December 2003, http://www.xml.com/pub/a/2003/12/03/versioning.html.

https://datatracker.ietf.org/html/rfc7231
https://datatracker.ietf.org/html/rfc7235
https://datatracker.ietf.org/html/rfc7303
https://datatracker.ietf.org/html/rfc7807
https://datatracker.ietf.org/html/rfc8288
http://www.gs1.org/services/gsmp/kc/ecom/xml/xml_sbdh.html
https://www.gs1.org/sites/default/files/docs/xml/SBDH_v1_3_Technical_Implementation_Guide.pdf
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/skos-primer/
https://www.w3.org/TR/soap/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/vocab-ssn/
http://www.gs1.org/epc/tag-data-standard
https://www.w3.org/TR/turtle/
https://url.spec.whatwg.org/
https://datatracker.ietf.org/html/rfc6455
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
https://www.w3.org/XML/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.xml.com/pub/a/2003/12/03/versioning.html

EPCIS Standard

Release 2.0, Ratified, Jun 2022 © 2021-2022 GS1 AISBL Page 229 of 229

[XSD1] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1: Structures,” W3C Recommendation, May 2001,
http://www.w3.org/TR/xmlschema-1/.

[XSD2] P. Biron, A. Malhotra, “XML Schema Part 2: Datatypes,” W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

	1 Introduction
	2 Relationship to the GS1 System Architecture
	2.1 Overview of GS1 standards
	2.2 EPCIS in relation to the “Capture” and “Share” layers
	2.3 EPCIS in Relation to trading partners
	2.4 EPCIS in relation to other GS1 System Architecture components

	3 EPCIS specification principles
	4 Terminology and typographical conventions
	5 EPCIS specification framework
	5.1 Layers
	5.2 Extensibility
	5.3 Modularity

	6 Abstract data model layer
	6.1 Event data and master data
	6.1.1 Transmission of master data in EPCIS

	6.2 Standard vocabulary and user vocabulary
	6.3 Extension mechanisms
	6.4 Identifier representation
	6.5 Hierarchical vocabularies

	7 Data definition layer
	7.1 General rules for specifying data definition layer modules
	7.1.1 Content
	7.1.2 Notation
	7.1.3 Semantics

	7.2 Core event types module – overview
	7.2.1 UML Diagrams of EPCIS Event Types
	7.2.1.1 UML with Ontology focus
	7.2.1.2 UML with Syntax focus
	7.2.1.3 UML for SBDH

	7.2.2 Overview of EPCIS event "dimensions" (non-normative)
	7.2.3 Table of vocabulary types

	7.3 Core event types module – building blocks
	7.3.1 Primitive types
	7.3.2 Action type
	7.3.3 The “What” dimension
	7.3.3.1 QuantityElement
	7.3.3.1.1 UOM
	7.3.3.1.2 Class-level identifiers

	7.3.3.2 Identifier types (Non-Normative)

	7.3.4 The "When" dimension
	7.3.4.1 The "When" dimension in the EPCISEvent common base type
	7.3.4.2 The "When" dimension in the Error Declaration
	7.3.4.3 The "When" dimension in Sensor Metadata

	7.3.5 The “Where” Dimension – read point and business location
	7.3.5.1 Example of the distinction between a read point and a business location (Non-Normative)

	7.3.6 The “Why” dimension
	7.3.6.1 Business step
	7.3.6.2 Disposition and Persistent Disposition
	7.3.6.2.1 Disposition
	7.3.6.2.2 Persistent Disposition

	7.3.6.3 Business transaction
	7.3.6.3.1 Business transaction type
	7.3.6.3.2 Business transaction ID

	7.3.6.4 Source and destination
	7.3.6.4.1 Source/Destination type
	7.3.6.4.2 Source/Destination ID

	7.3.7 The “How” dimension
	7.3.7.1 SensorElement
	7.3.7.1.1 SensorMetadata
	7.3.7.1.2 SensorReport
	7.3.7.1.3 Coordinate reference systems (CRS)
	7.3.7.1.4 Sensor property type
	7.3.7.1.5 UOM
	7.3.7.1.6 Microorganism ID
	7.3.7.1.7 Chemical Substance ID
	7.3.7.1.8 Resource ID

	7.3.8 Instance/Lot master data (ILMD)

	7.4 Core event types module – events
	7.4.1 EPCISEvent
	7.4.1.1 Explanation of eventTimeZoneOffset (Non-Normative)
	7.4.1.2 ErrorDeclaration
	7.4.1.2.1 Use of error declarations (Non-Normative)
	7.4.1.2.2 Matching an error declaration to the original event (non-normative)

	7.4.2 ObjectEvent (subclass of EPCISEvent)
	7.4.3 AggregationEvent (subclass of EPCISEvent)
	7.4.4 TransactionEvent (subclass of EPCISEvent)
	7.4.5 TransformationEvent (subclass of EPCISEvent)
	7.4.6 AssociationEvent (subclass of EPCISEvent)

	8 Service layer
	8.1 Core capture operations module
	8.1.1 Authentication and authorisation
	8.1.2 Capture service

	8.2 Core Query operations module
	8.2.1 Authentication
	8.2.2 Authorisation and redaction
	8.2.3 Queries for large amounts of data
	8.2.4 Overly complex queries
	8.2.5 Query framework (EPCIS query control interface)
	8.2.5.1 Subscription controls
	8.2.5.2 Automatic limitation based on event record time
	8.2.5.3 Query schedule
	8.2.5.3.1 Query schedule examples (Non-Normative)

	8.2.5.4 QueryResults

	8.2.6 Error conditions
	8.2.7 Predefined queries for EPCIS
	8.2.7.1 SimpleEventQuery
	8.2.7.1.1 Processing of MATCH query parameters

	8.2.7.2 SimpleMasterDataQuery - REMOVED in EPCIS 2.0

	8.2.8 Query callback interface

	9 XML bindings for data definition modules
	9.1 Extensibility mechanism
	9.2 Standard business document header
	9.3 EPCglobal Base schema
	9.4 Master data in the XML binding
	9.5 Schema for core event types
	9.6 Core event types – examples (Non-Normative)

	10 JSON/JSON-LD bindings for data definition
	10.1 Brief introduction to JSON and JSON-LD in the context of EPCIS
	10.1.1 JavaScript Object Notation (JSON)
	10.1.2 JSON for Linked Data (JSON-LD)
	10.1.3 Features of the JSON-LD context resource
	10.1.4 Compact URI Expressions (CURIEs)

	10.2 Expression and validation of EPCIS data structures in JSON and JSON-LD
	10.2.1 Expressing data fields expecting simple values
	10.2.2 Validating data fields expecting simple values
	10.2.3 Validation of fields (e.g. 'action') that expect a string value from an enumerated list
	10.2.4 Expressing simple lists of values
	10.2.5 Validating lists of values
	10.2.6 Expressing lists of elements with inline attributes expressing type
	10.2.7 Modelling and validating subclasses of EPCIS event
	10.2.8 Comparison of how validation rules are expressed in XSD, JSON Schema and SHACL
	10.2.9 Mapping core SBDH fields to the JSON/JSON-LD data format for EPCIS
	10.2.10 Online validation tools for JSON Schema and SHACL
	10.2.11 Libraries and toolkits providing JSON-LD support

	10.3 Validation schema (references to normative content)
	10.4 Non-normative examples in JSON and JSON-LD

	11 Bindings for core capture operations module
	11.1 Message queue binding
	11.2 HTTP binding

	12 REST Bindings
	12.1 Code conventions
	12.2 Introduction to REST
	12.3 Content negotiation, service discovery and custom headers for EPCIS
	12.4 Authentication and Authorization
	12.5 Pagination
	12.6 Capturing EPCIS Events
	12.6.1 Capture Interface
	12.6.2 Capture Jobs Interface

	12.7 Events interface
	12.7.1 EPCIS events collections
	12.7.2 EPCIS events endpoints
	12.7.3 Event filtering with the EPCIS query language
	12.7.4 Top-level resources

	12.8 Query control interface
	12.8.1 Creating and using named queries
	12.8.2 Deleting named queries
	12.8.3 Subscribing to named queries
	12.8.3.1 Scheduled queries
	12.8.3.2 Streaming queries
	12.8.3.3 Webhook (HTTP Callback) for query subscription
	12.8.3.4 WebSocket for query subscription

	12.8.4 EPCIS query language
	12.8.5 EPCIS query in the URL

	12.9 Backward Compatibility of REST bindings with EPCIS 1.2
	12.10 EPCIS Error Conditions and HTTP Status Code Mapping

	13 Bindings for core query operations module
	13.1 XML schema for core query operations module
	13.2 SOAP/HTTP binding for the query control interface
	13.3 AS2 Binding for the query control interface
	13.3.1 GS1 AS2 guidelines (Non-Normative)

	13.4 Bindings for query callback interface
	13.4.1 General Considerations for all XML-based bindings
	13.4.2 HTTP binding of the query callback interface
	13.4.3 HTTPS binding of the query callback interface
	13.4.4 AS2 Binding of the query callback interface

	14 Conformance
	14.1 Conformance of EPCIS XML data
	14.2 Conformance of EPCIS capture interface clients
	14.3 Conformance of EPCIS capture interface servers
	14.4 Conformance of EPCIS query interface clients
	14.5 Conformance of EPCIS query interface servers
	14.6 Conformance of EPCIS query callback interface implementations
	14.7 Conformance of JSON/JSON-LD bindings
	14.8 Conformance of REST Interface for EPCIS 2.0 Servers

	15 UML Diagrams for SBDH
	15.1 UML aligned with text of SBDH specification
	15.2 UML aligned with XSD of SBDH specification

	16 References

